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ABSTRACT: Metal−organic framework (MOF)-based sensors, which have
garnered considerable focus for their potential to enhance environmental
monitoring and improve water quality by accurately and consistently identifying
antibiotic compounds in water, have gained considerable interest. With the help of
pH value, an unusual instance of single-crystal-to-single-crystal (SCSC) transition
from the three-dimensional (3D) Zn-framework {[Zn2(mbix)2(2,5-bda)2]·H2O}n
(1) to the 3D 2-fold Zn-framework {[Zn4(mbix)4(2,5-bda)4]·H2O}n (2) has been
observed under mild conditions. This transformation necessitates the replication of
structure 1 while simultaneously modifying the angle between the planes of the
imidazole and benzene rings. It is noteworthy that the detection capabilities of 2 for
tetracyclines (TC) surpass those of other antibiotic analytes in water. Furthermore,
the sensing results are in close consistency with the S−V model when TC
concentrations fall within the range of 0−0.08 mM. Additionally, the limit of
detection (LOD) of the sensor toward TC is estimated to be 0.59 nM. The stronger quenching impact seen for TC can be linked to
a more significant overlap in the energy transfer process. The aforementioned proposition presents a viable strategy for the
systematic fabrication of economically viable luminescent sensors, thereby enabling efficient and cost-effective modifications of
properties.

1. INTRODUCTION
Tetracyclines (TC) are a prevalent type of antibiotic utilized in
the treatment of infections. However, their overuse has
detrimentally impacted both human health and the ecosys-
tem.1 In the last ten years, various analytical techniques have
been described for quantifying TC. Advanced instrumental
techniques, such as capillary electrophoresis (CE),2 liquid
chromatography with tandem mass spectrometry (LC−MS),3
high-performance liquid chromatography (HPLC),4 and
capillary electrophoresis-mass spectrometry (CE-MS)5 have
been employed for the detection of TC. These approaches
exhibit superior sensitivity and correctness; however, they are
associated with expensive and intricate equipment, complex
sample pretreatment procedures,6 and time-consuming pro-
cesses,7 thereby constraining their widespread application.
Fluorescence-based chemical sensors are a field detection

technology known for their rapid response time,8 high
sensitivity,9 and exceptional operability.10 Metal−organic
frameworks (MOFs)11,12 have recently attracted interest as a
potential medium for the detection of trace contaminants in
water.13−15 This is primarily owed to their high surface-to-
volume ratio, exceptional porosity, and adaptable structure and
functionalities. Specifically, fluorescent MOFs have shown the
ability to rapidly, conveniently, and visually detect organic

pollutants and antibiotics by leveraging their high-purity
fluorescence color16,17 and long excited-state lifetime.18 In
spite of the widespread use of fluorescent MOF materials as
promising chemical sensors,19,20 only a few have shown the
capability to detect antibiotics in an aqueous phase.21,22 This
presents challenges from both experimental and practical
perspectives in antibiotic detection in wastewater using
fluorescence-based chemical sensor materials.23

The occurrence of reactions occurring in the single-crystal-
to-single-crystal (SCSC) is rare due to the inherent challenge
of maintaining the structural integrity of the crystal while
accommodating atomic movement.24,25 However, the SCSC
transformation remains highly advantageous as it facilitates the
creation of novel MOF types with high yields, which are
otherwise unachievable under traditional conditions.26 The
research on SCSC conversion primarily focuses on the
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desorption or adsorption of the target molecule within the
MOFs. We believe that Zinc(Zn) is an ideal candidate for
constructing MOFs27−29 because it has a larger ion size,
broader coordination characteristics, and lower toxicity within
the constituents, which can form MOFs with various
structures, sufficient electron, and luminescent properties.30−32

The compound 2,5-thiophenedicarboxylic acid (2,5-H2tdad),
characterized by the 120° bond angle between the thiophene
ring and its two carboxylate groups, serves as a flexible ligand.
This flexibility stems from its capacity to function as a
bidentate or tridentate ligand, a feature that it owes to the
strategic placement of its functional groups. The compound
1,3-bis(imidazol-1-ylmethyl)benzene (m-bix), possessing two
adaptable −CH2− units, can offer diverse coordination modes.
These modes enable the formation of both isolated and
extended coordination compounds under appropriate synthetic
conditions.33 The aforementioned phenomenon was utilized to
apply KOH with a pH-driven SCSC transformation strategy.
This application successfully converted 3D metal−organic
framework (MOF) {[Zn2(mbix)2(2,5-bda)2]·H2O}n (1) into
another 3D MOF {[Zn4(mbix)4(2,5-bda)4]·H2O}n (2). This
conversion was achieved by replicating the structure of MOF 1
and elongating the Zn−N bonds.

