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Abstract. Data assimilation (DA) is a key procedure that synchro-
nizes a computer model with real observations. However, in the case
of overparametrized complex systems modeling, the task of parameter-
estimation through data assimilation can expand exponentially. It leads
to unacceptable computational overhead, substantial inaccuracies in
parameter matching, and wrong predictions. Here we define a Supermodel
as a kind of ensembling scheme, which consists of a few sub-models rep-
resenting various instances of the baseline model. The sub-models differ
in parameter sets and are synchronized through couplings between the
most sensitive dynamical variables. We demonstrate that after a short
pretraining of the fully parametrized small sub-model ensemble, and then
training a few latent parameters of the low-parameterized Supermodel,
we can outperform in efficiency and accuracy the baseline model matched
to data by a classical DA procedure.
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1 Introduction

Classical data assimilation (DA) procedure, which synchronizes a computer
model with a real phenomenon through a set of observations, is an ill-posed
inverse problem and suffers from the curse of dimensionality issue when used
to estimate model parameters. That is, the time complexity of DA methods
grows exponentially with the number of parameters and makes them help-
less in the face of multiscale and sophisticated models such as models of cli-
mate&weather dynamics or tumor evolution (e.g. [12,13,21,30,37,38]). Our idea
is to assimilate data to a hierarchically organized Supermodel1 in which the
1 See the Chaos Focus Issue introduced in [11] for the origin and history of supermod-

eling.
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number of trainable metaparameters is much smaller than the number of fixed
parameters in the sub-models, which themselves have to be trained in the usual
schemes. We define the Supermodel as an ensemble of M imperfect sub-models
μ, μ = 1 . . . M , synchronized with each other through d dynamic variables and
coupled to reality by observed data. Each sub-model is described by a set of dif-
ferential equations (ordinary ones or parabolic partial ones) for the state vectors
xμ = (x1

μ, . . . , xi
μ, . . . , xd

μ), such that:

ẋi
μ = f i

μ(xμ) +
∑

ν �=μ

Ci
μν(xi

ν − xi
μ) + Ki(xi

GT − xi
μ) (1)

xs(t,C) ≡ 1
M

∑

μ

xμ(t,C), (2)

where the coefficients Ci
μν of tensor C are the coupling factors synchronizing the

sub-models, K is a set of assimilation rates “attracting” the synchronized Super-
model to the ground truth (GT) observations xGT , and xs(.) is the Supermodel
output calculated as the ensemble average.

Fig. 1. (a) A Supermodeling scheme in which the sub-models are explicitly pre-trained
and the inter-model couplings are trained without nudging the sub-models towards GT
(as has been proposed also e.g., in [32]). We have assumed that the sub-models are
coupled through only a single, the most sensitive, dynamical variable and the coupling
factors Ci

μν are matched to data by using a classical DA procedure (Ki = 0). (b) The
concept of data adaptation by Supermodeling.

Unlike some previous applications of Supermodeling in climatology [29,30],
used for increasing the climate/weather forecast accuracy by relatively tight
coupling (C is dense) of a few very complex and heterogenous climate models,
we propose to explore Supermodeling from a somewhat different perspective. To
this end, let us assume that the Supermodel is an ensemble of a few (here M =
3) homogeneous instances of the reference (baseline) model (see Fig. 1a). The
sub-models are represented by pretrained (e.g., using a classical DA procedure)
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baseline models. This quick pretraining can be performed: (1) independently for
M sub-models, each starting from different initial parameters or (2) exploiting M
local minima of the loss function F (‖x−xGT‖) found during initial phases of a
classical DA procedure for a single, initially parametrized sub-model. Though the
second option is more elegant and efficient computationally, we have chosen the
first one to assure a greater diversity of the sub-models. Let us also assume that
the sub-models are coupled through only one - the most sensitive - dynamical
variable i.e., C is sparse and Ci

μν �= 0 only for i = 1 (see Fig. 1a). In addition,
we refrain from attracting the Supermodel to GT via the assimilation rates Ki

so we assume that Ki = 0 for i = 1 . . . d in Eq. 1. Instead, a classical DA
algorithm (here ABC-SMC) will be employed directly for adaption of only C
(latent parameters) to the GT data. Because of a small number of the coupling
factors C, we have expected that this training procedure will be very fast. We
summarize our contribution as follows:

1. We propose a novel modeling methodology, which uses the Supermodeling
scheme as a higher level of abstraction in the use of existing DA procedures.
Our approach radically speeds up the process of model training. That is, just
as DA estimates states and parameters by coupling the model to a “real”
system, supermodeling allows a small set of different models to assimilate
data from one another; only the inter-model coupling parameters need be
estimated.

2. For better synchronization of the sub-models, we propose their fast pretraining
by employing a classical DA scheme. In previous work [13], the arbitrary
parametrization of the sub-models often caused their desynchronization.

