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Abstract 

Purpose: Accurate lymph node (LN) status evaluation for intrahepatic cholangiocarcinoma (ICC) 
patients is essential for surgical planning. This study aimed to develop and validate a prediction model for 
preoperative LN status evaluation in ICC patients. 
Methods and Materials: A group of 106 ICC patients, who were diagnosed between April 2011 and 
February 2016, was used for prediction model training. Image features were extracted from T1-weighted 
contrast-enhanced MR images. A support vector machine (SVM) model was built by using the most LN 
status-related features, which were selected using the maximum relevance minimum redundancy 
(mRMR) algorithm. The mRMR method ranked each feature according to its relevance to the LN status 
and redundancy with other features. An SVM score was calculated for each patient to reflect the LN 
metastasis (LNM) probability from the SVM model. Finally, a combination nomogram was constructed by 
incorporating the SVM score and clinical features. An independent group of 42 patients who were 
diagnosed from March 2016 to November 2017 was used to validate the prediction models. The model 
performances were evaluated on discrimination, calibration, and clinical utility.  
Results: The SVM model was constructed based on five selected image features. Significant differences 
were found between patients with LNM and non-LNM in SVM scores in both groups (the training group: 
0.5466 (interquartile range (IQR), 0.4059-0.6985) vs. 0.3226 (IQR, 0.0527-0.4659), P<0.0001; the 
validation group: 0.5831 (IQR, 0.3641-0.8162) vs. 0.3101 (IQR, 0.1029-0.4661), P=0.0015). The 
combination nomogram based on the SVM score, the CA 19-9 level, and the MR-reported LNM factor 
showed better discrimination in separating patients with LNM and non-LNM, comparing to the SVM 
model alone (AUC: the training group: 0.842 vs. 0.788; the validation group: 0.870 vs. 0.787). Favorable 
clinical utility was observed using the decision curve analysis for the nomogram.  
Conclusion: The nomogram, incorporating the SVM score, CA 19-9 level and the MR-reported LNM 
factor, provided an individualized LN status evaluation and helped clinicians guide the surgical decisions. 
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Introduction 
For liver, intrahepatic cholangiocarcinoma (ICC) 

is the second common malignancy with steadily 
growing incidence rate, with 5%-56% 5-year survival 
rate worldwide [1, 2]. When diagnosed, about 35% of 
ICC patients suffer from synchronous lymph node 
(LN) metastases [1]. Lymph node metastasis (LNM) 
generally indicates a negative prognosis for patients 
with ICC [3, 4]. Accurate preoperative evaluation of 
LN status could provide crucial information for 
treatment strategy decisions, especially for lymph 
node dissection (LND). In current clinical practice, the 
preoperative LN status in ICC is evaluated mainly 
based on the morphological features of the lymph 
nodes by reviewing the medical images 
preoperatively (for example, size and morphology of 
lymph nodes, signal changes within lymph nodes, 
etc.)[5, 6]. The prediction accuracy of current LN 
status evaluation method is often unstable and 
unsatisfactory.  

A common strategy to predict the LN status was 
developed based on histopathologic findings, such as 
tumor differentiation and lymphatic invasion. 
However, the predictors based on this strategy were 
only available postoperatively. A clinical model built 
upon the clinical factors including tumor size, 
pathological differentiation, and tumor boundary 
could achieve high sensitivity of 96.1%, but the 
achievable specificity and accuracy were quite low, 
with a value of 23.0% in specificity and 40.3% in 
accuracy [7]. The above clinical model was reported to 
be useful in predicting LN status in patients with ICC. 
Nevertheless, this method was also challenging to 
apply in clinical practice, because subjectivity may 
exist in determination of tumor size and tumor 
boundary, based on clinician’s experience and 
judgment. When the tumor volume was small, or 
when the tumor boundary was unclear, the situation 
became exacerbated, and the prediction accuracy 
could be questionable.  

On the other hand, several image-based methods 
have been proposed [5, 6, 8-10]. Seo et al. used the 
standardized uptake value as the LNM image marker 
based on positron emission tomography (PET) images 
[9]. However, the high cost of PET scan limited the 
utility in clinical practice. Nanashima et al. developed 
an LN status prediction model by combining CT 
findings and serum carbohydrate antigen 19-9 level 
[5]. The CT findings were used as image markers, 
which defined by radiologists according to the node 
status of hepatoduodenal ligament, common hepatic 
artery, and para-aorta based on CT images. The model 
showed a higher prediction accuracy than previous 
models based on clinical features only, or medical 
images alone. However, the underlying geometry and 

texture features of medical images were not fully 
excavated in these models. A comprehensive model 
incorporating clinical features and image features is 
needed.  

