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Abstract. Although genome-wide association studies (GWAS)
have identified hundreds of autoimmune disease-associated
loci, much of the genetics underlying these diseases remains
unknown. In an attempt to identify potential causal variants,
previous studies have determined that the rs35677470 missense
variant of the Deoxyribonuclease I-like 3 (DNASEIL3)
gene was associated with the development of systemic lupus
erythematosus (SLE), rheumatoid arthritis (RA) and systemic
sclerosis (SSc). DNaselLL3 is a member of the human DNase
I family, representing a nuclease that cleaves double-stranded
DNA during apoptosis and serving a role in the development
of autoimmune diseases. The present study aimed to deter-
mine the role of the rs35677470 variant at the DNASEIL3
gene leading to the R206C mutation in SLE, RA and SSc. The
underlying mechanism potentially affecting protein structure
loss of function was also assessed. DNASEIL3 evolution was
investigated to define conservation elements in the protein
sequence. Additionally, 3D homology modeling and in silico
mutagenesis was performed to localize the polymorphism
under investigation. Evolutionary analysis revealed heavily
conserved sequence elements among species, indicating
structural/functional importance. In silico mutagenesis and
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3D protein structural analysis also demonstrated the poten-
tially varied impact of the DNASEIL3 (rs35677470) single
nucleotide polymorphism (SNP), providing an explanation for
its effect on the R206C variant. Structural analysis demon-
strated that the rs35677470 SNP encodes a non-conservative
amino acid variation, R206C, which disrupted the conserved
electrostatic network holding secondary protein structure
elements in position. Specifically, the R206 to E170 interaction
forming part of a salt bridge network stabilizing two a-helices
was interrupted, thereby affecting the molecular architec-
ture. Previous studies on the effect of this SNP in Caucasian
populations demonstrated lower DNAselL3 activity levels,
which is consistent with the current results. The present study
comprehensively evaluated the shared autoimmune locus of
DNASEIL3 (rs35677470), which produced an inactive form
of DNaselL.3. Furthermore, structural analysis explained the
potential role of the produced mutation by modifying the
placement of structural elements and consequently introducing
disorder in protein folding, affecting biological function.

Introduction

The genes and mechanisms involved in complex autoimmune
diseases, which affect ~5% of the population, remain obscure.
Genome-wide association studies (GWAS) have identified
hundreds of autoimmune disease-associated loci without
defining causal variants (1). Understanding the mechanisms
that underlie these diseases may contribute to the development
of diseases-modifying therapeutic protocols. Accumulating
evidence has revealed that common genetic factors may
predispose individuals to multiple autoimmune diseases. In
this framework, several genetic polymorphisms have been
associated with systemic lupus erythematosus (SLE) and other
autoimmune diseases (2). In addition, it has been reported that
most of the identified systemic scleroderma (SSc) suscepti-
bility loci overlap with those of other autoimmune diseases
and in particular, disorders such as SLE and rheumatoid
arthritis (RA) (3). Thus, previous studies have supported the
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hypothesis that common deregulated pathways exist across
multiple autoimmune diseases.

In an attempt to identify potential causal variants that alter
physiologic pathways and are involved in susceptibility to
autoimmune diseases, various studies have revealed that the
missense variant rs35677470 at the deoxyribonuclease I-like 3
(DNASEIL3) locus was associated with the development of
SLE 4,5), RA (6) and SSc (7), thus representing a shared risk
factor for these diseases. However, the exact functional conse-
quence of this polymorphism has not yet been thoroughly
investigated. Deoxyribonuclease I-like 3 (DNase 1L3) is a
member of the human DNase I family, representing a nuclease
that cleaves double-stranded DNA during apoptosis (8). The
protein encoded by DNASEILS3 is one of three human homo-
logs of DNase I and functions as an endonuclease capable of
cleaving both single- and double-stranded DNA (9-11).