3. Unlike in previous Supermodeling proofs-of-concept, a few C metaparameters
can be quickly adapted to data by a classical DA method without coupling to
truth. In the previous work (see, e.g. [13,37]), non-vanishing matrices C and
Ki combined inter-model synchronization with a nudging scheme attracting
the model to GT data.

In support of our modeling concept (see Fig. 1b), we present a case study:
the process of parameter estimation in the Handy socio-economical model [25].
The model is a dynamical system that is an extended version of the predator-
prey scheme. We have selected the Handy model due to its non-trivial behavior,
reasonable computational complexity and relatively large number of parame-
ters. On the basis of training data we try to predict the evolution of a “true”
dynamical system. We compare the quality of the predictions for various time
budgets for the classical ABC-SMC data assimilation method on the one hand,
and the Supermodeling scheme on the other. Finally, we summarize and discuss
the findings.

2 Classical Data Assimilation to the Handy Model

2.1 Handy Model

The Handy model is a substantial extension of the predator-prey system and is
described by the time evolution of four dynamical variables: Commoners, Elites
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as well as Nature and Wealth (xC , xE , y, w). Their evolution is described by
the following equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋC = βCxC − αCxC

ẋE = βExE − αExE

ẏ = γy(λ − y) − δxCy

ẇ = δxCy − CC − CE

{
CC = min(1, w

wth
)sxC

CE = min(1, w
wth

)κsxE

(3)

{
αC = αm + max(0, 1 − CC

sxC
)(αM − αm)

αE = αm + max(0, 1 − CE

sxE
)(αM − αm)

wth = ρxC + κρxE

In Table 1 we have compiled a glossary of parameters and variables, and their
ground truth or initial values, respectively. In Fig. 2 we illustrate the typical
evolution of the dynamical variables of the Handy model. The time evolution of
the system is so variable and its parameters so sensitive that prediction of the
model behavior is sufficiently difficult as to make data assimilation a non-trivial
task.

Table 1. Parameters and initial values of dynamical variables of the Handy model.

Parameter Description Value

αm Normal (minimum) death rate 1.0 × 10−2

αM Famine (maximum) death rate 7.0 × 10−2

βC Commoners birth rate 3.0 × 10−2

βE Elites birth rate 3.0 × 10−2

s Subsistence salary per capita 5.0 × 10−4

ρ Threshold wealth per capita 5.0 × 10−3

γ Regeneration rate of nature 1.0 × 10−2

λ Nature carrying capacity 1.0 × 102

κ Inequality factor 1.0

δ Depletion (production) factor 3.34

Variable Description Initial value

xC Commoners population 1.0 × 102

xE Elites population 2.9 × 101

y Nature 1.0 × 102

w Accumulated wealth 5.0 × 101
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2.2 Ground Truth Data Generation

To further the testing of the supermodel concept, we generated artificial data,
assuming that there exists a ground-truth “model” that simulates reality. Of
course, because neither reality nor observations of reality can be accurately
approximated by any mathematical model, we should somehow disturb both
observations and the whole model as well. The comparison of the robustness
of ABC and Supermodeling by using such a stochastic model would need many
extensive tests. Nevertheless, conducting such research would make sense if the
Supermodeling scheme outperforms a classical DA procedure for a much sim-
pler ground truth model. Therefore, herein we have assumed that reality follows
exactly a given baseline mathematical model with a rigid and “unknown” set of
parameters. Our role is to guess them, having a limited number of observations,
i.e., samples from this GT system evolution.

As presented in Fig. 2, the dynamical variables of the GT model evolve in a
given time interval in a smooth but variable and non-trivial way. We consider
here only one time interval (from T1 = 300 up to T2 = 750 timesteps) that was
split into three subintervals of the same length (A = [300, 450], B = [450, 600],
C = [600, 750]). The models (the baseline model, sub-models and Supermodel) will
be trained on GT data sampled in the middle part B of the plot, and accuracies
of predictions will be tested on A (backward forecasting), C (forward forecast-
ing) and A∪C (overall) time intervals. We have decided to use both sparsely and
densely sampled data, i.e., in each of the training subintervals we have generated
“real” observations every ΔT1 = 10 or ΔT2 = 3 steps, respectively.

In the rest of this paper we present the results from the case study of data
assimilation to the Handy model and arbitrarily selected fragments of its behav-
ior (Fig. 2). We have tested our approach on other datasets, from which the same
conclusions can be drawn. Some results and all numerical details can be found
in the MSc thesis [31].