Radiomics refers to mining the underlying 
relationships between quantitative image features and 
pathophysiology characteristics and then developing 
predictive models for clinical outcomes, such as 
survival, distant metastases, and molecular 
characteristics classification [11-15]. The use of 
nomograms has been widely accepted as a reliable 
tool by incorporating quantitative risk factors for 
clinical events. Recently, several researchers have 
developed nomograms for preoperative LN status 
evaluation in colorectal cancer and bladder cancer by 
incorporating clinical features and image features 
[16-18]. These nomograms achieved desirable 
predictive accuracies. The related studies 
demonstrated the feasibility of using the radiomics 
method to evaluate the LN status for patients with 
ICC.  

In this study, a support vector machine (SVM) 
model was developed by using the radiomics method 
for preoperative LN status evaluation in ICC patients. 
A nomogram was then constructed by combining the 
clinical features and LNM probability, which was 
calculated based on the SVM model with the 
radiomics features from the MR images. We then 
investigated the difference in prediction accuracies 
between the combination model and the SVM model.  

Methods  
Workflow 

Figure 1 presents the workflow of this study. It 
includes two major parts: (ⅰ) imaging and 
segmentation; (ⅱ) feature extraction and model 
construction. The specific descriptions for these two 
parts are provided in the next sections.  

Patient Population 
The institutional review board of the institution 

(First Affiliated Hospital, Zhejiang University School 
of Medicine) approved this study, and the 
requirement of written informed consent was waived. 
In this retrospective study, we reviewed clinical 
records and T1-weighted contrast-enhanced MR 
images of ICC patients undergoing partial 
hepatectomy and LND between April 2011 and 
November 2017. The clinical LN status was obtained 
based on the clinicopathologic analysis of each patient 
(X-M Z, a pathologist with more than 10 years of 
experience in cancer diagnosis). Supplementary 
Material Ⅰ presents the patient inclusion-exclusion 
criteria and recruitment pathway. We divided the 
overall patient population into two independent 
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sub-groups according to the diagnosis time. The first 
sub-group was used as the training group to test the 
robustness for image features and conduct the model 
constructing purpose. This training group consisted 
of 106 patients diagnosed between April 2011 and 
February 2016 (53 females and 53 females; 35 to 86 
years of age). The second sub-group was used as the 
validation group to test the proposed model. The 
validation group involved 42 patients (13 females and 
29 females; 40 to 80 years of age) diagnosed between 
March 2016 and November 2017. All patients 
underwent pre-treatment T1-weighted contrast- 
enhanced MRI scans in our institution, since the 
contrast agent (Gadopentetate dimeglumine) was 
paramagnetic, and the signal intensity within the 
tumor would be enhanced after the injection in the 
images. The tumor detection and characterization of 
tumor phenotype appeared to be improved compared 
with the un-enhanced MRI and contrast-enhanced CT. 
The MRI acquisition parameters are presented in 
Supplementary Material II. 

Baseline clinical features were derived from 
medical records, including gender, age, cholelithiasis 
(with or without), hepatitis B (with or without), 
cirrhosis (with or without), primary hepatic lobe site 
(left or right) and number of the primary tumors 
(single or multiple). The serum carbohydrate antigen 
19-9 (CA19-9) level (abnormal or normal) and serum 
carcinoembryonic antigen (CEA) level (abnormal or 
normal) were achieved with the threshold value of the 
former 37 u/ml, and the latter 5 ng/ml in our 
institution. All MR images were evaluated by two 
experienced abdomen radiologists, both of whom 
were blind to the actual clinicopathologic results. The 
definitions for hepatitis B, number of the primary 
tumors and the MR-reported LNM factor are 

provided in Supplementary Material Ⅲ. The number 
of the primary tumors was used as a clinical 
predictive factor, which referred to the number of 
solid primary tumors for each patient. To justify the 
use of baseline clinical features of patients in the 
training and validation groups, we performed the 
demographic comparison for each clinical feature 
between the training group and validation group for 
patients with LNM and non-LNM, respectively.  

