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Derivation of stationary distributions of
biochemical reaction networks via structure
transformation
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Jae Kyoung Kim 1,2✉

Long-term behaviors of biochemical reaction networks (BRNs) are described by steady states

in deterministic models and stationary distributions in stochastic models. Unlike deterministic

steady states, stationary distributions capturing inherent fluctuations of reactions are

extremely difficult to derive analytically due to the curse of dimensionality. Here, we develop

a method to derive analytic stationary distributions from deterministic steady states by

transforming BRNs to have a special dynamic property, called complex balancing. Specifically,

we merge nodes and edges of BRNs to match in- and out-flows of each node. This allows us

to derive the stationary distributions of a large class of BRNs, including autophosphorylation

networks of EGFR, PAK1, and Aurora B kinase and a genetic toggle switch. This reveals the

unique properties of their stochastic dynamics such as robustness, sensitivity, and multi-

modality. Importantly, we provide a user-friendly computational package, CASTANET, that

automatically derives symbolic expressions of the stationary distributions of BRNs to

understand their long-term stochasticity.
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A standard approach to mathematical modeling of bio-
chemical reaction networks (BRNs) is to use ordinary
differential equations (ODEs), whose variables represent

concentrations of molecules1. However, this deterministic
description, while convenient for computation, by its nature
cannot capture the inherent randomness of BRNs. In particular,
the long-term behavior of ODE systems is characterized by steady
states or other attractors, rather than by the stationary distribu-
tions statistically observed in real biological systems. As cell
biology moves away from bulk averages to single-cell measure-
ments, a focus has shifted to the study of such stationary
distributions2,3. They can be described by various stochastic
approaches1,4. In particular, stationary distributions can be
described as steady-state solutions of the chemical master equa-
tion (CME), which has been widely used to describe the time
evolution of the probabilities for the numbers of chemical species
in BRNs such as gene regulatory networks and signaling
pathways5.

Since the CME is a differential equation with infinitely many
variables, its steady-state solution (i.e., the stationary distribution)
can be found analytically only for simple cases, such as linear
reaction networks6 or birth-death processes7. Unlike the CME, its
deterministic counterpart is a finite dimensional ODE, whose
steady-state solutions are relatively easier to calculate. An inter-
esting question, therefore, is whether there is a systematic way of
using these deterministic steady states for characterizing the
stationary distribution of the stochastic counterpart. There is a
positive answer to this question for special networks, called
complex balanced networks.

A result from queuing theory8, reinterpreted in the context of
BRNs9 through the connection between Petri nets and BRNs10,
shows that for complex balanced networks whose kinetics are
described by mass action reactions, stationary distributions can be
characterized in terms of jointly distributed Poisson random
variables with parameters corresponding to deterministic steady
states. An independent proof of this result, together with deep
applications to CMEs, was developed by Anderson, Craciun, and
Kurtz11. Complex balancing is difficult to check and depends on
rate constant values. However, beautiful work by Horn, Jackson,
and Feinberg12–14 has shown that all networks that have the
special structural properties of weak reversibility and zero defi-
ciency are complex balanced, independently of rate constants.
Weak reversibility of a network means that the network is a union
of closed reaction cycles, and the deficiency of a network is the
number of dependent closed reaction cycles, which can be easily
checked. Satisfying these two structural properties is a simple
condition to derive the stationary distribution of network under
mass action reactions with the method in ref.11.

As various BRNs such as networks of several reversible reac-
tions (e.g., A+ B↔ C↔ 0) or cyclic reactions (e.g., A→ B→
C→ A) are weakly reversible and deficiency zero, their stationary
distributions can be analytically derived15–20. These have been
used to characterize the stochasticity of various systems, including
a genetic oscillator21 and a competitive inhibition enzyme kinetics
model22. Unfortunately, the majority of BRNs do not have the
special network structure. For instance, only ~0.36% of the Erdös-
Rényi random networks of two species with up to bimolecular
reactions have a deficiency of zero when the edge probability is
0.5, and the fraction decreases to zero as the number of species
increases23. Moreover, from a biological standpoint, even simple
networks are unlikely to be weakly reversible if they include a
bimolecular reaction whose reverse reaction is unimolecular (e.g.,
autophosphorylation and dephosphorylation).

Here, we develop a framework to derive stationary distribu-
tions for a class of networks which do not have the special
structure (i.e., weakly reversibility and zero deficiency) by

modifying their structures via network translation24,25. Specifi-
cally, by simply merging reactions with a common stoichiometric
vector and shifting reactions in the networks, we are able to
change their structure to be weakly reversible and deficiency zero
while preserving their stochastic dynamics. This allows us to
derive the stationary distributions of a large class of BRNs
including autophosphorylation networks of EGFR, PAK1, and
Aurora B kinase. This derivation reveals key reactions deter-
mining the autophosphorylation status, which can seldom be
done with a purely numerical approach. Furthermore, we
describe how the stochastic dynamics of more complex BRNs can
be tracked when our method is applicable for only their sub-
networks. Importantly, we provide a user-friendly computational
package CASTANET (Computational package for deriving
Analytical STAtionary distributions of biochemical reaction net-
works with NEtwork Translation) that automatically derives the
stationary distributions of submitted BRNs via our method. This
will provide an effective tool to analyze the stochasticity of BRNs.

