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Abstract: Many people living in urban environments nowadays are overexposed to noise, which
results in adverse effects on their health. Thus, urban sound monitoring has emerged as a powerful
tool that might enable public administrations to automatically identify and quantify noise pollution.
Therefore, identifying multiple and simultaneous acoustic sources in these environments in a reliable
and cost-effective way has emerged as a hot research topic. The purpose of this paper is to propose a
two-stage classifier able to identify, in real time, a set of up to 21 urban acoustic events that may occur
simultaneously (i.e., multilabel), taking advantage of physical redundancy in acoustic sensors from a
wireless acoustic sensors network. The first stage of the proposed system consists of a multilabel
deep neural network that makes a classification for each 4-s window. The second stage intelligently
aggregates the classification results from the first stage of four neighboring nodes to determine the
final classification result. Conducted experiments with real-world data and up to three different
computing devices show that the system is able to provide classification results in less than 1 s and
that it has good performance when classifying the most common events from the dataset. The results
of this research may help civic organisations to obtain actionable noise monitoring information from
automatic systems.

Keywords: acoustic event classification; urban sound monitoring; multilabel classification; deep
neural networks; physical redundancy; distributed computing

1. Introduction

Acoustic noise (or noise pollution) can be defined as any sound that is loud or un-
pleasant enough that causes some kind of disturbance [1]. Noise pollution is one of the
major concerns for the European population, especially for citizens living in urban en-
vironments [2], which is materialized in an ever-rising number of complaints to public
administrations [3]. This issue is further stressed on those residential areas located close to
aggressive noise pollutants such as airports, railways, or highways [4]. In fact, according to
the World Health Organization (WHO) [2,4], there is a worrying portion of the European
population that is systematically exposed to harmful levels of noise pollution. Concretely,
it is estimated that from all the citizens living in the European Union (EU), about 40%
are exposed to road traffic noise levels above 55 dB(A), about 20% are exposed to levels
above 65 dB(A) in daytime, and over 30% are exposed to noise levels exceeding 55 dB(A)
at nighttime [5].

Continuous exposure to environmental noise pollution may result in adverse effects
on health, ranging from moderate disturbances such as difficulties in understanding a voice
message to chronic illnesses such as cardiovascular diseases (e.g., myocardial infarction),
cognitive impairment in children, psychological disorders derived from lack of rest or
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sleep, or tinnitus [4,6]. In fact, according to the European Environment Agency (EEA), it
is estimated that, only in Europe, 12,000 premature deaths are associated with long-term
noise exposure each year. Moreover, in their latest report [7], it is estimated that more than
28 million people suffer from the aforementioned health effects derived from overexposure
to noise.

In order to overcome this situation, a set of recommendations have been established
(e.g., Environmental Noise Directive 2002/49/EC [8] from the European Commission or
the Environmental Noise Guidelines for the European Region from the WHO [9]) to define
the thresholds on the maximum amount of noise that should be perceived by citizens. For
instance, the WHO distinguishes up to five different types of noise sources (i.e., road traffic
noise, railway noise, aircraft noise, wind turbine noise, and leisure noise) and recommends
different noise thresholds for each source depending on the time of the day (i.e., day,
night) [10]. From these recommendations, it can be inferred that not all sound sources have
the same impact on human disturbance. In fact, the sound level is not the only parameter
that indicates the extent and intensity of noise pollution [11]. Therefore, identifying the
sources of those potentially harmful sounds has emerged as a hot research topic nowadays.

So far, several efforts have been made by private and public entities on identifying
acoustically polluted environments in urban areas [12]. Typically, this is done by either
analyzing the distribution of noise-related complaints in a certain area or by deploying a
Wireless Acoustic Sensor Network (WASN) to automatically monitor the soundscape [12].
Both approaches entail the same main underlying challenges:

1. Identifying multiple concurrent noise sources that populate a given soundscape.
Typically, in real-world environments, several sounds occur simultaneously. This
complicates the task of building a reliable automatic sound classifier system special-
ized in identifying a predefined set of acoustic events [13].

2. Monitoring large-scale urban areas in a cost-effective way. Populating (with either
automatic devices or human resources) extensive urban environments requires a
considerable amount of resources. For instance, it has been reported [12] that the
Department of Environmental Protection from New York City employs about 50
highly qualified sound inspectors. In addition, the starting price of autonomous
nodes to continuously monitoring sound is usually around EUR 1000 [14].

3. Real-time processing. Although continuous exposure to noise is harmful, short-term
exposure to sporadic noise shall not be neglected. In fact, sometimes noise violations
are sporadic (i.e., they last a few minutes or hours at most). Therefore, human-based
noise complaint assessment systems result in being ineffective due to the fact that
technicians may arrive way after the disturbance has finished [12]. Furthermore, the
large amount of data to be processed by autonomous acoustic sensors may make this
kind of approach challenging.

The purpose of this paper is to present an automatic classification system for acoustic
events in urban environments able to address the aforementioned challenges. The proposed
approach combines and improves (1) the advances of our previous work in the conception
of a WASN architecture for single-label classification using physical redundancy of low-
cost sensors and synthetically generated audio files [15], and (2) the outlined automatic
multilabel classification system for acoustic events that the authors presented in [16]. The
resulting system presented in this work features a two-stage classifier that analyzes real-
world acoustic frames in real time to distinguish all the events that appear in them—not
only on the foreground soundscape but also on the background. It is understood that
events in the foreground are those with more saliency than the average noise. Similarly,
events in the background are those events with similar saliency to the average noise.

The first stage is composed of a deep neural network that has been trained to identify
different events that may occur concurrently (also referred to as a multilabel classification).
The second layer is aimed at aggregating the first-stage classification results from neighbor-
ing nodes (i.e., exploiting physical redundancy) to increase the classification reliability of
individual sensors. Additionally, the whole system has been designed so it can meet the
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computing constraints typically found in the potential application domain of this system
(i.e., low-cost WASN [15]). In order to assess the classification performance of the presented
approach, real-world data have been collected simultaneously at four corners of a traffic
intersection in Barcelona.