2. EXPERIMENTAL PART
2.1. Synthesis of {[Zn2(mbix)2(2,5-bda)2]·H2O}n (1).

Zn(NO3)2·6H2O (0.030 g), m-bix (0.024 g), and 2,5-H2tdad
(0.017 mg) in a 1:1:1 molar ratio was dissolved in 5 mL of
H2O. The solution was then transferred to a 20 mL Teflon-
lined stainless steel vessel and subjected to autogenous
pressure, followed by heating at 160 °C for 120 h. After it
was gradually cooled to room temperature, the mixture was
rinsed with distilled water. The resulting light yellow,
transparent, and block-shaped crystals were filtered and
allowed to dry at 25 °C (yielding approximately 57% based
on m-bix). Elemental analysis (%): Calculated for
C40H34N8O9S2Zn2 (Mr: 965.65): C, 49.75; N, 11.60; H,
3.55% Found: C, 49.73; N, 11.59; H, 3.56%. FT-IR (KBr,
cm−1): 3428(br, s), 3123(m), 1559(s), 1524(s), 1433(w),
1382(s), 1284(w), 1225(m), 1147(w), 1091(m), 1017(m),
939(m), 816(m), 776(s), 646(m), 528(w).

2.2. Synthesis of {[Zn4(mbix)4(2,5-bda)4]·H2O}n (2).
Crystals of 1 were soaked in 0.1 mol/L KOH, and the pH was
adjusted to 8.5. The solution was then moved to a 20 mL
Teflon-lined stainless steel vessel and heated at 160 °C for 48
h. After gradually cooling to 25 °C, pale yellow crystals were
obtained (yielding 48% based on m-bix). Elemental analysis
(%): Calculated for C80H66N16O17S4Zn4 (Mr: 1913.29): C,
50.22%; N, 11.71%; H, 3.48%. Found: C, 50.24%; N, 11.72%;
H, 3.47%. FT-IR (KBr, cm−1): 3422(br, s), 3129(m), 1553(s),
1524(s), 1445(w), 1375(s), 1238(m), 1153(w), 1091(m),
1030(m), 939(m), 822(m), 783(s), 659(m), 522(w).

2.3. X-Ray Crystal Structure Determination. The
crystallographic data for 1 and 2 can be found in CCDC
1436801 and 1436802, respectively, and are available free of
charge at www.ccdc.cam.ac.uk/deposit. Table 1 provides the
crystal structure data along with the details of data collection
and structure refinement. Table S1 lists the selected bond
lengths and bond angles for the MOFs.

3. RESULTS AND DISCUSSION
3.1. Syntheses and Crystal Structure. The three-

dimensional metal−organic framework 1 was synthesized via
hydrothermal methods and subsequently utilized as a precursor
to genera te the nove l three -d imens iona l MOF
{[Zn4(mbix)4(2,5-bda)4]·H2O}n(2). This process demon-
strates a seldom-observed 3D → 3D structural transformation,
which replicates structure 1 and modifies the angle between
the planes of the imidazole ring and benzene ring. This is
accomplished by manipulating the pH value of the reaction
mixture that was measured. The chemical formulas of MOFs 1
and 2 are the same. MOF 1 crystallizes in the monoclinic Pc
space group, as illustrated in Figure 1a; the fundamental
structural unit of 1 comprises two independent Zn2+ ions, two
coordinated m-bix ligands, two coordinated 2,5-tdad2− anions,
and one uncoordinated water molecule. In MOF 1, the organic
carboxylic acid ligand 2,5-H2tdad is fully deprotonated and
thus involved in coordination with the central metal. The
dihedral angles between the two imidazole rings and the
phenyl ring of the m-bix ligand, when coordinated with Zn2+,
measure 65.00 and 80.16°, respectively. Conversely, the angles
of rotation between the two imidazole rings are determined to
be 75.41 and 72.04°, respectively (Figure 1c). The flexible −
CH2− moiety allows each m-bix ligand to exhibit varying
twisting angles when connecting two metal ions, and three
metal ions form a ternary ring secondary structure by linking
two 2,5-tdad2− anions and one m-bix ligand. Additionally, eight
metal ions connect four 2,5-tdad2− anions and four m-bix