Results
Obtaining the desired network structure via network transla-
tion. As mentioned in the introduction, the stationary distribu-
tions of the stochastic mass action models for BRNs can be
derived with any choice of rate constants using the
previous method11 if and only if the networks have two structural
properties: weak reversibility and zero deficiency. However, even
very simple networks such as the one shown in Fig. 1a-left fail to
satisfy the two properties. Weak reversibility means that if there
exists a path from a complex (i.e., a node in the reaction graph) to
another complex, then there is a reverse path from the second one
back to the first one. Because there is no path from A+ A to A
while there is a path from A to A+A, the network in Fig. 1a-left
is not weakly reversible. The deficiency of a network is a non-
negative integer index calculated by subtracting both the number
of linkage classes (i.e., connected components in the reaction
graph) and the dimension of the subspace spanned by the
stoichiometric vectors from the number of complexes. The defi-
ciency of the network in Fig. 1a-left is one. Therefore, the
previous method11 cannot be used to derive its stationary
distribution.

Two different reactions, 0→ A and A→ A+A, have the same
stoichiometric vector (1, 0) because both reactions produce one
molecule of A (Fig. 1a-left). Thus, these two reactions can be
merged by unifying the source complexes 0 and A into 0 and
summing the propensities of both reactions (Fig. 1a). This
procedure is known as network translation24,25, which was
proposed to investigate deterministic systems. This procedure is
also applicable to stochastic systems as it preserves the stochastic
dynamics (see Supplementary Note 1 for details). For instance,
the propensities of the production of A are α1+ α4nA in both the
original (Fig. 1a-left) and the translated network (Fig. 1a-right).
Although the network translation is simple, it can effectively
change the structure of the network to be a weakly reversible
deficiency zero network.

Propensity factorization is required. Even though the translated
network is weakly reversible and of zero deficiency, the new
model no longer follows mass action kinetics since the propensity
of the reaction 0→A is not constant (Fig. 1a-right). In this case,
previously, it was known that the method in refs.11,26 is still
applicable if the non-mass action propensity functions can be
factorized as a certain form. However, the propensity functions of
this translated network do not have the certain form. Thus, we
generalize the previous factorization form so that stationary dis-
tributions can be derived for a larger class of BRNs. Specifically,
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we show that all the propensities of the translated network ~λkðnÞ
need to be factorized as

~λkðnÞ ¼ κkθðnÞωðn� νkÞ1fn≥ νkg ð1Þ
for some constants κk > 0 and functions θ(n) > 0 and ω(n) ≥ 0 on
a set Γ= {n∣n ≥ b} where the νk is the source complex vector of
the kth reaction, the inequality is coordinate-wise, and the b
needs to be chosen so that ~λkðnÞ> 0 if and only if there are
sufficient reactants (i.e., n ≥ νk + b) in Γ. For the translated net-
work (Fig. 1a-right), ~λkðnÞ> 0 if and only if n ≥ νk like mass
action kinetics, and thus b= (0, 0) and Γ ¼ Z2

≥ 0.
Propensity functions satisfying the factorization condition

(Eq. (8)) include a generalized mass action kinetics (Eq. (7)). For
instance, if a source complex is 0,A,A+ A, or A+ B, propensity
functions following the generalized mass action kinetics are
proportional to 1, fA(nA), fA(nA)fA(nA− 1), or fA(nA)fB(nB),
respectively. Note that if the fi’s are identity functions
then the propensities follow standard mass action
kinetics (Eq. (6))11,27. The propensity functions following the

generalized mass action kinetics can be easily factorized with
θðnÞ ¼ ωðnÞ�1 ¼ Qd

i¼1

Qni
j¼biþ1 f iðjÞ, where d is the number of the

constitutive chemical species (see Eq. (9) for details). However,
the translated network (Fig. 1a-right) does not follow the
generalized mass action kinetics (Eq. (7)) because the propensity
function of the reaction 0→ A, α1+ α4nA, is not proportional to
1 (i.e., it is not constant). Thus, we need to solve recurrence
relations as described in Supplementary Note 2 to identify the
propensity factorization (Fig. 1b):

κk ¼ αk;

θðnÞ ¼ α1 þ α4nA
α1

YnA
j¼1

α1j
α1 þ α4j

� �YnB
j¼1

j;

andωðnÞ ¼ α1 þ α4nA
α1

1
θðnÞ

ð2Þ

Derivation of stationary distribution. After identifying κk, θ(n),
and ω(n) via the propensity factorization, we need to find a