VOI Segmentation and Feature Extraction  
We used the ITK-SNAP software to perform a 

3D volume of interest (VOI) manual segmentation 
[19]. When multiple tumors were present, the tumor 
with the largest diameter was used to analyze. The 
VOI was segmented by two experienced radiologists 
independently. Radiologist-1 had experience of 12 
years in MR images interpretation, and Radiologist-2 
had experience of 14 years in MR images 
interpretation. Radiologist-1 finished the 
segmentation of patients in the training group only 
(106 patients). Radiologist-2 finished the 
segmentation of the overall patient population 
including the training and validation groups (148 
patients). We then obtained two feature sets for the 
training group (feature set-1 was extracted based on 
the VOI segmentation of Radiologist-1; feature set-2 
from the VOI segmentation of Radiologist-2) and a 
feature set for the validation group (feature set-3 from 
the VOI segmentation of Radiologist-2). The feature 
set-1 was used to perform the model training task. 
The feature set-2 was used to test the robustness and 
reproducibility of radiomics features from feature 
set-1. The feature set-3 was used to evaluate the 
predictive power of the proposed model. 

 

 
Figure 1. Workflow of this study. The letters k and n are used to number the patients.  
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Image preprocessing was applied before the 
feature extraction, including image resampling of the 
arterial phase contrast-enhanced MR images to a 
1×1×1 mm3 voxel size, and image grey level 
normalization to a scale of 1 to 32. A total number of 
491 image features was extracted for each patient 
based on the VOI. The feature set included histogram 
features (number=6), geometry features (number=8), 
gray level co-occurrence matrix features (number=22), 
grey-level run-length matrix features (number=13), 
grey-level size zone matrix features (number=13), 
neighborhood gray-tone difference matrix features 
(number=5), and wavelet-based texture features 
(number=424). These features could characterize 
intratumor heterogeneity, as well as the underlying 
tumor genotypes and protein structures [20-26]. 
Supplementary Material Ⅳ provides the specific 
descriptions for all the radiomics features. The feature 
extraction procedure was implemented in MATLAB 
V2017b (MathWorks, Natick, MA, USA).  

Feature Selection and SVM Model 
Construction  

To eliminate the differences in the value scales of 
the radiomics features, feature normalization was 
performed before feature selection. For features in the 
training group, each feature for a specific patient was 
subtracted by the mean value and divided by 
standard deviation value from this group. The same 
normalization method was applied to features in the 
validation group using the mean values and standard 
deviation values calculated based on the training 
group.  

Due to the relatively low-dimensional patient 
sample size and high-dimensional feature size, we 
then performed feature selection process to select the 
most LN status-related features to construct an SVM 
model. Feature selection was performed including 
two steps. First, we tested the robustness and 
reproducibility of image features. Since the features 
were extracted based on the VOIs segmented by 
radiologists manually, we only used the features that 
were most robust against the manual segmentation 
among different radiologists [26]. The correlation 
coefficient for each feature was calculated between the 
feature set-1 (from Radiologist-1) and feature set-2 
(from Radiologist-2) by using the Spearman rank 
correlation test. Features with correlation coefficients 
greater than 0.8 were regarded as robust features, 
since a correlation coefficient of 0.8 indicated a high 
correlation according to a rule of thumb [26, 27]. 
Second, we applied the maximum relevance 
minimum redundancy (mRMR) algorithm to assess 
the relevance and redundancy for each feature [28, 
29]. The maximum-relevance selection was aimed to 

select features that had the maximal correlation to the 
actual LN status. The minimum-redundancy selection 
ensured that the selected features had the minimal 
redundancy among each other. By using the mRMR 
method, the features were ranked according to their 
relevance-redundancy indexes. The several top 
features with high-relevance and low-redundancy 
were used to construct the SVM model by a linear 
kernel. In addition, we tried several typical feature 
selection methods, including mRMR, least absolute 
shrinkage and selection operator (LASSO), Random 
Forest, Elastic Net, Wilcoxon, and Gini index [30-32]. 
A comparison of these methods was also performed. 

To demonstrate the association between the 
selected features and the actual LN status, we 
performed univariate analysis and correlation test for 
each selected features in the training group. An SVM 
score was calculated by using the SVM model for each 
patient to reflect the LNM probability. The 
discrimination measured the capacity of prediction 
models in separating patients with LNM and 
non-LNM. The discriminative capability was 
measured using receiver operating characteristic 
(ROC) curve, area under the curve (AUC) and 
prediction accuracy. AUC had a range from 0.5 to 1.0 
(0.5 means no discriminative ability and 1.0 means 
ideal discriminative ability). The AUC was reported 
with a 95% confidence interval (CI). The prediction 
accuracy was calculated based on a threshold from a 
Youden Index, which could classify the patients into 
the predicted LNM group and non-LNM group 
according to the SVM score [33, 34]. To estimate the 
prediction error and confidence interval for both 
groups, we further tested the proposed model using a 
10000-iteration bootstrap analysis in both training and 
validation group [35]. For each repetition, we 
randomly selected a subset of 75% patients from the 
training group or the validation group (the training 
group: 80 patients; the validation group: 32 patients) 
and calculated the corresponding AUC.  