Table 1. Crystal Data and Structure Refinement Parameters
of MOFs 1 and 2a,b

identification code 1 2

empirical formula C40H34N8O9S2Zn2 C80H66N16O17S4Zn4
formula mass 965.65 1913.29
crystal system monoclinic monoclinic
space group Pc Pn
a (Å) 11.8021(8) 8.7833(15)
b (Å) 11.3518(17) 28.682(5)
c (Å) 15.9416(12) 16.212(3)
α (deg) 90 90
β (deg) 105.844(2) 95.675(11)
γ (deg) 90 90
V (Å3) 2054.6(2) 4064.2(12)
Z 2 2
Dc (g·cm−3) 1.561 1.563
μ (Mo Kα) (mm−1) 1.335 1.348
F(000) 988 1956
2θ range (deg) 3.083−24.997 1.448−25.368
limiting indices −14 ≤ h ≤ 14 −10 ≤ h ≤ 10

−13 ≤ k ≤ 13 −34 ≤ k ≤ 34
−18 ≤ l ≤ 16 −19 ≤ l ≤ 18

data/restraints/parameters 6299/2/550 13124/9/1091
GOF on F2 1.046 1.077
final R indices [I > 2σ (I)]
R1 0.0436 0.079
wR2 0.0875 0.1318
R indices (all data)
R1 0.0673 0.1394
wR2 0.0969 0.1581
CCDC 1436801 1436802
aR1 = ∑||F0| − |Fc||/∑|F0. bwR2 = [∑[w(F02 − Fc2)2]/
∑[w(F02)2]]1/2.
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ligands to form an octahedral ring secondary structure. The
interlacing connection of these ternary ring secondary
structures with octahedral ring secondary structures results in
a two-dimensional pore structure for 1, and adjacent two-
dimensional pore structures alternate and connect to create a
three-dimensional network structure (Figure 1e). If each Zn2+
metal ion is considered a four-connected node linked to both
the m-bix ligand and 2,5-tdad2− anion (considered connecting
lines), to better understand, we can simplify the crystal
structure of 1 as a (4,4) network topology with connectivity, as
illustrated in Figure S1.

Given the aforementioned bonding environment, it is
plausible that suitable conditions exist for the twisting of the
angle between the planes of the benzene rings and imidazole
rings. The addition of KOH, which consequently elevated the
pH values of the reaction spanning from 4.5 to 8.5, precipitated
changes within the crystal structure. The elevated pH and
sustained high temperature, accompanied by conformational
transformation from 3D MOF 1 to 3D compact interweaving
MOF 2, are illustrated in the reaction routes of MOFs 1 and 2,
as shown in Scheme 1.

Figure 1. (a) Coordination environment surrounding the ZnII metal ions in 1; (b) coordination environment around the ZnII metal ions in 2; (c)
two-dimensional framework of 1; (d) two-dimensional layer of 2 viewed in the ac plane; (e) three-dimensional framework of MOF 1; and (f) three-
dimensional framework of MOF 2.
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In contrast to the Pc space group of 1, MOF 2 adopts the
monoclinic space group Pn. The structure of 2 is composed of
two identical fundamental structural units, which are also
present in 1 (Figure 1b). In both structures (1 and 2), the Zn2+
ions adopt a tetragonal coordination environment where they
coordinate with the m-bix ligand, which contains two nitrogen
atoms, and the 2,5-tdad2− anion, which contains two oxygen
atoms. This coordination environment exhibits a slightly
twisted trigonal cone geometry [ZnN2O2]. The Zn−O bond
lengths vary from 1.920(6) to 1.987(6) Å, while those between
Zn and N range from 1.983(6) to 2.036(7) Å. These bond
lengths are consistent with previously reported values.34,35