Fig. 2. The behaviour of the Handy model as the ground-truth model in selected time
intervals. A fragment of the model time evolution is divided into three intervals (A,
B, C), wherein the middle one B is used for generation of the training data while the
remaining two for the test data.
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2.3 Sensitivity Analysis

In many data assimilation tasks, knowledge of the most sensitive model param-
eters and dynamic variables, can help to give a faster and more precise search of
the parameter space. This is particularly true if expert knowledge is unavailable.
In the context of Supermodeling, the most sensitive dynamic variable has to be
identified for use in synchronizing the sub-models. To determine the most signif-
icant dynamical variable, we performed Sobol Sensitivity Analysis (SA) [27,34].
Herein, we use the society quality measure:

Q =
w

xC + xE
, (4)

to calculate the Sobol indices, where xC , xE are the populations of Commoners
and Elites respectively, and w is the society’s overall Wealth. We estimated
that Elites is the most sensitive dynamical variable, also because it is closely
connected with the most sensitive parameter, βE , the Elites’ birth rate (see
Table 2). However, the SA procedure might be skipped if the most sensitive
variable is already known, e.g., due to a priori possession of expert knowledge.

Table 2. The Sobol sensitivity indices S1 and ST for the parameters and dynamical
variables of the Handy model (a greater value of the index means higher sensitvity).

Parameter Description S1 ST

αm Normal (minimum) death rate 2.4 × 10−2 3.0 × 10−1

αM Famine (maximum) death rate 1.6 × 10−3 4.6 × 10−2

βC Commoners birth rate 8.3 × 10−2 4.6 × 10−1

βE Elites birth rate 1.1 × 10−1 4.8 × 10−1

s Subsistence salary per capita 3.3 × 10−3 3.1 × 10−2

ρ Threshold wealth per capita 5.8 × 10−4 2.1 × 10−3

γ Regeneration rate of nature 2.5 × 10−3 3.2 × 10−2

λ Nature carrying capacity 5.8 × 10−3 1.0 × 10−1

κ Inequality factor 5.9 × 10−2 4.2 × 10−1

δ Depletion (production) factor 2.4 × 10−2 2.7 × 10−1

Variable (initial value) Description S1 ST

xC(0) Commoners population 1.9 × 10−3 1.0 × 10−2

xE(0) Elites population 4.5 × 10−3 2.1 × 10−2

y(0) Nature 4.5 × 10−7 5.9 × 10−9

w(0) Accumulated wealth 2.6 × 10−3 3.2 × 10−4

2.4 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is not a single algorithm, but rather
a very wide class of algorithms and methods that employ Bayesian inference
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for data assimilation purposes [7,14]. The main novelty of these methods is in
their correct estimation of parameters even when the likelihoods are intractable
[36]. In ABC algorithms, the functions of likelihood are not calculated, but the
likelihood is approximated by the comparison of observed and simulated data
[36].

Let us assume, that θ ∈ R
n, n ≥ 1 is a vector of n parameters and p(θ) is a

prior distribution. Then the goal of ABC approach is to approximate the poste-
rior distribution p(θ|D) where D is the real data [1]. The posterior distribution
is approximated in the following way:

p(θ|D) ∝ f(D|θ)p(θ), (5)

where f(D|θ) is the function of likelihood of θ given the dataset D [35].
Among the variety of different approaches, one of the most useful is the ABC-

SMC algorithm that uses the sequential Monte Carlo (M-C) method [7]. The
major novelty, in comparison with previous methodologies (e.g., ABC-MCMC
[24]), is the introduction of a set of particles θ(1), . . . , θ(S) (parameter values
sampled from a prior distribution p(θ)), used to produce a sequence of interme-
diate distributions p(θ|d(D, D̃) ≤ εi) (for i = 1, . . . , T − 1) [36]. The particles’
M-C propagation stops when a good representation of the target distribution
(p(θ|d(D, D̃) ≤ εT )) is achieved. The set of error tolerance thresholds is chosen
to be a decreasing sequence ε1 > · · · > εT ≥ 0 that ensures the convergence
of the intermediate probability distributions (of the parameters values) to the
target ones. In the ABC-SMC algorithm, the parameter perturbation kernel can
be simulated by the random walk procedure, with Gaussian or uniform functions
[36]. Simultaneously, an adequately large set of particles will allow the Markov
process to avoid low-probability regions and local minima in the parameter space.

2.5 ABC-SMC Training Results

For training the Handy model we use the ABC-SMC algorithm assuming that:

1. the number of particles, S = 100;
2. we fix the training time, tmax;
3. we set intervals of possible values of parameters to be ±10% of exact (ground

truth) ones (see Table 1);
4. the cost function is the root-mean-square error (RMSE).