SLE is a chronic, severe, multiorgan systemic autoimmune
disease that predominantly affects women, with a complex
genetic inheritance and strong clustering in families (4). It
is characterized by the production of high titers of autoanti-
bodies directed against native DNA, cell surface and other
cellular constituents that are associated with high morbidity
rates (12). RA is a chronic, systemic multifactorial disease of
unknown etiology, characterized by progressive joint destruc-
tion resulting in severe disability. It results from a complex
interplay between genetic and environmental factors (13,14).
SSc is a chronic, multisystem autoimmune disease clini-
cally characterized by progressive skin and internal organ
fibrosis, exhibiting one of the highest mortality rates among
rheumatic diseases, leading to premature death in affected
individuals (15,16). SSc affects connective tissue and produces
various heterogeneous clinical manifestations, including
inflammation, autoimmunity, vasculopathy and excessive
extracellular matrix production and deposition (17). SSc, RA
and SLE are heterogeneous diseases of the connective tissue
that share clinical and epidemiological manifestations as
well as life-threatening complications (18). Considering that
the production of autoantibodies represents a main feature of
these diseases, patients often exhibit an extensive deregulation
of the innate and adaptive immune response (19).

Given that autoimmune diseases may share common suscep-
tibility genes, potentially leading to the development of shared
therapeutic approaches, the present study aimed to investigate
the potential role of the rs35677470 variant at the DNASEIL3
gene and the resultant R206C mutation in the development
of SLE, RA and SSc. The underlying mechanism potentially
affecting protein structure loss of function was also assessed.

Materials and methods

Sequence retrieval. Protein sequences were retrieved from the
UNIPROT database (20) and the structural information was
obtained from the Protein Data Bank (21). To find homologs
across species, BLAST searches were performed with Mega
BLAST (National Center for Biotechnology Information)
using the protein databases PDB and SwissProt and Blastp
(protein-protein BLAST) with default parameters (22).

Sequence alignment. T-COFFEE, the multiple sequence align-
ment program (23), was used to perform all protein sequence
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alignments. Default parameters were used for the align-
ment. ESPript was used to depict the sequence alignments
and to incorporate the available conservation or diversity
information and ENDscript was used for 3D homology
representation (24,25).

Phylogenetic analysis. To test for phylogeny, trees were
constructed using maximum-likelihood analysis with 500
bootstrap replications (26) implemented by MEGA7 (27).
The evolutionary tree was inferred from protein sequences
using the Maximum Likelihood method (28), based on the
Jones-Taylor-Thorntonmatrix model (28) and incorporated
using the Gamma distribution model. The tree with the highest
log likelihood was presented in all phylogeny figures. Initial
trees for heuristic searches were obtained automatically by
applying Neighbor-Join (29) and BioNJ (30) algorithms to a
matrix of pairwise distances, estimated using the Maximum
Composite Likelihood (31) approach and then by selecting the
topology with the superior log likelihood value.

Structural analysis. The structure of the DNASE1L3 protein
(Homo_sapiens_NP_004935.1) was built using homology
modeling with the SWISSMODEL program via the EXPASY
server (32) and was based on the experimentally determined
crystal structures of homologous proteins retrieved from
the Protein Data Bank (IDs latn, 4awn and 3w3d) (33-35).
In silico mutagenesis of the Arg206Cys point mutation was
created in the homology model of the wild-type DNASEI1L3
protein structure using the PyMOL molecular-graphics system
V.2.2 (Schrodinger, LLC) (36). Multiple structure alignments
were performed using PyMOL (36) based on protein back-
bone RMSD (Root Mean Square Deviation) optimization and
sequence alignment. ENDscript (25) was used to depict weak
and strong sequence conservations in structures across species
in order to pinpoint variable sites on the functional domain. All
figures depicting 3D models were generated using the PyMOL
molecular-graphics system V.2.2 (Schroédinger, LLC) (36).

Results and Discussion

Phylogenetics and sequence analysis. DNASEIL3 evolution
was investigated to define conservation elements in its protein
sequence. Evolutionary analysis is used to identify positions
on the protein sequences that are heavily conserved across
species, indicating structural importance (37). To determine
the evolutionary relationship among DNaselL3 members
of the DNase I family and to identify additional homologue
DNAasesl in other species, exhaustive BLAST searches
were performed using a variety of available protein sequence
databases. Using multiple phylogenetic approaches, the
results revealed high sequence conservation among species,
with separation only occurring across different animal taxa.
Outgroups (mollusks and bacteria) were aligned with high
confidence, demonstrating good preservation of important
secondary structure elements (Figs. 1 and 2).