CBE, 

Stationary distributionCBE calculation

Network translation
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Fig. 1 Derivation of a stationary distribution with network translation. a The non-weakly reversible and deficiency (δ) one network is translated to the
weakly reversible deficiency zero network by merging two reactions, which have the same stoichiometric vectors (green dotted lines). ~λk denotes the
propensities of the translated network. b Factorize ~λk with constants κk and functions θ(n) and ω(n) as ~λkðnÞ ¼ κkθðnÞωðn� νkÞ1fn�νkg on Γ= {n∣n≥ b} at
which ~λkðnÞ>0 if n≥ νk + b, and ~λkðnÞ ¼ 0 otherwise. νk is the source complex vector of the kth reaction. c Compute a complex balanced equilibrium
(CBE) of the deterministic mass action model for the translated network with rate constants {κk}. d Using the θ(n) and the CBE, the stationary distribution
can be derived analytically. Here, M is a normalizing constant.
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complex balanced equilibrium (CBE) of the deterministic mass
action model with rate constants {κk} for the translated network
(Fig. 1c). The CBE is a steady state at which for each complex ν,
the in-flow rate to ν is equal to the out-flow rate from ν12. For
instance, based on the deterministic model in Fig. 1c, the complex
balance conditions for the complexes 0, A, and A+ B are κ3cAcB
= κ1, κ1= κ2cA, and κ2cA= κ3cAcB, respectively. By solving these
equations, we can obtain the CBE, (cA, cB)= (κ1/κ2, κ2/κ3). Note
that the existence of a CBE is guaranteed because we translate a
network to be weakly reversible and deficiency zero13.

Finally, using the function θ(n) (Fig. 1b) and the CBE (cA, cB)
(Fig. 1c), we can derive the stationary distribution of the
stochastic model for the translated network, which is the same
as that of the original network, as follows:

πðnA; nBÞ ¼ M
cnAA cnBB

θðnA; nBÞ
ð3Þ

for nA ≥ 0, nB ≥ 0 where M is the normalizing constant so that the
sum of the stationary distribution is one (see Methods for details).
In this example, the distribution π(n) is obtained on Γ ¼ Z2

≥ 0.
This state space is closed as proved in Supplementary

information, and it is irreducible (i.e., every state is reachable
from every other state; see Supplementary Note 3 for details). On
the other hand, if an irreducible state space is a proper subset of Γ,
possibly due to a conservation law, then the normalizing constant
M is chosen so that the sum of π(n) over the subset is one.

Computational package, CASTANET. Applying our theoretical
framework (Fig. 1) has two practical difficulties. Translating a
given network to a weakly reversible deficiency zero network
(Fig. 1a) is not straightforward as prohibitively many candidates
of translated networks often exist. Furthermore, it is challenging
to check whether the factorization condition holds (Fig. 1b) as it
requires to solve associated recurrence relations. Thus, we have
developed a user-friendly, open-source, and publicly available
computational package, “CASTANET (https://github.com/
Mathbiomed/CASTANET),” that automatically performs net-
work translation and propensity factorization and derives sta-
tionary distributions (Fig. 2a). With this package, we were able to
easily identify hundreds of BRNs and derive analytic forms of
their stationary distributions. We have provided some of them in
Fig. 2b and Supplementary Figs. 3 and 4. To use this package,

Fig. 2 CASTANET (Computational package for deriving Analytical STAtionary distributions of biochemical reaction networks with NEtwork
Translation). a A schematic diagram for the computational package. If users simply enter the source complexes, product complexes, and propensity
functions of reactions (lambda_k), then the package identifies a weakly reversible deficiency zero translated BRN (sources_trans and
products_trans) and then derives its stationary distribution (pi). See Supplementary Note 4 and Supplementary Fig. 2 for a step-by-step manual.
b BRNs with two species (top) and three species (bottom) whose stationary distributions were calculated by our computational package. The tail and head
of each arrow represent the source and product complexes of reactions, respectively. They are assumed to follow the stochastic mass-action kinetics, and
the rate constants can take any positive values. See Supplementary Figs. 3 and 4 for more examples. Here, each network is embedded in euclidean space
where we present A+A and B+B as 2A and 2B, respectively.
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users only need to enter the source complexes, product com-
plexes, and propensity functions of reactions.

Stationary distributions of autophosphorylation networks. Our
theoretical framework and especially CASTANET extend the
class of BRNs whose stationary distributions can be analytically
derived using CBEs (Figs. 1 and 2). This class includes var-
ious autophosphorylations networks (Fig. 3) that are not weak-
ly reversible due to autophosphorylation reactions, which
occur in intermolecular (trans), intramolecular (cis), or mixed
manners28,29.