Development and Validation of Combination 
Nomogram  

Multivariable analysis was applied to combine 
the clinical features and the SVM score with 
multivariable logistic regression model [17, 36]. The 
clinical features involved gender, age, cholelithiasis 
status, hepatitis status, cirrhosis status, primary site, 
number of the primary tumors, CEA level, CA19-9 
level, and the MR-reported LNM. Then, a nomogram 
(called combination nomogram) was generated based 
on the proposed multivariate model. An LNM 
probability defined as nomogram score was then 
calculated for each patient by using the developed 
combination nomogram. To detect the 
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multi-collinearity among variables in the combination 
nomogram, the collinearity diagnosis was conducted 
by calculating the variance inflation factor (VIF) for 
variables in the combination nomogram [36, 37]. The 
VIF was defined as a ratio of the variance of the model 
with more than two variables, divided by the variance 
of the model with the single variable. Variables with 
VIFs > 10 indicated severity multicollinearities [37]. 
The threshold for the nomogram score was 
determined and used to classify patients in the 
validation group. We tested the nomogram by using 
the overall group including the feature set-2 and 
feature set-3. In addition, the combination nomogram 
was also tested using the bootstrap method in both 
training and validation groups. 

The model performances were evaluated in three 
aspects: discrimination, calibration and clinical utility 
[17, 24]. The discrimination performance was accessed 
by using ROC, AUC, and prediction accuracy. The 
calibration was detected by using the calibration 
curves accompanied by the Hosmer-Lemeshow test 
(H-L test). The calibration curves measured the 
consistency between the predicted LNM probability 
and the actual LNM probability. The H-L test accessed 
the goodness-of-fit of the prediction models [17, 38]. A 
significant statistic from the H-L test indicated the 
significant difference between the predicted LNM 
probability and the actual LNM probability, meaning 
that the model was poor fitting. For the test of the 
overall group, we used the Delong test to measure the 
differences in ROC curves between combination 
nomogram and the SVM model [39, 40]. 

The decision curve analysis was applied to 
measure the clinical utility of models [41, 42]. The 
horizontal axis of the decision curve indicates the 
threshold probability in the range of 0.0 to 1.0. The 
vertical axis shows the clinical net benefit values 
resulted from the prediction models against the 
threshold probability. The decision curves 
corresponding to the “treat-all plan” and the 
“treat-none plan” are plotted as references. The 
detailed descriptions of the clinical net benefit, the 
“treat-all plan” and the “treat-none plan” are 
provided in Supplementary Material Ⅴ. A larger area 
under the decision curve suggested a better clinical 
utility.  

Statistical Analysis Procedure 
All statistical tests used in this study were 

executed on MedCalc Statistical Software V15.2.2 
(MedCalc Software bvba, Ostend, Belgium) or R 
software V3.4.1 (R Core Team, Vienna, Austria). 
Univariate analysis for clinical features was 
implemented by using the Chi-square test or 
Mann-Whitney U test, as appropriate. The categorical 

variable was analyzed using the Chi-square test, such 
as gender, primary site, number of the primary 
tumors, CEA level, etc. The continuous variable was 
analyzed using the Mann-Whitney U test, including 
age and tumor size. The P<0.05 in two-tailed analyses 
was defined as the statistical significance.  

Results 

Clinical Features 
Table 1 listed the clinical features of patients in 

the training group and validation group. No 
statistically significant difference existed in LNM rate 
(P = 0.9210) between the two groups. The LNM rate 
was defined as the ratio between the number of 
patients with LNM and the number of patients 
involved in the certain group. The LNM rate was 
44.34% in the training group, and 45.24% in the 
validation group. While a temporal interval existed 
between the training and validation groups, there 
were no significant differences in the baseline clinical 
features between the training group and the 
validation group neither for patients with LNM nor 
non-LNM, justifying their use as the training and 
validation groups. The detailed results of univariable 
association analysis were presented in Supplementary 
Material Ⅵ.  