Each fundamental structural unit can be expanded into a 3D
porous network structure. The presence of pores allows the
two fundamental structural units in 2 to intertwine, forming a
compact structure. This intricate interweaving of the basic
structural units ultimately results in the unique 3D → 3D
structure of 2 (Figure 1f). Superimposing the structure of 2
leads to the formation of a compact framework exhibiting
interpenetration.
Upon comparison of the structures of MOFs 1 and 2, it is

evident that the primary ligand serving a connective role is the
ligand of m-bix. The existence of the flexible −CH2− group
results in the alterations to the dihedral angles of the m-bix.
The angle between the planes of the benzene and imidazole
rings in one of the m-bix has changed from 72.60 to 64.86° and
the other one from 65.00 to 75.29°, which causes the m-bix to
extend. The ligand length has increased from 0.996 to 1.073

nm. In the other m-bix, the dihedral angles between the
benzene ring and the imidazole ring changed from 76.79 to
71.65° and from 80.16 to 67.02° (Figure 1d). Both dihedral
angles are in a state of contraction. As previously mentioned,
alterations in the dihedral angles and ligand lengths have
resulted in changes in the pores within the 2D structures of the
two metal−organic frameworks (MOFs).

3.2. IR Spectroscopy. The infrared spectra for MOFs 1
and 2 have been captured within the wavelength range of
4000−400 cm−1, as illustrated in Figure 2. Given that the
compositions of 1 and 2 are identical, their IR spectra display
analogous peak positions, albeit with varying intensities. The
absorption bands at around 3123 and 3129 cm−1 can be
assigned to the C−H stretching vibrations of the benzene ring
within the functional group region. The absorption peaks
corresponding to the asymmetric and symmetric stretching
vibrations of the carboxyl functional group appear around 1559
and 1433 cm−1, as well as at 1553 and 1445 cm−1, respectively.
The absorption bands observed near 1382 and 1375 cm−1 are
attributed to the Zn−N coordination bond. Additionally, the
absorption signal at approximately 1091 cm−1 in the IR
spectrum is associated with C−N stretching vibrations. Weak
absorption bands at 528 and 522 cm−1 are assigned to the
stretching vibrations of the Zn−O bond.36

3.3. Powder X-ray Diffraction (PXRD) and Thermal
Analysis. To confirm the phase purity of MOFs 1 and 2, their
powder X-ray diffraction (PXRD) patterns were measured at
25 °C. A significant agreement was observed between the

Scheme 1. Reaction Materials and Routes of 1 and 2

Figure 2. IR spectra of 1 (a) and 2 (b).
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Figure 3. TG curves of 1 (a) and 2 (b).

Figure 4. Emission spectra of MOFs 1 and 2 were recorded in the solid state at temperatures of 298 K (delineated by the red line) and 77 K
(represented by the orange line) as well as in a water medium (outlined by the yellow line). The emission spectra of m-bix (highlighted by the
green line) and 2,5-H2tdad (denoted by the blue line) and the relevant color coordinate chart of the emissions.
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experimental and simulated PXRD patterns for both MOFs
(Figure S2).
The stability of the MOFs was estimated by using

thermogravimetric analyses (TGA). Figure 3 displays the
corresponding TGA curves. In the thermogravimetric curve of
MOF 1, the initial stage exhibits a weight loss temperature
range from 153 to 204 °C, which is associated with the release
of one water molecule in the crystal structure (found: 1.88%,
calculated: 1.87%). Evidently, the structure of 1 remains intact
until 434 °C. Similarly, 2 also undergoes dual-stage weight
loss: its primary stage occurs within a temperature interval
between 176 and 205 °C, resulting in a weight loss rate of
1.02% linked to the loss of one free H2O in the crystal
structure (calculated 0.94%). Subsequently, the loss of 84.37%
that occurs at the depletion of ligands accounts for the second
step within the temperature range of 293−457 °C, which
accounts for a calculated 85.81%. In comparison with 1, MOF
2 exhibits a compact structure comprising interpenetrating
double layers. The crystal framework remains stable up to 457
°C, rivaling the best among these MOFs.37,38

3.4. Luminescence Property.Metal−organic frameworks,
comprising both metal and organic ligands, particularly those
with d10 electron configurations, have the potential to function
as photosensitive materials.39 Consequently, it is immensely
beneficial to investigate the fluorescence characteristics of 1
and 2 in their solid state at both 298 and 77 K, as well as in
water, to elucidate the correlation between the structure and
emission (Figure 4 and Table 2). The emission spectra in the
solid state of two Zn-containing MOFs at 298 K are centered