Asymmetric trans-autophosphorylation occurs if two mono-
mers form a homodimer and one of them acts as an ‘enzyme’ and
phosphorylates the other. This type of autophosphorylation
occurs in the epidermal growth factor receptor (EGFR), which
triggers signal transduction for cell proliferation30. The key
regulatory reactions for EGFR include its synthesis, trans-
autophosphorylation, dephosphorylation, and degradation
(Fig. 3a-left). The asymmetric trans-autophosphorylation is a
reaction that transforms the complex A+ A to A+AP. The
dephosphorylation reaction is not the reverse of the previous
reaction; instead, it occurs from the complex AP to the complex A.
Thus, the network is not weakly reversible. However, CASTA-
NET automatically identifies a weakly reversible deficiency zero
translated network and its propensity factorization (Fig. 3a-right)
and then derives the analytic form of stationary distribution
(Fig. 3b) that matches what is calculated with stochastic
simulations (Fig. 3c).

In addition, having the formula (Fig. 3b) allows us to easily
understand the long-term behavior of the system, something that
is not possible with a purely computational approach. For
instance, πðnAP

Þ in Fig. 3c is the Poisson distribution with rate
α1/α3. This indicates that the synthesis (α1) and degradation rates

(α3) of A are the determinants of the long-term status of nAP
,

which is surprisingly robust to the changes of phosphorylation
(α2) and dephosphorylation rates (α4). Furthermore, π(nA) is
solely determined by α1

α2
ð1þ α4

α3
Þ, and its moments can be calculated

with the modified Bessel functions (see Supplementary Note 3 for
details). This allows us to identify that the stationary distribution
of nA is sub-Poissonian, and its coefficient of variation attains the
maximum at α1

α2
ð1þ α4

α3
Þ � 1:8 (Supplementary Fig. 1).

Trans- and cis-autophosphorylation can occur sequentially.
For example, p21-activated kinase 1 (PAK1), which regulates cell
motility and morphology, phosphorylates a threonine residue
in the kinase domain in a trans manner asymmetrically (A+
A→ A+ AP)28,31 and then phosphorylates a serine residue in the
regulatory domain of itself in a cis manner (AP→ APP)32,33

(Fig. 3d-left). While the original network of PAK1 is not weakly
reversible (Fig. 3d-left), CASTANET identifies a weakly reversible
deficiency zero translated network (Fig. 3d-right) and derives
the analytic form of stationary distribution (Fig. 3e) that matches
the simulation result (Fig. 3f).

Both trans- and cis-autophosphorylation can occur simulta-
neously as in Aurora B kinase, which controls mitotic progression34.
In an Aurora B kinase network, cis-autophosphorylation (A→AP)
promotes rapid trans-autophosphorylation (A+AP→AP+AP),
which forms a positive feedback in the system34. For this network,
CASTANET successfully applies our method to derive the analytic
form of stationary distribution (Fig. 3g–i).

While mass action kinetics are commonly used to describe
autophosphorylations34,35 as in our examples, the Michaelis–
Menten function and Hill function are also often used36,37.
Moreover, they are also used to describe the effects of
phosphatases on dephosphorylation and proteasomes on
degradation38,39, which EGFR, PAK1, and Aurora B kinase
undergo40–45. Even when the mass action propensities in the
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Fig. 3 Stationary distributions of diverse autophosphorylation networks. a, d, gWhile the autophosphorylation networks have deficiencies of one and are
not weakly reversible, they can be translated to weakly reversible deficiency zero networks. b, e, h Thus, stationary joint distributions can be derived using
the method illustrated in Fig. 1. T0 in e and h represent the total numbers of proteins, which are conserved. c, f, i The marginal probabilities of the numbers
of species derived from the formula (solid lines) and stochastic simulations (dots) are consistent. Here, parameter values are set as follows: a α1= 10, α2=
0.03, α3= 0.3, α4= 2, d α1= 0.3, α2= 0.1, β1= 2, β2= 1, T0= 80, g α1= 0.001, α2= 1, β= 5, T0= 60. For each example, 105 simulations were performed
using the Gillespie algorithm60.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02117-x ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:620 | https://doi.org/10.1038/s42003-021-02117-x | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


networks (Fig. 3a, d, and g-left) are replaced with the Michaelis-
Menten or Hill functions, their stationary distributions can still be
derived with the same approach (Supplementary Fig. 5).

When the presented networks are extended by adding
reactions, our methods might not be applicable. For instance, if
an additional trans-autophosphorylation (A+ AP→AP+ AP) is
added to the example in Fig. 3a, although it can be translated to a
weakly reversible deficiency zero network, their propensities
cannot be factorized as in Eq. (1). Thus, the stationary
distribution of the extended network cannot be derived by our
method. However, it can be approximated by the stationary
distribution of the original network if the rate constant of the
added reaction is small enough (see Supplementary Fig. 6 for
details). Such approximation works for the extended networks of
the other networks (Fig. 3d, g) as well. This indicates that if the
stationary distributions of core subnetworks, which consist of
dominant reactions, can be derived by our method, then it could
be used to approximate the stationary distributions of their more
complex parent networks.