Overall, the contributions of this paper are the following:

• A new real-world 5 h length dataset (containing concurrent events) recorded simulta-
neously at four spots from a street intersection. This results in 4 × 5 h of acoustic data.
A total of 5 h of audio data corresponding to 1 spot have been manually annotated. To
the best of our knowledge, this is the first dataset with these characteristics.

• A software-assisted strategy to reduce the number of user interactions when labelling
acoustic data to reduce the amount of time spent on this task.

• A two-stage acoustic classifier aimed at increasing the local classification robustness by
taking into consideration the classification results of neighboring nodes (i.e., exploiting
the nodes’ physical redundancy).

Conducted experiments over different low-cost architectures (Raspberry Pi 2B, 3B+,
and 4) endorse the feasibility of our approach and encourage practitioners to extend this
work in a large-scale real-world deployment.

The remainder of this paper is organized as follows. Section 2 reviews the related
work on the identification of acoustic events in urban environments. Section 3 describes the
real-world data collection and annotation processes that have led to the training and test
sets used to assess the classification performance. Section 4 details the proposed two-stage
multilabel classifier system. Section 5 evaluates the proposed approach. Section 6 discusses
the main findings of this work. Finally, Section 7 concludes the paper and proposes
potential future work directions.

2. Related Work

There is an increasing demand for automatic monitoring of noise levels in urban
areas, especially if this monitoring can give information about the noise source of the
measured levels [9,10]. In this sense, several WASN-based projects are being developed in
several parts of the world, mainly adapted to their requirements, some of them identifying
types of noise source and others giving equivalent levels LAeq. Following this idea, some
projects have to develop their own sensors to meet the requirements of the measurements,
and others operate in the real world with commercial sensors. Additionally, there are some
projects that do not only concentrate on noise monitoring but also on air pollution.

2.1. Commercial Sensor Networks

Commercial sound level meters or sensor networks are usually connected to a central
server, which collects all the LAeq values gathered by the nodes. One of the first projects
developed for this purpose is the Telos project [17], which was one of the first experiences
in this WASN design by means of an ultra-low-power wireless sensor module designed
by the University of California (Berkeley). Some years later, a WASN was used in a large
variety of environmental monitoring applications, with a central focus on urban sound, as
we can find in [18,19].

In Xiamen City (China), authors deployed a traffic noise monitoring network covering
35 roads and 9 green spaces in the city [20]. Data from the environmental monitoring
stations were used to model the traffic of more than 100 roads in the city. Similarly, the
FI-Sonic Project is focused on noise monitoring in a surveillance mode [21]. Its main
goal is to develop the artificial intelligence algorithms required to identify the location of
sound events [22] based on a FIWARE platform. The RUMEUR project, standing for Urban
Network of Measurement of the sound Environment of Regional Use, is a hybrid wireless
sensor network deployed by BruitPaif [23] in Paris and its surrounding cities. It has been
designed to have high accuracy in critical places, such as airports, where the WHO directive
has defined stringent thresholds [5], while other locations have less precise measurements.
Years after, the RUMEUR project has evolved to Medusa [24], a new network combining
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four microphones and two optical systems with the goal of identifying the sound source
location. Its computational load is high, and therefore it cannot be resolved by most of the
low-cost acoustic sensor systems.

2.2. Ad Hoc Developed Acoustic Sensor Networks

Other projects have the goal of developing a custom WASN in order to meet the
requirements of specific applications, mainly of particular analysis over the acoustic data.
The IDEA project (Intelligent Distributed Environmental Assessment) [25] seeks to analyze
air and noise pollutants in several urban areas of Belgium. It integrates a sensor network
based on a cloud platform, and it measures noise and air quality [26]. The CENSE project,
which stands for characterization of urban sound environments, is committed to conceiving
noise maps in France [27], integrating both simulated and measured data collected from a
cost-affordable WASN. The MESSAGE project, which stands for Mobile Environmental
Sensing System Across Grid Environments, [28] not only monitors noise, carbon monoxide,
nitrogen dioxide, and temperature, but also goes further and gathers real-time humidity
and traffic occupancy in the United Kingdom. Moreover, the MONZA project [29,30]
follows both the idea of monitoring urban noise real-time together with other air pollutants
in the Italian city of Monza.

A more recent approach when working with WASN and noise sources is the hybrid
approach of combining the acoustic information with subjective perception surveys that
are specially focused on the typology of events affecting everyday life activities, such as
sleeping or studying [31]. A noise identification system is applied to provide information
about the detected sounds and establish a relationship between the perception surveys and
the identified events related to road traffic noise [32].

One of the projects that faces the challenge of urban sound classification is Sounds of
New York City Project (SONYC), which monitors the city using a low-cost static acoustic
sensor network [33]. The goal of this project is to monitor noise pollution in real time
by identifying the different noise sources that populate an acoustic environment. In this
regard, it uses acoustic event detection [12,34] over all the collected (and annotated) urban
acoustic data [35].

Another project with a similar conceptual background is the DYNAMAP project [36],
which deployed two pilot areas in Italy, located in Rome [37] and Milan [38], with the
idea of computing and comparing the noise impact of road infrastructures in suburban
and urban areas, respectively. The two WASNs monitored road traffic noise by reliably
collecting data at a frequency of 44,100 Hz, managing to remove specific non-traffic audio
events [39,40] in order to build a more accurate road traffic noise map [41].

Deep learning has been applied to urban audio datasets, obtaining encouraging
results [15,42]. However, many research studies are limited to datasets that are unrealistic
because they are curated from audio libraries rather than real-world urban monitoring,
and/or are single-label annotated, neglecting the simultaneous occurrence of sounds [43].
Recent work suggests that using multilabel data can enable practitioners to obtain more
realistic results [42]. In this regard, edge intelligence is envisaged as a powerful alternative
to address the typical computation overhead associated with multilabel classification
systems [44].

2.3. Sensor Deployment Strategies

In addition to the sensors, an important design parameter for wireless (acoustic) sensor
networks is the physical topology in which sensing units are deployed in a specific scenario.
This section reviews the impact of the sensor deployment strategy on (1) the maximum
size of the area of interest to be covered, (2) the power consumption of each node, and (3)
the communication robustness.