Feature Selection and SVM Model 
Construction 

Among the 491 image features, 91 features were 
retained through the robustness and reproducibility 
test with correlation coefficients greater than 0.8 
between the feature set-1 and feature set-2 by using 
the Spearman rank correlation test. The mRMR based 
feature selection was used to decrease the redundancy 
of the feature set and build the optimal subset of 
complementary predictive features. The five highest 
mRMR-ranked features were selected to build the 
SVM model. The calculation formula for the SVM 
model was provided in Supplementary Material Ⅶ. 
The selected features were HLH_GLCM_maxpr, 
LLH_GLCM_sosvh, HLL_GLCM_corrm, LLL_GLCM_ 
denth and HLL_GLSZM_LGZE. Among the five 
features, three features of HLH_GLCM_maxpr, 
LLL_GLCM_denth, and HLL_GLSZM_LGZE showed 
significant correlation with the actual LN status and 
significant difference between the patients with LNM 
and non-LNM in the training group with P < 0.05. The 
univariate analysis and correlation analysis for the 
selected features were summarized in Table 2. By 
comparing the prediction performances of different 
feature selection methods, it was noticed that the 
mRMR method showed the optimal performance. The 
specific prediction performances of different methods 
are summarized in Supplementary Material Ⅷ. 
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Table 1. Patients and preoperative clinical feature 

Clinical features Training group 
(n=106) 

P Validation group 
(n=42) 

P 

LNM non-LNM LNM non-LNM 
Age (Mean± SD) 58.02 ± 

10.54 
60.05 ± 
8.52 

0.2755 55.93 ± 
15.25 

60.34 ± 
7.17 

0.4662 

Range (35, 77) (39, 86)  (40, 80) (43, 76)  
Gender   0.8450   0.5547 
Male 23 30  5 8  
Female 24 29  14 15  
Primary hepatic lobe 
site 

  0.6683   0.2479 

Left  30 40  14 13  
Right  17 19  5 10  
Number of the 
primary tumors 

  0.0013   0.1536 

Single 30 53  12 19  
Multiple 17 6  7 4  
Hepatitis   0.7065   0.6179 
Without 35 42  15 24  
With 12 17  4 9  
Cirrhosis   0.4274   0.6673 
Without 46 56  18 21  
With 1 3  1 2  
Cholelithiasis   0.2506   0.7030 
Without 38 42  15 17  
With 9 17  4 6  
CA19-9   0.0086   0.0339 
Normal 10 27  7 16  
Abnormal 37 32  12 7  
CEA   0.0674   0.0143 
Normal 29 46  10 20  
Abnormal 18 13  9 3  
MR-reported LNM   0.0012   0.0251 
Negative 17 40  5 14  
Positive 30 19  14 9  

Note: LNM, lymph node metastasis; CA19-9, serum carbohydrate antigen 
19-9; CEA, serum carcinoembryonic antigen; SD, standard deviation. 

 

Validation and Evaluation of SVM Model 
Significant differences were observed in SVM 

scores between the patients with synchronous LNM 
and non-LNM in both groups (the training group: 
0.5466 (interquartile range (IQR), 0.4059-0.6985) vs. 
0.3226 (IQR, 0.0527-0.4659), P<0.0001; the validation 
group: 0.5831 (IQR, 0.3641-0.8162) vs. 0.3101 (IQR, 
0.1029-0.4661), P =0.0015). The AUC value was 0.788 
(95% CI, 0.698-0.862) for the training group, and 0.787 
(95% CI, 0.634-0.898) for the validation group. These 
values were consistent with the AUC values 
calculated by using the 10000 times bootstrap analysis 

in both training and validation groups (mean ± 
standard deviation; the training group: 0.788±0.027; 
the validation group: 0.787±0.041). Histograms 
describing the distributions of AUCs from the 
bootstrap method for the SVM model were provided 
in Supplementary Material Ⅸ. By using the Youden 
Index in the training group, the threshold for the SVM 
score was defined as 0.4915. By using this threshold, 
patients with SVM scores higher than 0.4915 were 
classified as synchronous LNM, while patients with 
scores lower than 0.4915 were classified as non-LNM. 
The prediction accuracy was 73.58% for the training 
group and 69.05% for the validation group. The ROC 
curves and scatter plots for the SVM score were 
presented in Figure 2.  

Development of Combination Nomogram  
In the multivariable analysis, we used the 

Akaike information criterion (AIC) and the 
independence analysis to select the optimal feature 
combination. A combination of the SVM score, CA 
19-9 level, and the MR-reported LNM factor was 
finally selected. The detailed descriptions of the 
model construction procedure were provided in 
Supplementary Material Ⅹ. By using the collinearity 
diagnosis, the VIFs for the SVM score, CA19-9 level, 
and the MR-reported LNM factor were less than 10 
(SVM score: 4.9109; CA19-9 level: 3.7210; MR-reported 
LNM: 1.9614), indicating no severe collinearity 
existing in these factors. Using the multivariable 
analysis, the three factors including the SVM score 
(P<0.0001), CA19-9 level (P=0.0081), and the 
MR-reported LNM factor (P=0.0307) were all 
statistically significant and independent in the 
training group (Supplementary Material Ⅹ). The 
combination nomogram was displayed in Figure 3. 
The calculation formula for the combination 
nomogram was provided in Supplementary Material 
Ⅶ. 