Translation of fast subnetworks reveals both the fast and slow
dynamics of a multi-timescale system. As the number of nodes
(i.e., complexes) of networks increases, the networks are less likely

to be a weakly reversible deficiency zero network even after
network translation, and thus our method is less likely to be
applicable. However, such large networks commonly consist of
reactions occurring at different time scales46. In this case, if we
can derive the conditional stationary distributions of only fast
subnetworks with our method, both the fast and slow dynamics of
the full network can be accurately captured.

For gene regulatory networks, if the promoter kinetics (i.e.,
binding and unbinding of transcription factors to promoters) are
fast, the fast subnetwork is a simple reversible binding network
(i.e., weakly reversible and of zero deficiency), and thus its
stationary distribution can be easily calculated21. On the other
hand, when the promoter kinetics are slow, the fast subnetwork
includes a complex protein reaction network whose stationary
distribution is challenging to derive. This can occur for a variety
of reasons, e.g., the presence of nucleosomes in eukaryotic cells
usually slows down the binding and unbinding of transcription
factors20.

A genetic toggle switch with the slow promoter kinetics, which
consists of a pair of genes GA and GB, is an example of such
multi-timescale system (Fig. 4a). The genes GA and GB express
proteins A and B, respectively. Subsequently, these proteins
undergo asymmetric trans-autophosphorylation, and they
mutually repress gene expression by binding to the promoter
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Fig. 4 Fast and slow dynamics of a multi-timescale system are identified via network translation. a Schematic diagram of a toggle switch system.
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reversible and have deficiencies of three. c Translated fast subnetworks, obtained by merging reactions having the same stoichiometric vectors (colored
arrows), are weakly reversible and deficiency zero. Stationary distributions of the number of the phosphorylated proteins conditioned on the gene states
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the current state of the slow variables nGB
act
and nGB

rep
, the reduced model can be derived, which can capture the slow dynamics of the genes. For instance, the

reduced model (dots) accurately captures the residence time distributions of the repressor BP to its target gene GA of the full model (solid line). The
execution times for performing 104 simulations with the full and the reduced models are 275110 and 62 seconds, respectively. Parameter values are set as:
ϵ= 10−5, αact= 10, αrep= 1.5, αP= 0.2, αdP= 1, αdeg= 0.2, βact= 10, βrep= 1, βP= 0.3, βdP= 2, βdeg= 0.1, kb= 1, ku= 30, lb= 1.3, and lu= 20.
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region of each other’s gene. The binding and unbinding of the
phosphorylated proteins occur at a slower time scale. Therefore,
the entire network can be divided into the fast subnetwork
consisting of gene expression, phosphorylation, dephosphoryla-
tion, and degradation and the slow subnetwork consisting of
binding and unbinding (Fig. 4b). While the fast subnetworks for
A and B are neither weakly reversible nor deficiency zero, they
can be translated to weakly reversible deficiency zero networks
(Fig. 4c-top). The propensity functions of these translated
networks can be factorized as in Eq. (8), so their stationary
distributions conditioned on the slow variables can be derived
with CASTANET (Fig. 4c). Depending on the slowly changing
gene states, the distributions of the proteins A, AP, B, and BP can
dramatically change.

When the gene states slowly change, the fast variables rapidly
equilibrate to the conditional stationary distributions determined
by the current gene states (Fig. 4c). Thus, the weighted average of
the conditional stationary distributions with the probabilities of
the corresponding gene states accurately approximates the full
(i.e., unconditional) stationary distribution under timescale
separation (i.e., ε≪ 1)20. For instance, the full stationary
distribution of AP can be approximated as

πðnAP
Þ � ρactπðnAP

jnGA
act
¼ 1Þ þ ρrepπðnAP

jnGA
rep

¼ 1Þ ð4Þ

where ρact and ρrep are the probabilities that the gene GA is active
and repressed, respectively. The ρact becomes larger as the
dissociation constant between GA and its repressor BP is larger,
and the number of repressor BP is smaller. The ρact can be
calculated by identifying the eigenvector of the matrix consisting
of the dissociation constant, and the conditional stationary
moments of the repressors obtained from Fig. 4c20, and ρrep= 1
− ρact (see Supplementary Note 5 for details). Thus, using Eq. (4),
we can accurately capture the bimodal stationary distribution of
the protein AP (Fig. 4d), leading to phenotypic heterogeneity in
isogenic populations. Similarly, the full bimodal stationary
distributions of the other fast variables A, B, and BP can also be
accurately captured (Supplementary Fig. 7). Note that these
bimodalities cannot be captured by the corresponding determi-
nistic model, which predicted monostability. Such mismatches
between the stochastic and deterministic model have been
frequently observed in the presence of timescale separation1,20,47.