As far as the area of interest is concerned, in [45], the authors study different node
placements for a wireless sensor network able to sense environmental parameters (e.g.,
sunlight, temperature, humidity, rainfall, or images) that are delivered to different base
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stations by means of ad hoc wireless communication links. Concretely, the authors propose
an analytical model to come up with the optimal position of nodes according to the desired
node arrangement (e.g., ring, star, triangle, square, and hexagon). Alternative sensor
location strategies have been studied for Underwater Acoustic Sensor Networks (UASN)
applications as well. For instance, in [46], the authors study and compare the impacts
of node deployment strategies in a 3-D environment. Their results show that a regular
tetrahedron deployment scheme outperforms other topologies such as a random or cube
topology. Concretely, the metrics that they use to compare the different schemes are the
reduction of localization error and the optimization of localization ratio while maintaining
the average number of neighbouring anchor nodes and network connectivity. Similarly,
in [47], the effects of deploying UASNs together with the most well-known research projects
in this field are reviewed.

Another way of extending the area size consists of using mobile nodes (e.g., robotic
vehicles). For instance, in [48], the authors consider a dynamic topology in which nodes
are constantly moving and study the best way to optimize power consumption.

Finally, in [49], the authors propose an advanced strategy for sensor placement that
aims to maximize the connectivity robustness of the nodes for sparse networks. Con-
cretely, they explore an analytical topology composed of hexagonal clusters and develop
an algorithm for geometric distance optimization to improve the overall robustness of
the system.

3. Collection and Annotation of a Real-World Dataset

To evaluate the results of a multilabel classifier, the first step is to have available a
dataset with multilabel data. This section (1) describes the procedure that we followed
to collect these data from a real-world environment, (2) details how data were labeled,
and (3) exhibits the number of events for each class that were identified in the dataset.

3.1. Recording Campaign

In order to obtain a suitable real-world dataset to validate the proposed approach
(i.e., multilabel classification of urban sounds taking advantage of physical redundancy
in sensor nodes), two recording campaigns were conducted in the metropolitan area
of the center of Barcelona (Spain). To have a wider variety of data, the two recording
campaigns took place in different seasons of the year. The first one was conducted during
autumn 2020 (17 November 2020) and the second one was conducted during spring 2021
(31 May 2021). Another substantial difference is that the first recording campaign was
conducted under mobility restrictions [50] due to the COVID-19 pandemic, while during
the second recording campaign, those restrictions were significantly softer. To have even
more diversity in data, the hours in which the recording campaigns took place were
different: whereas the autumn campaign was recorded from 12:00 to 14:30, the spring
campaign was recorded from 15:30 to 18:00.

The location where the recording campaign was conducted is a specific crossroad
in the Barcelona city center: the crossroad between Villarroel Street and Diputació Street
(plus code 95M5+H9). This place is located in the Eixample area of Barcelona, which is
the wide expansion district of the city. This place was chosen in order to validate the
architecture proposed in [15], as its shape follows strictly regular symmetry. From now on,
these recordings will be referred to as Eixample Dataset.

Four Zoom H5 recorders [51] (see Figure 1) were used to record data, with one placed
on the middle of each corner of the street intersection. Concretely, the devices stood over
tripods at a distance of at least 4 m from the closest wall and 1.5 m from the floor to avoid
undesired sound reflections. Furthermore, the inclination of the device with respect to the
floor was 45°. This will enable us to have simultaneous audio recordings in order to assess
with real-world data whether physical redundancy helps increase the robustness of the
classification results of the end-to-end architecture proposed in [15], as in that work we
used synthetically generated audio files.
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Figure 1. Recording campaign and Zoom recorder.

The two recording campaigns resulted in about 2 h and 30 min of acoustic data per
sensor per campaign. Due to technical problems with the batteries of the recorders during
the second campaign, the files were fragmented into two audio files. The time dedicated to
changing the batteries was of about 5 min, in which we were not able to record data.

3.2. Data Labeling

Existing approaches to automatically label acoustic data [13] inspired by semi-supervised
learning techniques shall not provide the necessary high level of accuracy and precision to
train and test a reliable model to be considered as ground truth in order to assess our proposed
approach. Therefore, data collected from the recording campaign have to undergo the manual
labeling process described below.

Our previous experiences on (manually) labeling real-world acoustic datasets [52–54]
taught us that assigning a tag to an acoustic sample is a time-consuming process: contrary
to other types of datasets (e.g., images) in which a label can be assigned as soon as the
sample is shown, in acoustic data labeling one has to wait for the whole acoustic record
to be reproduced before assigning it a label. Typically, this is done with off-the-shelf
software alternatives such as Audacity [55] that provide end-users with a spectrogram
of the full audio record; thus, it becomes easier to visually identify those time frames
in which something anomalous (i.e., potential events of interest) might be happening.
However, as the purpose of this work is to identify multiple events (i.e., classes) that occur
concurrently not only in the foreground but also in the background, and thus potentially
overlap in a given acoustic sample, all of the collected acoustic samples—coming from the
aforementioned two 2.5 h length campaigns—must be systematically heard and labeled.

In this situation, off-the-shelf software alternatives come at little ease due to the fact
that they require, from the user point of view, several sequential and time-consuming
interactions with the mouse (e.g., dragging and selecting the desired part of the spectro-
gram, clicking to add the label) and keyboard (e.g., typing the labels for the selected area).
Additionally, as far as keyboard interactions are concerned, we have found that it is very
common to make typos when writing the labels (e.g., typing rnt instead of rtn), which often
require an additional review stage before feeding the labels to the machine learning system.
Obviously, all these interactions add a significant delay on the overall data labeling process.

To address these shortcomings, we decided to develop a simple, yet custom, python
script aimed to ease the manual acoustic data labeling process. The behavior of the script is
described in the following points:

• Input. The script reads the .wav files coming raw from the Zoom H5 recorders. This
done with the module AudioSegment of the pydub library. This module loads the
whole audio is input into a vector, which results in a very convenient solution when
windowing it.
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• Configuration file. Moreover, the script reads a configuration JSON file specifying
(1) the window size in which the .wav file will be split, (2) all the possible labels that
may appear in the recording, and (3) a key (one letter long) associated with each
possible label.