 
 

Table 2. Univariate analysis and correlation test for radiomics features used in the SVM model for the training group 

Radiomics features Training group (n=106) P Correlation coefficient P 
LNM non-LNM 

HLH_GLCM_maxpr 0.2854 (0.2651 to 0.3175) 0.2665(0.2425 to 0.2805) 0.0164 0.2343 0.0156 
LLH_GLCM_sosvh 1.0462 (0.9128 to 1.1260) 1.1206 (0.9829 to 1.1929) 0.0963 -0.1623 0.0965 
HLL_GLCM_corrm -0.0178 (-0.0212 to -0.0152) -0.0146 (-0.0175 to -0.0115) 0.0629 -0.1815 0.0626 
LLL_GLCM_denth 2.7902 (2.7389 to 2.8908) 2.9404 (2.8816 to 2.9863) 0.0014 -0.3112 0.0012 
HLL_GLSZM_LGZE 0.0013 (0.0010 to 0.0014) 0.0018 (0.0014 to 0.0023) 0.0028 0.2920 0.0024 

Note: The univariate analysis for radiomics features was applied by using the Mann-Whitney U test. 
The correlation between radiomics features and the LN status was applied by using the Spearman rank correlation test.  
All features were reported as median and 95% confidence interval. 
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Figure 2. The ROC curves of the SVM model in the training group (A) and the validation group (B). The scatter plots of the SVM scores in the training group (C) and the 
validation group (D). The blue markers indicate patients with synchronous LNM; the red markers indicate patients with non-LNM. The black horizontal line presents the 
threshold. Patients with SVM scores higher than 0. 4915 are classified as LNM; patients with scores lower than 0. 4915 are classified as non-LNM. 

 
Figure 3. The combination nomogram, combining SVM score, CA 19-9 level, and the MR-reported LNM factor.  

 

Validation and Evaluation of Combination 
Nomogram  

Compared to patients with synchronous 
non-LNM, patients with synchronous LNM had 
higher nomogram scores (the training group: 0.5928 
(IQR, 0.1422-1.6073) vs. -1.2560 (IQR, -2.2466- -0.1691), 
P<0.0001; the validation group: 0.5151 (IQR, 
-0.4691-1.0837) vs. -1.6298 (IQR, -2.2261- -0.3005), 
P<0.0001). The calibration curves demonstrated good 
consistency between the predicted LNM probability 
and the actual LNM probability for the combination 
nomogram in both training and validation groups. 
For the training group, a non-significant statistic 

(P=0.4650) of the H-L test suggested no significant 
deviation from an ideal fitting. The AUC value was 
0.842 (95% CI, 0.758-0.906). For the validation group, a 
non-significant statistic of P=0.8578 and an AUC of 
0.870 (95% CI, 0.730-0.953) were obtained. By using 
the bootstrap method, the AUC values were generally 
consistent with that calculated based on the two 
groups (mean ± standard deviation; the training 
group: 0.842±0.026; the validation group: 0.869±0.033). 
Histograms describing the distributions of AUCs 
from the bootstrap method for the combination 
nomogram were provided in Supplementary Material 
Ⅸ. Figure 4 displayed the ROC curves and scatter 
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plots for the nomogram score. The calibration curves 
for the combination nomogram were provided in 
Figure 5A-B. 

The prediction accuracy for the nomogram was 
calculated based on the threshold for the nomogram 
score. By using the Youden Index in the training 
group, the optimal threshold of -0.8270 was selected 
in the ROC analysis. Patients with the nomogram 
scores greater than -0.8270 were predicted as 
synchronous LNM, while patients with scores lower 
than -0.8270 were predicted as non-LNM. The 
prediction accuracy was 72.64% for the training group 
and 78.57% for the validation group. The decision 
curves for the combination nomogram and the SVM 
model were used to evaluate the clinical utilities. In 
both training and validation groups, the combination 
nomogram (red) showed a higher area under decision 
curves than the SVM model (black) (Figure 5C-D). The 
specific performances of the combination nomogram, 
the SVM model and the MR-reported LNM factor in 
both groups were summarized in Table 3. 