Structural analysis. The current study utilized 3D homology
modeling to localize polymorphisms in the DNASEIL3
protein. Structural analysis revealed that the rs35677470
DNASEIL3 single nucleotide polymorphism (SNP),
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Figure 1. Molecular phylogenetic analysis of DNAsel across species. The unrooted tree of 72 protein sequences selected using the Maximum Likelihood
method is presented. The sequences are clustered according to animal groups represented by different colors (Mammals in red, birds in green, freshwater fish

in purple, reptiles in cyan and fish in blue). Outgroups (octopus and bacteria) are in black.

which encodes the non-conservative amino acid variation
Arg206Cys, modified the conserved electrostatic network
that holds protein secondary structure elements in posi-
tion (Fig. 3A). Specifically, the guanidinium group of the
Arg206 side chain interacted with the carboxylate group
of Glul70, forming a strong salt bridge (Fig. 3B). Together
with the Arg208 to Asp219 charge interaction, an electro-
static salt bridge network was formed, which stabilized two
important scaffold a-helices. This network was interrupted
by the highly defective rs35677470 SNP allele, in which
arginine is replaced by a cysteine, affecting the molecular
architecture (Fig. 3C and Table I). Previous studies on the
effect of this SNP in Caucasian populations, resulting in a
lower level of DNAselL3 activity, are consistent with this

observation, demonstrating that the SNP affects position 206
in the protein, thus producing a less active form of human
DNAselL3 (38,39). The introduction of the cysteine residue
at position 206 has no effect on disulphide bond formation,
since all four cystines forming disulphide bridges (24-52
and 194-231; Fig. 3) are distal to position 206 and sterically
inaccessible at this position. Herein, the structural analysis
showed that although position 206 is distant to the nucleotide
binding site forming residues, the effect of this mutation
destabilizes the nucleotide interacting loop preceding that of
position 206 (residue 193-196). The enhanced mobility of this
loop facing the nucleotide recognition site and the subsequent
direct interaction with the affected attacked nucleotide may

affect the enzymatic activity of DNAselL3.
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Figure 2. Partial representation of cross species sequence alignment for elements of the secondary structure containing the position of the stabilizing salt
bridge network counterparts E170 to R206 and R208 to D219 (indicated by black dots) in human DNAselL3. Gray-scale shading indicates amino acid residue
conservation.

Figure 3. Ribbon representation of the DNAaselLL3 homology model. Sequence conservation (red indicating most conserved and white representing least
conserved) among the sequences studied, the position of the stabilizing salt bridge network (Glul70 to Arg206 and Arg208 to Asp219; framed by blue rect-
angle) and the disulphide bridges (depicted with Cys residues colored in yellow are shown). (A) Close-up view of the residues of the native structure involved in
the salt bridge network. The residues are shown in stick representation (colored in orange) and interactions are shown as yellow dashed lines. (B) The location
of Arg206 and Glul70 interaction is highlighted by the blue oval. The disrupted salt bridge network with the Arg206Cys mutation are presented. (C) The
disrupted salt bridge network by Arg206Cys mutation is presented in the blue oval. Distances (yellow dashed lines) are presented in Angstroms.
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Table I. Summary of salt bridge stabilizing interactions.

rs35677470 DNASEIL3
Salt bridge interaction =~ Native SNP (Arg206Cys)
Arg206—Glul70 + -
Arg208—Asp219 + +

DNASEI1L3, deoxyribonuclease I-like 3 gene; SNP, single nucleotide
polymorphism.

Table II. Role overview of the rs35677470 (Arg206Cys) single
nucleotide polymorphism in autoimmune diseases.

Disease Effect Author (Refs.)
SLE Risk Harley et al 2008, (4)
Gateva et al 2009, (5)
RA Risk Westra et al 2018, (6)
SSc Risk Martin et al 2012, (3)
Zochling et al 2014, (7)
Mayes et al 2014, (41)
T1D No genetic association ~ Westra et al 2018, (6)

SLE, systemic lupus erythematosus; RA, rheumatoid arthritis;
SSc, systemic sclerosis, T1D, type 1 diabetes.