• User interaction. As shown in Figure 2, the script (1) displays a screen with the
spectrogram—using the pyplot module of the matplotlib library—of the current
window together with its start and finish times, (2) continuously reproduces the audio
associated to the current window using the pyaudio library, and (3) shows the possible
labels together with their associated keys in another screen. Then, each time the user
presses a key corresponding to a label, the label is aggregated to the vector of labels
associated with the current window. If the same key was pressed again, that event
would be removed from the vector. Furthermore, the user can go to the following or
previous acoustic window by using the arrow keys. Note that in this way, the user
has a single interaction device (i.e., keyboard) and typos in labels are not possible.

• Output. The script writes a .csv file with (1) the start time of the window, (2) the
finish time of the window, and (3) all the tags that have been selected for that window.
For instance, a line in this .csv file would appear as follows:

276.000000 280.000000 bike+dog+troll
280.000000 284.000000 bike+glass
284.000000 288.000000 dog+peop+drill

As a result, each line of the labels file derived from a recording contains the starting
and ending time of the window and the different labels assigned to (i.e., appearing)
that fragment.

Thanks to this software, we experienced that roughly, on average, the labeling process
took us 30% less time than what it took in other works where we used off-the-shelf
alternatives.

Figure 2. Screenshot of the developed python script. The screen on the background (left) records the
keystrokes. The screen on the foreground (right) shows the information of the current window and a
legend with the correspondences between keys and labels.
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As far as the data labeling process is concerned, we labeled the acoustic data (i.e., two
2.5 h length recordings) from one of the four corners of the recording campaign. Concretely,
it took about 12 h to annotate all these acoustic data using the aforementioned method.
These data were then used as a reliable ground truth for the experimental evaluation. The
other audio files were not manually labeled as they were only used as a complement to the
selected sensor to check if the accuracy improves when joining together the classification
results from neighboring nodes. In order to use a classification algorithm based on a deep
neural network able to classify the spectral information of acoustic data [15], we decided
to directly label the audio files in windows of 4 s to keep compatibility with previous
experiments [15]. Hence, as it can be seen in the spectrogram depicted in Figure 2, the
script sequentially split audio files in windows of 4-s length.

3.3. Obtained Dataset

The manual labeling task led the team to this taxonomy, with the number of classes
and the number of labeled events shown in Table 1.

Table 1. Number of events annotated on the dataset.

Number of Occurrences
Label Description 1st Campaign 2nd Campaign Total

rtn Background traffic noise 2177 2118 4295
peop Sounds or noises produced by people 300 612 912
brak Car brakes 489 424 913
bird Bird vocalizations 357 960 1317

motorc Motorcycles 769 565 1334
eng Engine idling 203 913 1116

cdoor Car door 133 161 294
impls Undefined impulsional noises 445 170 615
cmplx Complex noises that the labeler could not identify 85 73 158
troll Trolley 162 152 314
wind Wind 8 23 31
horn Car or motorbike horn 43 33 76
sire Sirens from ambulances, the police, etc. 18 57 75

musi Music 8 30 38
bike Non-motorized bikes 51 24 75

hdoor House door 25 60 85
bell Bells from a church 24 27 51

glass People throwing glass in the recycling bin 17 32 49
beep Beeps from trucks during reversing 31 0 31
dog Dogs barking 3 25 28
drill Drilling 0 14 14

3.4. Train/Validation/Test Split

As can be seen in the last column of Table 1, the dataset is highly imbalanced: whereas
the top events of the table are present in both recording campaigns with a considerable
number of samples, there are some sounds that are poorly represented in the dataset. Actu-
ally, there are acoustic events that are only present in one of the two recording campaigns.
For example, the drill sound is present only in the second campaign. Moreover, as the
events were labeled in 4-s windows, the fact that there are 14 events labeled with the drill
tag does not mean that there are 14 independent drilling sounds, as a long drilling sound
lasting (for example) 8 s would be counted as two different windows. This phenomenon
would happen with all the acoustic events that last more than the 4-s window (presumably,
categories such as sire, musi, eng, or motorc among others). We are took this into account
when splitting the dataset in Train/Validation and Test sets (see Section 3.4).
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4. Two-Stage Multilabel Classifier

After obtaining the labeled dataset, this section details the whole classification proce-
dure. First, it discusses the feature extraction process of the acoustic data. Next, it shows
how the dataset is split into Train, Validation, and Test sets. Then, it describes how the
problem of class imbalance has been addressed by using data augmentation. Finally, it
details the two-stage classification process.

4.1. Feature Extraction

As features, and to maintain compatibility with [15], a spectrogram was obtained
from each 4-s window of the dataset. Audio files were originally recorded at a sampling
rate of 44,100 Hz. First, we considered down-sampling the audio files to 22,050 Hz, but
after analyzing the labeled events, we realized that the brak event had all its frequential
information at the band of ∼17,000 Hz. Considering the Nyquist theorem, if the brak
event is aimed to be detected, a sampling rate of 22,050 Hz is not high enough. Hence,
we finally decided to keep the original 44,100 Hz frequency, even if it required more
computational resources.

Each spectrogram was generated with a Fast Fourier Transform (FFT) [56] window
of 1024 points and using the librosa python library [57]. Next, each spectrogram was
individually normalized to have a minimum value of 0 and a maximum value of 1 for
compatibility with the input format of the neural network.

The audio files obtained on the recording campaign had to be divided into Train,
Validation, and Test subsets. As soundscapes have temporal continuity, and so to evaluate
the machine learning algorithm correctly, it is important to make sure these three data
subsets are taken from different moments of the day, so that one single event is not split
into different groups. Therefore, we tried to avoid or mitigate the fact that different audio
samples with similar background noise were placed, for example, on both the Training and
Testing sets.

Concretely, the division was done as shown in Figure 3: with divisions into contiguous
regions ranging from 5 to 71 min length.

This division left the dataset with 209 min for Training, 40 min for Validating, and
48 min for Testing. Note that the division of the two datasets was not exactly even due to
the distribution of the events. We tried to maximize the variety of the events on each of the
datasets while keeping their temporal evolution.