at 436 and 427 nm, respectively, producing blue luminescence
with Commission Internationale d’Eclairage (CIE) coordinates
of (0.23, 0.27) for MOF 1 and (0.18, 0.16) for MOF 2. The
emission originating from the ligands implies an energy
transfer occurring from one ligand to another during the
process of photoluminescence. Therefore, the emissions may
be assigned to a LLCT.40 This particular phenomenon has
been previously noted in a series of Zn(II) MOFs, which were
supported by N-donor bridges and incorporated varying
coligands.
The emission spectra of both MOFs exhibit a marked

narrowing in the solid state at 77 K, compared to those
recorded at 298 K. Specifically, 1 and 2 exhibit a pronounced
red-shifted chromic process, with transitions from 436 → 459
and 427 → 446 nm, respectively. MOF 1 emits strong green
luminescence with CIE coordinates of (0.34, 0.59), while
MOF 2 generates light green luminescence with CIE
coordinates of (0.18, 0.13), positioning it within the blue
wavelength range. This observed phenomenon is referred to as
“luminescence thermochromism”41 and has also been
documented in prior literature.42 For both MOFs 1 and 2,
the maximum emission peak of MOF 2 is blue-shifted
compared to that of MOF 1, a difference likely caused by
the more compact structure of MOF 2, which hinders electron
transmission. The luminescence lifetimes of 1−2 are shown in
Figure S3.

3.5. Detection of Tetracyclines. Next, MOF 2 was
employed as a chemical sensor for detecting antibiotics in
water. A powdered sample (5 mg) was suspended in 3 mL of

Table 2. Luminescent Data for 1−2 at 298 and 77 K in the Solid State and in Water and Luminescent Data for Ligands at 298
K

compound temperature (K) excitation (λex, nm) emission (λem, nm) CIE 1931 (x, y) τ1 (μs) τ2 (μs) <τ> (μs)
1 298 330 436 (0.23, 0.27) 1.11 (73.71%) 8.95 (26.29%) 6.93

77 330 459 (0.21, 0.28) 0.94 (61.17%) 8.31 (38.83%) 7.20
water 330 427 (0.19, 0.20) 1.17 (63.57%) 8.11 (36.43%) 6.71

2 298 330 427 (0.18, 0.16) 0.81 (80.11%) 7.50 (19.89%) 5.47
77 330 446 (0.18, 0.13) 0.93 (80.31%) 8.11 (19.69%) 5.82
water 330 419 (0.17, 0.09) 0.85 (87.42%) 7.89 (12.58%) 4.88

m-bix 298 330 422 (0.17, 0.12) 1.46 (62.91%) 8.06 (37.09%) 6.51
2,5-H2tdad 298 330 425 (0.21, 0.19) 0.85 (24.92%) 6.30 (75.08%) 6.07

Figure 5. (a) Emission spectrum of 2 in different antibiotics; inset: emission spectra of 2 in TC. (b) Luminescence intensity bar chart of 2 in
various organic solvents.
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aqueous antibiotic solutions at a concentration of 1 × 10−4 M
prior to the measurement of the emission spectra. As expected,
2 exhibited detectable fluorescence-quenching effects on five
chosen antibiotics in aqueous solutions, including tetracyclines
(TC), norfloxacin (NOR), ketoprofen (KET), chlorampheni-
col (CAP), and dibenzothiophene (DBT). The most notable
feature is the significant dependence of the photoluminescent
spectra on the antibiotic compounds, particularly in the case of
TC, which shows the most significant quenching phenomena
(Figure 5). These promising results suggest that MOF 2 could
serve as an effective luminescent probe for detecting small
tetracycline molecules.
To gain a deeper understanding of the response exhibited by

2 toward TC, an investigation was conducted into the
relationship between luminescence and TC concentration.
The comprehensive experimental methodology is delineated in
the Supporting Information. In Figure 6a, there was a gradual
decrease in the luminescence of the 2 suspension as the TC
concentration increased. Simultaneously, under UV lamp
irradiation, the appearance of the suspension changed from
blue to colorless. The quantitative representation of the linear
relationship between luminescence and TC concentration can
be effectively articulated through the Stern−Volmer (S−V)
formula43

= [ ] +I I K C/ 10 SV

I0 and I represent the luminescence intensities of the
suspension before and after mixing with TC, respectively.
[C] represents the molar concentration of the TC solutions,
while KSV is the Stern−Volmer quenching constant (M−1).
The S−V plots in Figure 6b demonstrate a linear correlation

coefficient (R2) of 0.9812 for TC, indicating that the sensing
results align well with the S−V model when TC concentrations
are within the range of 0−0.08 mM. The KSV value for TC is
calculated to be 1.05 × 104 M−1. Additionally, the limit of
detection (LOD) of the sensor toward TC is estimated to be