Overall Validation of the SVM Model and 
Combination Nomogram  

The prediction models were developed based on 
training group segmented by Radiologist-1 (feature 
set-1). To test the robustness and deliverability of the 
prediction models, we further tested the SVM model, 
and the combination nomogram using the overall 
dataset segmented by Radiologist-2 (feature set-2 and 
feature set-3). The combination nomogram showed 
better performance (Accuracy, 74.32%; AUC, 0.846 
(95% CI, 0.777-0.900); Sensitivity, 87.88%; Specificity, 
60.98%) than the SVM model alone (Accuracy, 67.57%; 
AUC, 0.787 (95% CI, 713-0.850); Sensitivity, 56.06%; 
Specificity, 78.05%). Further, significant differences 
from Delong test suggested significant improvements 
in predictive performances between the combination 
nomogram and the SVM model (P=0.0219). The ROC 
curves of the combination nomogram and the SVM 
model for the overall group were shown in Figure 6.  

 

 
Figure 4. The ROC curves of the combination nomogram in the training group (A) and the validation group (B). The scatter plots for the nomogram score in the training group 
(C) and the validation group (D). The blue markers indicate patients with synchronous LNM; the red markers indicate patients with non-LNM. The black horizontal line presents 
the threshold. Patients with nomogram scores higher than -0.8270 are classified as LNM; patients with scores lower than -0.8270 are classified as non-LNM. 

 

Table 3. Performances of the SVM model, combination nomogram and MR-reported LNM 

Models Training group  Validation group 
Accuracy AUC (95%CI) Sensitivity Specificity S. E.  Accuracy AUC (95%CI) Sensitivity Specificity S. E. 

SVM score 73.58% 0.788 (0.698 - 0.862) 65.96% 79.66% 0.0441  69.05% 0.787 (0.634 - 0.898) 52.63% 91.30% 0.0695 
Combination model 72.64% 0.842 (0.758 - 0.906) 89.36% 57.63% 0.0387  78.57% 0.870 (0.730 - 0.953) 89.47% 69.57% 0.0540 
MR-reported LNM 66.04% 0.658 (0.560 - 0.748) 63.83% 67.80% 0.0469  66.67% 0.673 (0.511 - 0.809) 73.68% 60.87% 0.0735 

Note: SVM, support vector machine; S.E., standard error; CI, confidence interval. 
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Figure 5. The calibration curves of the combination nomogram in the training group (A) and the validation group (B). Vertical axis: the actual probability of LNM probability; 
horizontal axis: the nomogram predicted LNM probability; the diagonal line: the perfect prediction with predicted LNM probabilities equal to the actual LNM probabilities. The 
decision curves of the SVM model and the combination nomogram in the training group (C) and the validation group (D). Vertical axis: the net benefit; horizontal axis: the 
threshold probability at a range of 0.0 to 1.0. The red and black dotted lines represent the decision curve of the combination nomogram and the SVM model, respectively. The 
gray line represents the decision curve of the assumption that all patients suffer from LNM; the black line represents the decision curve of the assumption that no patients suffer 
from LNM. 

 

 
Figure 6. ROC curves for the SVM model and combination nomogram in the overall 
group. 

 

Discussion  
We developed and validated a nomogram by 

using radiomics approach for LN status preoperative 

evaluation in this study. The combination nomogram 
was constructed by incorporating the SVM score from 
the radiomics method and two clinical features of 
CA19-9 level and the MR-reported LNM factor. SVM 
score was an LNM probability calculated from the 
SVM model, which was developed based on five 
selective image features. The combination nomogram 
outperformed the SVM model in both training and 
validation groups (the training group: 0.842 vs. 0.788; 
the validation group 0.870 vs. 0.787). Thus, the 
favorable preoperative LN status prediction power of 
the proposed non-invasive method made it a potential 
preoperative evaluation tool in clinical practice.  

The manual process of tumor segmentation and 
the reproducibility of radiomics features are the most 
debatable aspects in the radiomics analysis. 
Subjectivity in the determination of tumor volume 
and tumor boundary would occur. The uncertainties 
in tumor segmentation adversely affect the 
reproducibility of radiomics features [43]. A recent 
study investigating the robustness and 
reproducibility of radiomics features in different MRI 
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sequences suggested that radiomics features extracted 
from T1-weighted images should be used with care, 
and only those reproducible features should be 
selected in building a radiomics model [44]. In this 
study, all patients were scanned in the same MRI 
scanner with liver acceleration volume acquisition 
(LAVA) sequence. The tumor segmentations were 
performed by two radiologists independently. 
Furthermore, we tested the robustness and 
reproducibility of image features by using two feature 
sets extracted based on the segmentations of the two 
radiologists. The five selected features and the 
proposed SVM model were found to be robust against 
tumor segmentation.  