Arg206Cys mutation of DNASEIL3 in patients with SLE, RA
and SSc. The potentially causal missense variant rs35677470
localized to the DNASEIL3 gene (exon 8) at position 3pl4.3
was identified following GWAS in patients with SLE, RA
and SSc (Table II). However, despite exhibiting a pleiotropic
effect in autoimmunity, this SNP was not found to be asso-
ciated with Type 1 Diabetes (6). A second SNP (rs7652027)
of the DNASEIL3 genomic region has also been recently
associated with SSc (40). However, the same study revealed
no association between the rs35677470 SNP with SSc due to
the absence of the SNP from the panel used. In other studies,
by Mayes et al (41) and Zochling et al (7), the association
signal of the rs35677470 SNP was also significantly associ-
ated with anti-centromere-antibody-positive (ACA*) patients
with SSc but not with ACAindividuals. Therefore, it has been
hypothesized that the association between ACA and SSc in the
case of rs35677470 loss-of-function DNASEIL3 variants may
provide a link between defective apoptotic DNA breakdown
and ACA production (41).

In regards to the potential role of the rs35677470 SNP in
SLE and taking into account that SLE pathogenesis is associ-
ated with a reduced ability to clear DNA released from apoptotic
cells, Al-Mayouf et al (42) hypothesized that DNASEIL3 gene
dysfunction may lead to impaired DNA breakdown and clearance
from apoptotic cells, thus resulting in the formation of antibodies
recognizing DNA and immune complexes. Furthermore, given
that similar types of DNA-driven immune complexes (such as
anti-nuclear and ACA antibodies) are also characteristic of SSc,
this hypothesis is also applicable in SLE (7).
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Recently, decreased expression levels of DNASE113 have
been detected in patients with SLE, resulting in the reduction
of nucleosome DNA digestion in serum, which is associated
with the development of anti-double stranded DNA antibodies.
However, the expression and activity of DNASEI1I3 remained
unchanged in patients with RA, strengthening the hypothesis
that the immunopathological mechanism of RA differs from
that of SLE (43). Furthermore, Serpas et al (44) targeted the
DNASEIL3 enzyme as a potential therapeutic agent for SLE.
To this end, a murine model with DNASEI1L3 deficiency
was developed, in which mice exhibit features of SLE and
renal disease. Methods to treat this disease by targeting the
DNASEIL3 enzyme are currently being investigated.

Candidate gene studies and GWAS have attempted to
partially elucidate the complex genetic architecture of SLE
through the identification of >90 risk loci (45) and to deter-
mine the existing differences in risk variants across different
continents (46). These studies have established the impor-
tance of several pathways in SLE, including innate immune
responses, the activation of lymphocytes and immune
complex clearing (45,47-49). The present study comprehen-
sively evaluated rs35677470 of the shared autoimmune locus
DNASEIL3, which has been reported to produce an inactive
form of DNaselL3 (38,39). Structural analysis performed in
the current study elucidated the potential role of mutations
that modify the placement of structural elements, conse-
quently producing disordered protein folding and thereby
affecting its biological function. In the post-genomic era, the
identification of genes and molecules involved in the molec-
ular mechanisms of various diseases is of vital importance to
elucidate clinically relevant functional defects, thus contrib-
uting to drug discovery and the production of novel therapies.
Therefore, determining the 3D structure and analyzing the
role of any causative mutation in the pathogenesis of disease,
from the structural/functional point of view, is necessary. As
a consequence, potential abnormalities in the conformation
and activity of proteins can be elucidated. Additionally, an
efficient integration of these data with other biological factors
such as antibodies, antagonists, inhibitors and binders (50)
may identify novel targets for pharmaceutical intervention.
The results of the present study further elucidated the biolog-
ical significance of rs35677470 at the DNASEIL3 locus in
SLE, RA and SSc, and demonstrated the value of pleiotropic
gene studies for autoimmune diseases.
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