0.59 nM, based on the 3σ IUPAC criteria.44 Compared to
previously reported results (Table 3), the LOD for tetracycline

(TC) is on par with the sophisticated, high-performance liquid
chromatography (HPLC)45 and carbon electrode46 methods,
and it also surpasses the sensitivity of several other chemo-
sensors.47 Consequently, this study introduces another highly
sensitive chemosensor for real-time monitoring of TC.

3.6. Mechanism of Detecting Tetracyclines. Explan-
ations based on the mechanisms of electron transfer53,54 and
resonance energy transfer55,56 have been extensively validated
for elucidating the phenomenon of fluorescence attenuation in
2 and its exceptional capability for TC detection. From an
electron transfer perspective, the energy level of the
conduction band57 in the electron-rich MOF 2 is generally
higher than the lowest unoccupied molecular orbital (LUMO)
of the analyte. Upon ultraviolet excitation, excited electrons
transfer from the conduction band of the MOF to the LUMOs
of the analyte. Moreover, as a driving force, the quenching
effect on fluorescence becomes more pronounced with an

Figure 6. (a) Fluorescence intensity of 2 in different concentrations at ca. 427 nm (λex = 330 nm); (b) linear relationship of 2 quenched in different
concentrations of TC.

Table 3. Comparisons of LOD and the Linearity Range in
the Detection of TC

LOD linear range method ref

1.1 nM HPLC 45
0.6 nM 1 × 10−6 to 5 × 10−3 M carbon electrode 46
0.017 nM electrochemical

multiplex
immunoassay

47

22.4 nM/L MSPE 48
237/224 nM microbiological assay 49
0.10 μM ECL 50
1.4 nM 0.10−6.0 mg/L silver nanoparticles 51
0.14 μM 0−15 μM in milk CdTe quantum dots 52
0.59 nM 0−0.08 mM fluorescent probe this

work
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increasing energy difference. As shown in Figure 7, the
remarkable efficiency exhibited by 2 in terms of fluorescence
quenching aligns well with the low LUMO energy observed in
various tested analytes.
To account for the difference between the observed

quenching efficiency and the calculated LUMO level, the
resonance energy transfer mechanism is employed; the energy
transfer process is widely recognized as occurring when
fluorescence emission overlaps with ultraviolet absorption.
The efficiency of this transfer is determined by the degree of
this overlap. Consequently, ultraviolet−visible spectra of the
analytes were recorded. The results, shown in Figure 8,
indicate a significant overlap between the absorption band of
TC and the emission band of 2, while minimal or no overlap is
observed for the other analytes. This explains the highly
efficient quenching performance of 2 toward TC.

The results further underscore the predominance of energy
transfer between these two mechanisms, which is consistent
with their distinct quenching responses to TC. The electron
transfer process remains similar due to the proximity of LUMO
energy levels. However, the more pronounced quenching effect
noted in TC can be ascribed to a greater degree of overlap in
the energy transfer process.

4. CONCLUSIONS
In a word, we have presented an original three-dimensional
MOF 1 with a (4,4) connected network topology that
undergoes structural transformation to form another three-
dimensional MOF 2 upon SCSC transformation. The
transformation process involves replicating the structure of 1
and modulating the pH value. This alters the dihedral angle
between the imidazole and benzene rings, a phenomenon that
is infrequently observed in MOFs. The SCSC behavior
observed in 1 can be attributed to host−guest interactions
and its intrinsic features, such as ligand flexibility allowing for
deformation. Furthermore, 2 exhibits excellent detection ability
toward TC compared to other antibiotic analytes. The electron
transfer process remains similar due to the close proximity of
LUMO energy levels; however, the stronger quenching effect
observed for TC can be attributed to a greater degree of
overlap in the energy transfer process. Overall, our research
results provide valuable insights into achieving 2-fold inter-
penetration in a three-dimensional structure through a SCSC
transformation.
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Figure 7. Schematic representation of the potential electron transfer pathway from 2 to antibiotic analytes.

Figure 8. Spectral overlaps between the normalized absorption
spectra of selected antibiotics and the normalized emission spectrum
of 2 in water.
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