Note that all the selected five image features 
used in the SVM model were wavelet features. These 
features were extracted from images decomposed by 
undecimated 3D wavelet transforms. The wavelet 
transformation was a multiscale image analysis 
method by splitting the 3D image data into different 
frequency components along three axes. Fine and 
coarse texture extracted from the wavelet 
decomposed images could further present the spatial 
heterogeneity at multiple scales within tumor regions 
[45]. By using the correlation analysis, three out of the 
five features showed significant correlation with the 
actual LN status with P<0.05. The possible reason was 
that the wavelet features had underlying associations 
with clinicopathology and tumor lymphatic system 
invasion. This observation was consistent with 
previous studies which used wavelet-based features 
in the radiomics models [46-48]. Recently, a study 
developed a prediction model to preoperatively 
differentiate pathological grades in patients with 
pancreatic neuroendocrine tumors [46]. The 
prediction model was constructed using eight image 
features, and seven out of them were wavelet features. 
A radiomics study employed machine-learning 
methods to predict histologic subtypes for patients 
with lung cancer. Four out of five features included in 
the model were wavelet features [48]. These studies 
confirmed that wavelet features are important 
imaging biomarkers for predicting the phenotype of 
tumors because they are closely related to the 
biological behavior of tumors. 

In this study, CA19-9 level was served as an 
independent marker in prognosis stratification in 
patients with ICC, which was consistent with the 
previous studies [49]. In 2001, Jiang et al. proposed a 
clinical feature based prognostic score to accurately 
predict the prognosis for patients with ICC regardless 
of resection status, in which CA 19-9 was the only 
laboratory marker. It was also used as an independent 
predictive factor in prognosis evaluation in ICC 
patients with partial excision. More importantly, a 

study reported that the CA 19-9 level was also 
associated with the tumor progression of ICC [50]. 
Two recent studies both reported that the 
preoperative abnormal level of CA 19-9 was valuable 
in preoperative LN status evaluation [51, 52]. 
Similarly, the CA19-9 level was used as an 
independent predictor in the combination nomogram 
in this study, which also could improve the predictive 
power of the SVM model. 

The proposed preoperative LN status prediction 
model has potential in assisting clinicians in making 
the effective surgical decision for patients with ICC. 
Although a series of studies had reported that LNM 
was highly correlative to the prognosis of ICC, the 
benefit of lymph node dissection (LND) is still 
controversial [53, 54]. de Jong et al. found that among 
patients who underwent routine LND, patients with 
LNM showed a worse median survival [55]. Meng et 
al. revealed that LND only benefited a subset of 
patients with a moderate survival benefit of about five 
months [56]. LNM-related prognostic stratification is 
a significant clinical problem in the management of 
ICC patients. Accurate preoperative LN status 
evaluation represents a key step in individualized and 
precision treatment of ICC patients. 

Our study still had several limitations. Firstly, 
the patient population was collected from a single 
institution retrospectively. A total of 106 patients was 
enrolled in the training group, and 42 patients in the 
validation group. To evaluate the sample size for the 
validation group, we performed a power analysis 
based on the LNM rates of the training dataset and the 
validation dataset. Normally, a power value greater 
than 0.8 suggests a sufficient sample size [57, 58]. Our 
estimated power value was 0.85 for the current study. 
Thus, the sample sizes for the training and the 
validation groups were sufficient, meaning that the 
result and conclusion of this study were statistically 
significant. In the future, we will test the proposed 
model with multi-center and larger sample size. 
Secondly, we did not incorporate genomic 
characteristics in this study. Recently, increased 
researches with gene markers had been proposed to 
detect LNM in patients with ICC, such as VEGF and 
EGFR [59]. Though it might be an interesting study to 
combine genomics and radiomics analysis, it has not 
yet been determined how to incorporate genomic 
characteristics, image features, and clinical features 
together. Thirdly, because the diffusion-weighted 
imaging (DWI) sequences were altered several times 
during the long-time span of the study, we used only 
T1-weighted arterial phase MR images to mitigate any 
possible adverse effect caused by the changes in the 
DWI sequences and enhance the stability and 
robustness of the predictive model.  
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Conclusions 
This study developed and validated a 

combination nomogram for the LN status 
preoperative evaluation in ICC patients. The 
combination nomogram developed using SVM score, 
CA19-9 level, and the MR-reported LNM factor 
showed better prediction accuracy than the 
MR-reported LNM factor and the SVM model alone. 
The proposed model could be used for individualized 
LN status evaluation and would help clinicians guide 
the surgical decisions. Multi-institution retrospective 
and prospective validation studies should be 
implemented before the practical application in the 
future clinical surgical plan determination. 
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