Figure 3. Duration and temporal splitting of the Train, Validation, and Test sets of the dataset.

As can be appreciated in Table 2, the three sets are highly unbalanced. Note that
due to the lack of drilling events during the recording campaigns (only 14 consecutive
events), we were unable to test that category properly. We discarded the option of splitting
the 14 events into the Train and Test sets as they belonged to the same drilling machine
recorded in the same location, which may have generated biased results. Moreover, we
decided to remove the cmplx sounds from the dataset. As we could not identify the specific
source of those sounds when labeling them, we arrived at the conclusion that they may
confuse the system.
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Table 2. Number of events on the Train, Validation, and Test set.

Dataset
Label Train Validation Test

rtn 3029 583 683
peop 954 100 181
brak 627 137 149
bird 913 196 208

motorc 954 183 197
eng 864 73 179

cdoor 190 51 53
impls 457 67 91
cmplx 128 16 14
troll 229 53 32
wind 19 4 8
horn 49 17 10
sire 69 0 6

musi 34 0 4
bike 55 8 12

hdoor 65 12 8
bell 34 4 13

glass 40 6 3
beep 9 13 9
dog 23 4 1
drill 14 0 0

4.2. Data Augmentation

To mitigate the potential effects of class imbalance while training, we decided to add
more training data and to apply data augmentation techniques to obtain more samples
on the poorer classes. Additional data were obtained from the BCNDataset [52], which is
a dataset containing real-word urban and leisure events recorded at night in Barcelona.
As the BCNDataset was labeled differently than the Eixample Dataset, labels from both
datasets were unified.

More concretely, per each of the acoustic events, on the BCNDataset the labels are
provided as:

start_second end_second label

Note that in BCNDataset, the difference between the starting time and the ending
time of each acoustic label is variable (not as in Eixample Dataset, where the ending time
is always 4 s later than the starting time), and only one label is provided per each row of
the text file. However, the format of the file is the same as the one presented in Section 3.2,
which eased the merging process of both datasets. To merge both datasets, the labels of the
BCNDataset were fragmented and grouped in windows of 4 s. This way, we were able to
obtain one-hot encoded multilabel labels.

The concrete data augmentation technique used in this work consisted of audio mixing,
sometimes known as mixup [58]. As shown in Figure 4, two spectrograms (one belonging
to the Eixample Dataset and the other belonging to BCNDataset) were added and then
divided by two to maintain 0-to-1 normalization values. As the newly generated sample
would contain information of all the events tagged in both spectrograms, the labels file was
generated by aggregating the one-hot encoding values as well. This process was carried
out using pseudo-random spectrogram selection until all the classes had about 500 samples
on the Training set.
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+ =

rtn + motorc + troll rtn + sire rtn + motorc + troll + sire

Figure 4. Example of mixup data augmentation using two random 4-s fragments containing several
acoustic events.

4.3. Multilabel Classification

The classification process consists of two layers:

1. The first layer (Section 4.3.1) is a Deep Neural Network (DNN) that classifies 4-s
fragments in a single node.

2. The second layer (Section 4.3.2) aggregates the classification results of the deep neural
networks running on the four corners of the intersection and makes a final decision
on what events are actually happening on each corner by means of an ensemble of
classifiers.

4.3.1. First Stage: Classification in One Node

The classification of the events on each of the nodes was carried out using a deep
neural network with a MobileNet v2 architecture [59] with a size of 8.8 MB—which should
fit on a low-cost computing node for a WASN. As shown in Figure 5, the last layer of the
neural network was replaced by a fully connected layer with one neuron per class and a
Sigmoid activation function on each of them to allow multilabel classification. As a result,
for each input datum, the output neurons showed the probability of that class being present
on the input spectrogram. Once the probabilities were obtained, to evaluate whether the
deep neural network was able to classify correctly without taking into account the decisions
made by neighboring nodes, custom thresholds for each class were applied to determine
if the event was actually present on the 4-s fragment. The thresholds were obtained by
maximizing the F1-measure of each class on the validation set. As hyperparameters, an
ADAM optimizer [60] was used with a learning rate of 1 × 10−4 and a weight decay
regularization of 1 × 10−5.

4.3.2. Second Stage: Classification Using Physical Redundancy

The aim of the second classification stage is to increase the robustness of the classifica-
tion conducted at the previous stage by exploiting the physical redundancy of the nodes
(i.e., nodes are physically deployed in such a way that the same event can be listened to
by more than one node). Robustness in this context refers to the ability of the classifier to
perform correctly when the output probabilities of the deep neural network for a given
class are low but the event is actually happening. In this regard, our proposed system takes
into consideration the classification results of neighboring nodes in order to strengthen
(or weaken) its own results. For instance, if in the same frame Node A classified a bell
with probability 0.3 and nodes B, C, and D classified bell with probability 0.8, then Node A
should infer that a bell event actually happened. As manually defining these thresholds (or
rules) might disregard some of the internal dynamics of the system, we propose to use a
classifier to automatically generate them.
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Figure 5. Architecture of the MobileNet v2 [59] deep neural network used at the first stage of the
classification process.

The process followed to train the automatic second stage classifier is detailed in what
follows:

1. Once the deep neural network was trained, we used it to obtain a 21-component
classification vector per each of the 4-s fragments of the original Eixample Dataset
(see Section 3). Each component of the vector indicated the likelihood of an acoustic
event being present on the fragment. The labels from the dataset associated with each
fragment were kept as ground truth.

2. The previous stage was done with the simultaneous audio of the remaining three
neighboring locations. Therefore, for each 4-s fragment of the Eixample Dataset, we
obtained four 21-component vectors together with the ground-truth labels.

3. The four vectors were concatenated horizontally, thus obtaining a single 84-component
vector.
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4. The 84-component vector and ground truth labels were used to fit a machine learning
model that would output the final classification results.

For more clarification, this procedure is illustrated in Figure 6.

Figure 6. Proposed system architecture with two classification stages. The first deep neural network
of the first level outputs a 21-component vector that is later concatenated with the vectors from
neighboring nodes. The resulting 84-component vector is examined by the second classification stage
to obtain the final classification result. This scheme is replicated on each of the sensors of the system.