The conditional stationary distributions of the fast variables,
obtained by using our approach (Fig. 4c), allow us to capture the
slow dynamics of the full system as well. On the slow time scale,
the slow variables are unlikely to be changed, but the fast
variables rapidly equilibrate to their conditional stationary
distributions for the given slow variables. Thus, by replacing
the fast variables in the propensity functions of the slow reactions
with their quasi-steady states (QSSs): conditional stationary
moments, we can obtain the reduced model21,48. For the toggle
switch system, the QSSs of the fast variables AP and BP can be
computed from their conditional stationary distributions (Fig. 4c).
Then by replacing the fast variables AP and BP with their QSSs, we
can obtain the reduced model with only the slow variables, the
active and repressed genes (Fig. 4e). This reduced model
accurately captures the slow dynamics of the full model: the
binding and unbinding of the repressors to the genes. Both the
full and the reduced models yield nearly identical distributions of
the residence time of the repressor BP, which quantifies how long
the repressor maintains its binding to the gene GA (Fig. 4e).
Because the reduced model does not simulate the fast reactions,
which incur a large computational cost in the full model
simulation, computation time decreases by 99.9998%.

Discussion
In this study, we have developed a framework and its computa-
tional package that analytically derive stationary distributions of a
large class of BRNs. Specifically, we showed that the stationary
distribution of a BRN can be derived if two conditions are
satisfied: the network can be transformed to a weakly reversible
deficiency zero network via network translation (Fig. 1a) and
the propensity functions of the translated network satisfies the
generalized factorization property of mass action kinetics, iden-
tified in this study (Fig. 1b). We found that these conditions are
satisfied in numerous BRNs including various autopho-
sphoryaltion networks by using CASTANET (Fig. 2, Supple-
mentary Figs. 3 and 4). Furthermore, even when only a
subnetwork of more complex BRNs satisfies the conditions, the
stochastic dynamics can often be captured. That is, the stationary
distribution of the subnetwork consisting of dominant reactions,
derived with our method, can accurately approximate the sta-
tionary distribution of its parent network (Supplementary Fig. 6).
Furthermore, the derivation of the stationary distribution of a fast
subnetwork is enough to capture both the slow and fast stochastic
dynamics of its multi-timescale parent network (Fig. 4). With
these analytically derived stationary distributions of BRNs, their
long-term stochastic behaviors such as their dependence on rate
constants can be effectively investigated, and the likelihood
function of parameters for Bayesian inference can also be
derived2.

Our work focused on the derivation of steady-state solutions of
the CME using the underlying network structure following pre-
vious studies11,26. However, the CME is not usually used to
capture cell division, which should be taken into account to
describe single cell behavior in general. Thus, it would be inter-
esting in future work to extend our method to the population
balance equation49,50, which describes stochastic cell population
dynamics (e.g., cell division) as well as intracellular dynamics.
This extension could be accomplished by averaging stationary
distributions from cell populations after a stationary distribution
of each cell is derived by our method.

We have translated a network to have the desired structural
properties (i.e., weak reversibility and zero deficiency) by merging
reactions with a common stoichiometric vector (Figs. 1a and 3g)
and shifting a reaction preserving its stoichiometric vector
(Fig. 3a, d). While the idea underlying this procedure is simple, it
greatly extends the class of networks whose structure can be
changed to the desired one. For instance, when the edge prob-
ability is 1

2, the fraction of deficiency zero networks among Erdös-
Rényi random networks with two species and at most bimolecular
reactions increases more than six times after network translation.
The identification of such translation, which is not simple, can be
done automatically by the provided computational package,
CASTANET. In particular, to efficiently search translated net-
works, in CASTANET, we use the necessary conditions for net-
work translation toward weakly reversible and deficiency zero
networks, derived in this study (see Supplementary Note 4 for
details).

Furthermore, CASTNET performs the propensity factorization
of translated networks, which is required to derive the stationary
distributions of networks with non-mass action kinetics. In this
study, by extending the previous factorization condition11,26 to
ours (Eq. (8)), we have been able to derive stationary distributions
of various BRNs (Figs. 1, 2, and 3, Supplementary Figs. 3 and 4).
Although the factorization condition with non-mass action
kinetics have been rarely investigated11,26 due to its complexity
and lack of motivation, our work motivates studies on it as
translated networks typically follow non-mass action kinetics. To
cover more weakly reversible deficiency zero translated networks,
we aim to further generalize our factorization conditions, and
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accordingly, we will update our computational package
CASTANET.

By changing the network structure while preserving the sto-
chastic dynamics via network translation, we have been able to
use the theory, applicable to weakly reversible deficiency zero
networks11, to understand the stochastic dynamics of a larger
class of networks with non-zero deficiencies. Similarly, by
translating a network to have a deficiency of one, it would be
possible to show that the networks have the properties of a net-
work with a deficiency of one, such as absolute concentration
robustness: the steady state value of a species is invariant to the
overall input of the system51–53. Furthermore, network transla-
tion of stochastic BRNs can also be used to identify stochastic
properties of networks based on their structures, such as positive
recurrence54 and extinction52,55,56.