5. Experimental Evaluation

To assess the classification performance of the proposed system, each one of both
classification stages was evaluated.

5.1. Classification Performance at the First Stage

We evaluated the effect of training data on classification performance of the deep
neural network. Concretely, four experiments were conducted, differing only in the datasets
used for training:

• Experiment 0: We used the Training set of the Eixample Dataset and the entire BCN-
Dataset without using data augmentation techniques.

• Experiment 1: We used the Training set of the Eixample Dataset and the entire BCN-
Dataset using the data augmentation techniques detailed in Section 4.2 to have around
500 samples for each class.

• Experiment 2: We used the same data as in Experiment 1 and we also added data
from the UrbanSound 8K dataset [43]. The sampling frequency of most of the audio
files of the UrbanSound dataset is lower than the one used on the recording campaign
(i.e., 44,100 Hz). In order to avoid having half of the spectrogram empty for the Ur-
banSound samples, each audio file was combined with an audio file from Experiment
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1 using mix-up aggregation (that is, two spectrograms are aggregated, each of them
having a different weight on the final image). Concretely, the audio files from the
UrbanSound 8K dataset were only assigned between a random 10% to 30% on the
final weight of the spectrogram.

• Experiment 3: We used the same data as in Experiment 2, but on this occasion, each
audio file from the UrbanSound dataset was used 10 times to combine it with a
different audio file randomly selected from the BCNDataset or the Eixample dataset.
This way, we increased the size of the Training data.

The metrics that we used to compare the results are the Macro and Micro average F1-
scores [61]. Whereas the first metric gives an overall classification result without taking into
account the number of samples of each class (i.e., all the classes have the same importance),
the second one considers the number of samples of each class of the dataset (i.e., those
classes that have a greater number of samples on the Test set have more importance). We
present both results because, on the one hand, the macro average could be biased because
of the limitations of the Test set in some classes (e.g., there is only one dog event, which
means that the F1-measure for that class will be binary); on the other hand, the micro
average could be biased as well as the rtn class is present in almost all the audio samples.
Hence, whereas the first metric is mostly affected by the performance of the smaller classes
of the dataset, the second one is mostly affected by the performance of the larger classes of
the dataset. Table 3 shows the classification results for each of the experiments. To compute
the classification metrics, the drilling class was not taken into consideration as there are no
events from that class on the Test set.

As can be seen in Table 3, using the imbalanced data from the BCNDataset and the
Eixample dataset without using any data augmentation techniques (i.e., Experiment 0)
results in poor classification results. Concretely, the 12% on the Macro average F1 score
tells us that the algorithm has problems in classifying most of the categories. In addition,
having a Micro average F1 score higher than the Macro average F1 score tells us that the
system performs better when classifying those categories with more samples than when
classifying those categories with few instances. This phenomenon can be appreciated in all
the experiments.

Generally speaking, as shown in Table 3, the data augmentation techniques that have
been used in this work (i.e., Experiments 1, 2, and 3) have helped build a more robust
system. However, we think that using the UrbanSound samples has not actually helped to
improve the performance of the overall system at all due to the following reasons. First,
even if UrbanSound is a balanced dataset, it has fewer categories than the Eixample dataset.
In addition, the difference between the original sampling rate of the Eixample dataset or
the BCNDataset and the audio files from the UrbanSound dataset resulted in less realistic
audio files than if we used two real-world datasets recorded with similar conditions (as
we did in Experiment 1). Actually, comparing the classification metrics from Experiment 2
and Experiment 3, we can see that Experiment 2 has a better performance. We think that
this is because when doing data augmentation, only a random 10% to 30% of data belong
to the UrbanSound dataset, which means that most of the information belongs to the
spectrograms from the other two datasets. As we are augmenting data 10 times using the
same base spectrograms, the deterioration of the classification results may indicate that we
are biasing the deep neural network with mild overfitting towards these base spectrograms
when training.

To sum up, we propose that the data used in Experiment 1 offer the fairest trade-off
between the performance of the system on large and small classes. Hence, from now on,
for the experiments performed on Stage 2, we will use the model trained with Experiment
1 data.



Sensors 2021, 21, 7470 15 of 22

Table 3. Macro and micro average F-1 scores for the experimental evaluation obtained at the first
classification stage.

Dataset Used F1-Macro Average F1-Micro Average

Experiment 0 12% 46%
Experiment 1 39% 70%
Experiment 2 36% 75%
Experiment 3 33% 67%

5.2. Classification Performance at the Second Stage

As in this work the only labeled data that we had available were the ones recorded
on one specific sensor, the experiments were conducted over that reference sensor. To
discover the most suitable machine learning algorithm for the second classification stage,
four different classification algorithms were evaluated:

1. Decision Tree (DT): The size of the model after training was 617 KB.
2. Random Forest (RF): The size of the model after training was 121 MB.
3. Logistic Regressor (LR): The size of the model after training was 20 KB.
4. XGBoost (XGB): The size of the model after training was 2.3 MB.

It is worth noting that the lighter classification algorithms from a computing point of
view (i.e., the ones that require less RAM) are the DT and the LR, followed by XGB and,
finally, the RF. In this case, to build the models, the only data that we could use were the
ones belonging to the Eixample dataset, as this is the only one that has four simultaneous
recordings. The algorithms resulted in the classification results shown in Table 4. As
classification metrics, apart from the metrics shown in Section 4.3.1 (i.e., Micro F1 average
and Macro F1 average), the Micro precision and Micro recall of the system are shown as
well [61].

As can be seen in Table 4, all the algorithms tend to have slightly higher values of
Micro precision than Micro recall, which are emphasized in some of the classifiers (i.e., RF
and XGB). Whereas the first metric illustrates what proportion of detected events were
actually correct, the second one shows what proportion of actual events were correctly
classified. The Macro F1 measure gives the same importance to both metrics.

Table 4. Experiment results obtained at the second classification stage.

Algorithm Used Micro Precision Micro Recall Micro F1 Macro F1

DT 71.6% 69.5% 70.5% 30.6 %
RF 81.8% 68.1% 74.3% 26.7 %
LR 77.3% 72% 74.6 % 37.8%

XGB 78.5% 70.2 % 74.1 % 39.3 %

Whereas the highest Micro precision result is achieved by using the RF algorithm
(81.8%), the highest Micro recall result is obtained using the LR (72%). However, we believe
that for the current context of this work (i.e., classification of urban sounds), we should also
consider the F1 scores. In this sense, for the Micro F1 score, three classification algorithms
present similar results (the RF, LR, and XGB with 74.3%, 74.6%, and 74.1%, respectively).
However, when checking the Macro F1 average, XGB outperforms the other classification
algorithms, obtaining a final score of 39.3%. Therefore, we believe that the algorithm that
presents the fairest trade-off between all the classification metrics is XGB.

When comparing the classification results obtained at the first stage to the classification
results obtained at the second stage, we can see that using physical redundancy allowed
for increasing the F1 Macro average from 70% to 74.1% (+4.1%). Regarding the F1 Micro
average, the results change from 39% to 39.3% (+0.3%). These increments suggest that the
second stage helps to improve classification results mainly on the classes that have more
instances.
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As this system is to be deployed in a low-cost device such as the one presented in [15],
it is not only the accuracy that matters but also the capability of the system in making real-
time classifications within the 4-s selected window. Moreover, to make the classification
process smoother, it would be desirable to use a sliding 4-s window with hops as small as
possible (i.e., obtaining as many classification results as possible by sliding the 4-s window
with overlap). The amount of overlap that can be used in the system depends on the
classification speed of the system to output new data.

For this reason, to check the amount of time that it would take to the system to
output a new classification result, experimental tests were carried out using three different
computation units (i.e., Raspberry Pi Model 2B, Raspberry Pi Model 3B+, and Raspberry Pi
Model 4) and a plug-and-play USB microphone.

The main hardware differences among these three models relevant to the research
presented in this work are their computation capabilities (central processing unit and
operating frequency) and their amount of RAM memory:

• Raspberry Pi Model 2B: Broadcom BCM2836 SoC (ARMv7), Quad-core ARM Cortex-
A7, @ 900 MHz, 1GB LPDDR2 of RAM.

• Raspberry Pi model 3B+: Broadcom BCM2837B0 SoC (ARMv8), Cortex-A53, 64-bit @
1.4GHz, 1GB LPDDR2 SDRAM.

• Raspberry Pi model 4: Broadcom BCM2711 SoC (ARMv8), Quad-core Cortex-A72
64-bit @ 1.5GHz, 4GB LPDDR4-3200 SDRAM.

For each experiment, we evaluated the timing performance of the processing units
by making 100 test runs on each device. The obtained results can be seen in Table 5. The
times on the table start counting since a 4-s fragment is acquired by the microphone, and
they include (1) the spectrogram computation, (2) the first stage classification (DNN), and
(3) the second stage classification. As can be observed in the table, the device in which the
experiments are conducted greatly affects the timing results.

Table 5. Time that it takes for the system to classify a 4-s audio fragment using three different sensor
models. Results are shown in seconds after 100 runs.

Algorithms RPi Model
Max. Time Min. Time Avg. Time
(seconds) (seconds) (seconds)

DNN + DT

Model 2B

2.3 2.0 2.2
DNN + RF 2.9 2.4 2.6
DNN + LR 2.4 2.0 2.2

DNN + XGB 2.8 2.4 2.5

DNN + DT

Model 3B+

1.3 0.9 1.1
DNN + RF 1.5 1.2 1.3
DNN + LR 1.3 1.1 1.2

DNN + XGB 1.4 1.3 1.5

DNN + DT

Model 4B

0.7 0.6 0.6
DNN + RF 0.8 0.7 0.7
DNN + LR 0.8 0.6 0.6

DNN + XGB 1.0 0.7 0.7

Even though all the Raspberry Pi models are able to obtain a classification result within
4 s and would hence be suitable for a real-world deployment of the system, Raspberry Pi
Model 2B offers a timing response that is at least about 1 s slower than its superior models.
It can also be observed that Raspberry Pi Model 4B is, in general, about 0.5 s faster than
Raspberry Pi Model 3B+. Concretely, when using Raspberry Pi Model 4B, the average
response time of the system to perform a complete classification ranges from 0.66 s (when
using the DNN + DT) to 0.78 s (when using the DNN + RF). Concretely, when using the
aforementioned DNN + XGB algorithm, the classification would take on average 0.77 s. In
this case, the system could use a 4-s length sliding window and a hop of 1 s (i.e., maximum
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classification time for DNN + XGB in Model 4B) and thus output a classification result in
the next second.

Finally, to observe with detail the classification results obtained when using the
selected parameters, Table 6 shows the individual classification metrics per each class of
the dataset based on the results obtained in Experiment 1 on Section 4.3.1 and using the
XGBoost classifier. As can be seen, the system has a good performance when classifying
events with more than 100 instances on the Validation and Test set (values highlighted in
Table 6). However, it behaves poorly when classifying those classes with few instances
except for the bell event. This may be due to the fact that in the recording location, the
saliency of the recorded bells was higher than the background noise, so all the recorded bells
are foreground events. On the contrary, events such as sirens or music were occasionally
mixed with background noise depending on the distance between the noise source, the
sensor, and the simultaneous acoustic events happening at the same time.

Table 6. Evaluation metrics of the system when combining the outputs of 4 local nodes by using the
XGBoost algorithm.

Label True
Negative

False
Positive

False
Negative True Positive F1-Score

rtn 0 37 11 672 0.97
peop 495 44 96 85 0.55
brak 513 58 80 69 0.50
bird 485 27 59 149 0.78

motorc 469 54 79 100 0.60
eng 502 39 41 138 0.78

cdoor 652 15 40 13 0.32
impls 598 31 61 30 0.39
troll 670 18 18 14 0.44
wind 709 3 5 3 0.43
horn 709 1 7 3 0.43
sire 701 13 5 1 0.10

musi 714 2 4 0 0
bike 707 1 12 0 0

hdoor 705 7 8 0 0
bell 707 0 6 7 0.70

glass 707 0 2 1 0.50
beep 711 0 9 0 0
dog 718 1 1 0 0

6. Discussion

From our point of view, we believe that the obtained results in this research are
encouraging in terms of covering the expected results. In fact, the proposed system has
been shown to properly operate in a real-world environment. That is, the proposed system
has been exposed to the real-operation conditions (in terms of audio) typically found
in urban environments: appearance of sounds not previously recorded, various events
happening simultaneously, etc. Using inexpensive commodity hardware (i.e., less than
EUR 100 Raspberry Pi Model 4B), it has been able to produce classification outputs with
reasonable accuracy in 1 s.