Methods
Biochemical reaction network. BRN is a graphical representation of a given
biochemical system12,14,57,58. It consists of the triple fS; C;Rg where S ¼
fS1; ¼ ; Sdg is the set of interacting species, C ¼ fC1; ¼ ;Cmg is the set of com-
plexes, and R ¼ fν1 ! ν01; ¼ ; νr ! ν0rg is the set of reactions. A complex is a
non-negative linear combination of species (i.e., Ci= ai1S1+⋯+ aidSd), which is
also represented as a d-dimensional non-negative integer-valued vector (ai1,…,
aid). A reaction is an ordered pair of complexes. This allows the BRN to be
represented as a directed graph (C;R), where complexes are nodes and reactions
are directed edges. Hence, a reaction Rj :¼ νj ! ν0j , where νj and ν0j are the source
and product complexes of the jth reaction, respectively. The vector ν0j � νj is called
a stoichiometric vector of the jth reaction, which describes the relative change in the
number of molecules of reactants and products between the sides of each reaction.
A linkage class is a connected component of the network when all reactions are
regarded as undirected edges. Weak reversibility means that if there is a sequence
of reactions from a complex Ci to another complex Cj then there must be a
sequence of reactions from Cj to Ci. The deficiency δ is the integer index defined as
jCj � l � s, where jCj is the number of complexes, l is the number of linkage classes,
and s is the dimension of the subspace spanned by all stoichiometric vectors
(Fig. 1a).

Complex balanced equilibrium. CBE of the deterministic mass action model for a
BRN with rate constants {κk} is the steady state c 2 Rd

> 0 which satisfies the fol-
lowing equality for each complex z 2 C (Fig. 1c):

∑
k: ν0k¼z

κkc
νk ¼ ∑

k: νk¼z
κkc

νk ð5Þ

where the κkc
νk ¼ κkc

νk1
1 cνk22 � � � � � cνkdd is the rate function of the kth reaction fol-

lowing the deterministic mass action kinetics, and νki is the ith entry of νk
12. The

LHS is the sum of rate functions over reactions whose product complex is z (i.e.,
ν0k ¼ z), and the RHS is the sum of rate functions over reactions whose source
complex is z (i.e., νk = z). In other words, at CBE, the in-and out-flows create a
balance for each complex. The deterministic mass action model for a BRN pos-
sesses a CBE regardless of rate constants if and only if the BRN is weakly reversible
and deficiency zero13. Furthermore, even when a BRN has non-zero deficiency and
is weakly reversible, the deterministic mass action model for the BRN possesses a
CBE with specific choice of rate constants13.

Stochastic model of biochemical reaction networks. We model a BRN as a
continuous-time Markov chain (CTMC) for an isothermal well-stirred system
with a constant volume. The state of the CTMC at time t,
nðtÞ ¼ ðn1; ¼ ; ndÞ 2 Zd

≥ 0, represents the copy number of each species. Each
reaction is associated with a propensity function:

λk : Z
d
≥ 0 ! R ≥ 0; k ¼ 1; ¼ ; r:

Specifically, λk(n) is the probability that the kth reaction occurs in a short interval
of length dt if the state at the beginning of the interval was n. Using the propensity
functions, we can derive the CME, which describes the time evolution of the
probability of the model:

dpn
dt

¼ ∑
r

k¼1
λkðn� ðν0k � νkÞÞpn�ðν0k�νkÞ � ∑

r

k¼1
λkðnÞpn

for n 2 Zd
≥ 0, where pn(t) denotes the probability that the state of the system equals

n 2 Zd
≥ 0 at time t. A stationary distribution π(n) of a given CTMC is the steady-

state solution of the CME that satisfies the following infinite equation:

∑
k
λkðn� ðν0k � νkÞÞπðn� ðν0k � νkÞÞ ¼ ∑

k
λkðnÞπðnÞ:

It means that if the CTMC is initialized with its stationary distribution, the vector
of probabilities p(t) will stay constant for all time t > 0.

The stochastic mass action propensity functions are assumed to be proportional
to the number of ways in which species can combine to form the source complex.
Hence, the kth propensity function with the rate constant αk can be written as:

λkðn1; ¼ ; ndÞ ¼ αk
Yd
i¼1

ni!
ðni � νkiÞ!

1fni ≥ νkig: ð6Þ

Additionally, the propensity functions can have a more generalized form as follows:

λkðn1; ¼ ; ndÞ ¼ αk
Yd
i¼1

f iðniÞf iðni � 1Þ � � � f iðni � ðνki � 1ÞÞ1fni ≥ νkig ð7Þ

where functions f i : Z ≥ 0 ! R ≥ 0. For instance, the translated network in Fig. 3a-
right follows this form as f AðnAÞ ¼ nAðnA � 1Þ and f AP

ðnAP
Þ ¼ nAP

. This is called
‛generalized’ stochastic mass action kinetics since if fi’s are identity functions then
it is equivalent to the stochastic mass action kinetics (Eq. (6)).