6.1. Location Perspective

The intrinsic Eixample topology makes the deployment of the sensors straightforward
for this specific scenario. As all streets are totally symmetrical in this part of Barcelona, it is
possible to deploy one sensor in each corner of the crossroads. If the proposed system were
extended to the whole city, the symmetry for this low-cost sensor network would be still
guaranteed for all places in the city center. However, up to now, we thought we should
analyze, or at least test, the results with other distributions, also taking advantage of the
symmetry of the streets. As we have found that the most relevant sounds are detected in



Sensors 2021, 21, 7470 18 of 22

most of the four sensors in a crossroad, it might be interesting to discover what would
happen if the location is slightly farther or if the sensor deployment strategy is different.
In the latter case, we envisage a design trade-off between the advantages of physical
redundancy in terms of accuracy, the cost of the WASN (i.e., number of sensors), power
consumption, robustness, and size of the area under interest.

In Figure 7, we show a possible future location deployment of the sensors with a
wider distance between them, which despite reducing the effects of physical redundancy,
may make the nodes more aware of what happens in the streets, instead of focusing on
the crossroads. This could open further research on discovering the optimal distance
between sensors according to the symmetry of the streets and balancing accuracy with
the number of sensors to be deployed. A further step in this analysis would be to study
the deployment of the proposed system in other parts of Barcelona without the Eixample
symmetry: narrower streets, irregular crossroads, small squares, and other urban layouts
that may make distribution of sensors difficult, in order to cover all the events happening
on the street.

Figure 7. Example of a possible future location of sensors. Green dots indicate the location used for
the experiments conducted in this paper. Red dots indicate the new proposed locations.

An accurate identification of sounds in an urban acoustic soundscape taking advantage
of physical redundancy in the nodes could help to locate the sound source. While this
might not be relevant in some cases/applications, it could be really helpful when assessing
noise complaints (neighbors, dogs, etc.). In fact, this could help local authorities to identify
those places (buildings, shops, bars, discos, etc.) where the noise is generated and conduct
appropriate corrective measures. Additionally, this could provide crucial support to model
the noise behavior in any city if the proposed system is deployed for long periods of time
(i.e., months or years). In this case, it would be possible to discover recurrent patterns as
certain types of noise would come always from the same places (e.g. ambulances, trucks,
motorbikes, etc). Hence, a city noise model could be designed using the outputs of the
proposed system.

6.2. Accuracy and Sample Availability

According to the conducted experiments, we have observed that the F1-Micro average
score is consistently higher than the F1-Macro average. This means that the system has
better performance on those classes that have a significant number of instances for train
and test. For instance, while the bird class has 913 instances for train and 208 instances
for test, obtaining an F1-score of 0.78, the bike class only has 55 instances for train and
12 instances for test, obtaining an F1-score of 0. To fight this situation, we believe that
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the individual detection may be improved by balancing and obtaining more data from
recording campaigns in the same location or in other locations in Barcelona.

However, the number of instances is not the only relevant factor here: as it can be
seen in Table 6, the peop class has 954 instances for train and 181 instances for test, but only
obtains an F1-score of 0.55. This drives us to think that the saliency of each event should be
considered as well. In fact, we have observed that those events with low saliency are easily
masked by other events occurring concurrently with higher saliency. This situation makes
the system obtain a higher number of false negatives than false positives for those specific
events. Further experimentation with alternative features and/or distinguishing between
foreground and background events at the annotation stage would be needed to validate
this hypothesis.

7. Conclusions

In this work, progress has been made in the Training, Testing, and Validation of a
two-stage classifier composed of a deep neural network and an XGBoost classifier with
a very relevant focus on the use of real-world data. In our experiment, real-world data
gathered at the city center of Barcelona have been used to validate the feasibility of a
real-operation deployment of the algorithm. The data gathering process has been carried
out in four simultaneous spots at a traffic intersection in order to assess up to what extent
physical redundancy increases the robustness of the classifier. Furthermore, a new data
labeling procedure aimed to reduce the amount of time spent on the task of manually
labeling acoustic samples has been described. We have also shown which strategies we
used to enrich the gathered data (i.e., data augmentation) to balance the corpus and thus
improve the performance of the classifier.

From the experiments conducted, we can conclude that applying data augmentation
techniques has helped the classifier to identify better those categories with few instances
on the dataset. Moreover, physical redundancy of sensors has helped increasing the Micro
and Macro F1-metrics. However, the improvement is mostly noticeable in those classes of
the dataset that have more sample instances.

A real-world deployment of a WASN capable of detecting multiple acoustic events
occurring simultaneously such as the one proposed in this paper would enable public
administrations to have more information available about the types of sounds present
in each area of the city in real time. This information may be helpful to assess neighbor
complaints or detect the most acoustically polluted areas as well as to design policies to
improve the quality of life of citizens of the more acoustically polluted areas.

As future work, we foresee that adding a memory layer to the system may increase
the classifier performance (e.g. if there is a siren sound in a 4-s fragment, then it is likely
that the next 4-s frame contains a siren sound as well). That is, we believe that knowing the
probability of certain events in certain cases may help. Thus, this hypothesis will be further
evaluated in future works. In addition, as it has been detected that the class imbalance of
the dataset deteriorates the performance of the system on the poor classes, new training
and testing data should be acquired. Finally, as the type of acoustic events present in urban
environments are volatile, may vary day by day, and in some cases, only a few instances
of each class might occur, it would be interesting to study the potential application of
techniques that explicitly allow for new categories, such as few-shot learning or active
learning.
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