Network translation. Network translation is a procedure to transform a BRN
fS; C;Rg to another one fS; ~C; ~Rg that satisfies the condition: the sum of pro-
pensities of a set of reactions sharing the same stoichiometric vector remains
identical (Fig. 1a). That is, for each vector γ 2 Zd , the propensity functions of the
original and the translated networks, λk(n) and ~λ~kðnÞ, satisfy the following:

∑
k: ν0k�νk¼γ

λkðnÞ ¼ ∑
~k: ~ν0~k�~ν~k¼γ

~λ~kðnÞ

for all n 2 Zd
≥ 0, where ν0k � νk and ~ν0~k � ~ν~k are the stoichiometric vectors of the

kth and ~kth reactions of the first and second models, respectively. For example,
merging several reactions sharing a common stoichiometric vector into one reac-
tion is network translation. Similarly, shifting reactions preserving their stoichio-
metric vectors is also an instance of network translation (e.g., A+ B→ 2B to A→
B). Network translation can change the structural properties of BRNs, such as weak
reversibility and the deficiency, but it preserves the associated CME, i.e., stochastic
dynamics (see Supplementary Note 1 for details).

Propensity factorization. To derive the stationary distribution with our approach
(Fig. 1), all the propensities ~λkðnÞ should be factorized as

~λkðnÞ ¼ κkθðnÞωðn� νkÞ1fn ≥ νkg ð8Þ

for some constants κk > 0 and functions θ(n) > 0 and ω(n) ≥ 0 on a set Γ ¼
fn jn≥ bg � Zd

≥ 0 at which
~λkðnÞ> 0 if n ≥ νk + b and ~λkðnÞ ¼ 0 otherwise. For the

stochastic mass action kinetics (Eq. (6)), b= 0 as ~λkðnÞ> 0 if and only if n ≥ νk .
For the translated network in Fig. 3a, b= (1, 0) because each propensity is positive
if and only if n ≥ νk + (1, 0) in Γ ¼ fnjðnA; nAP

Þ ≥ ð1; 0Þg.
While the propensity factorization can be calculated by solving recurrence

relations (see Supplementary Note 2 for details), it can be obtained without solving
recurrence relations if all the propensities of a given network follow the generalized
mass action kinetics (Eq. (7)). In this case, the factorization can be easily obtained
as

κk :¼ αk; θðnÞ :¼
Yd
i¼1

Yni
j¼biþ1

f iðjÞ; and ωðnÞ :¼ 1
θðnÞ 1fn≥ bg; ð9Þ

where
Q�1

j¼0 aj ¼ 1 for any {aj} (see Supplementary Note 2 for details).

Derivation of stationary distribution. If a network is weakly reversible and
deficiency zero so that it has a CBE c 2 Rd

> 0
13 and propensity function λk(n) can

be factorized as in Eq. (8) on Γ, a stationary measure of the network can be derived
as

πðnÞ ¼
cn
θðnÞ if n 2 Γ;

0 if n 2 Γc:

(

Supplementary Note 3 provides the proof and detailed illustration. By scaling this
stationary measure with the normalizing constant, which is the reciprocal of the
summation of π(n) over the irreducible state space, the stationary distribution on
the irreducible state space can be obtained. For instance, the normalizing constant
for the stationary distribution (Fig. 3e) is calculated by summing π(n) over the
irreducible state space fðnA; nAP

; nAPP
Þ j nA ≥ 1; nA þ nAP

þ nAPP
¼ T0g. While

computing the normalizing constants is sometimes challenging, a symbolic com-
putation approach using Wilf-Zeilberger theory can be used for the stochastic mass
action model59.

Computational package, CASTANET. We have developed a user-friendly, open-
source, and publicly available computational package, CASTANET, that performs
the network translation and propensity factorization automatically (Fig. 2a). The
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package checks two conditions: whether a given BRN can be made weakly rever-
sible and of zero deficiency after network translation, and whether the propensities
of the translated network can be factorized as in Eq. (8). If these two conditions are
satisfied, CASTANET then calculates the analytic formula for a stationary
distribution.

To efficiently search weakly reversible deficiency zero translated networks, we
derived their necessary conditions (see Supplementary Note 4 for details) and
incorporated them in the package. Furthermore, CASTANET constructs a
candidate for the factorization function θ(n) in symbolic expression, which allows
us to check propensity factorization condition without checking infinite
combinations (see Supplementary Note 4).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in the current research are available upon request to the corresponding
authors. Simulation data underlying plots shown in Figs. 3 and 4 are provided in
Supplementary Data 1.

Code availability
The MATLAB (version R2020b) code performing network translation, propensity
factorization, and CBE calculation to derive stationary distribution (schematically shown
in Figs. 1 and 2) can be found at https://github.com/Mathbiomed/CASTANET. The
detailed description and step-by-step manual are provided in Supplementary
information.
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