Thus we assume that we know some approximate values of parameters. However,
in the future we should also investigate the robustness of ABC-SMC and Super-
modeling against prior selection of the values of the sub-models’ parameters. In
Table 3A, and Table 3B we present the training time (CPU time) and the RMSE
errors of predictions for the Handy model for two pre-defined training error goals:
RMSE= 50 and 100, respectively. The timings were measured for the layout pre-
sented in Fig. 2. We observe more than a ten-fold increase of the computational
time when RMSE training precision goes from 100 to 50 (in dimensionless units)
for sparsely sampled data. But for denser sampling, this increase is only two-fold.
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We do not observe, in either case, any increase of the overall prediction quality
with training precision. Meanwhile, one can notice signs of overfitting. A small
increase is observed only for forward prediction (C). However, this improvement
does not compensate the substantial decrease in backward prediction (A) qual-
ity. Summing up, both decreasing the training error and increasing the sampling
frequency may lead to overfitting, so careful design is needed.

Table 3. The averaged CPU times and the prediction accuracies for the ABC-SMC
training, to achieve given errors (RMSE = 50 and 100) with the ground truth training
data. Results for sparser ΔT1 = 10 and denser ΔT2 = 3 sampled data.

Sampling ΔT1 = 10 ΔT2 = 3

Training

error

[RMSE]

Training

time [s]

Overall

prediction

[RMSE]

Backward

prediction

[RMSE]

Forward

prediction

[RMSE]

Training

time [s]

Overall

prediction

[RMSE]

Backward

prediction

[RMSE]

Forward

prediction

[RMSE]

50.0 1894.89 1387.58 1337.08 1369.54 248.51 1402.46 1303.10 1436.00

100.0 162.29 1303.83 1012.57 1456.40 111.74 1335.02 915.79 1559.29

3 Supermodeling the Handy System

3.1 Supermodeling by Data Assimilation Between Models

The Supermodeling approach is described in detail in the Introduction. Below
we enumerate the main steps.

1. Create a small number M of instances (the sub-models) of the baseline model,
initializing their parameters with a rule-of-thumb and/or using expert knowl-
edge.

2. Pretrain every sub-model μ = 1, . . . ,M by using a classical DA procedure on
the samples from Fig. 2B. New parameter sets will thus be generated for each
sub-model.

3. Create the Supermodel by coupling the ODEs from Eqs. 3 through the most
sensitive dynamical variable, as in Eq. 1, but with Ki = 0 and Ci

μν = 0 for
i �= 1 (Fig. 1a).

4. Train the coupling factors Ci
μν of the Supermodel on the sampled data from

Fig. 2B, according to the scheme sketched below, until either the RMS error
relative to GT falls below a designated value or the elapsed training time
reaches tmax.

5. The Supermodel trajectory is defined by averaging the sub-models states
(Eq. 2).

3.2 Training Details

Unlike the classical DA training scheme described in Sect. 2.5, we fix not only
the maximum time tmax but also the time needed for pretraining each of the sub-
models tsub. We pretrain M = 3 sub-models with ABC-SMC (one by one, each
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for a time tsub) and couple them via the most sensitive variable xE , to form the
Supermodel. We also restrict the coupling coefficients to a fixed interval [0, 0.5]
(as in [12]). Furthermore, to speed-up the DA process, we divide the training data
from Fig. 2B into five subintervals (mini batches) of the same length. Finally, we
train the Supermodel with the ABC-SMC algorithm on the sequence of mini
batches one after another for the estimated time tsumo = tmax − tsub (where
tsub is the mean time of pretraining the sub-models). Because the processes of
pretraining the sub-models are independent, we have assumed that they are
calculated in parallel. Then the normalized time for the Supermodel training
will be equal to tmax.

We have performed the computations on the Prometheus supercomputer
located in the ACK Cyfronet AGH UST, Krakow, Poland. We have used just
one node, that consists of 8 CPUs (Intel Xeon E5-2680 v3, 2.5 GHz) with 12
cores each, giving 96 computational cores in total.

3.3 Results

Here we compare the Supermodeling scheme with the ABC-SMC DA algorithm
with four different time budgets tmax: 14, 50, 100 and 250 s. Toward this end,
we have constructed several Supermodels, each consisting of M = 3 differently
initialized sub-models. Each sub-model was pretrained for a given short time
period tsub < tmax. We have selected several combinations, constructing four
Supermodels which differ in the sub-models’ pretraining time. We have repeated
Supermodel training and testing procedure ten times for each pair (tmax, tsub)
and for various parameter initializations. Next, we have removed zeroth and tenth
10-quantiles from the results. The RMSE values on the test set (backward predic-
tion, forward prediction and overall prediction) were averaged and the standard
deviation was calculated. We present these averages for both sparsely (ΔT1 = 10)
(see Table 4A) and densely (ΔT2 = 3) sampled datasets (see Table 4B).

As shown in Table 4A and Table 4B, the forward prediction RMSE error is a
few times smaller for two-stage Supermodeling than for the classical parameter
estimation with the ABC-SMC algorithm, for both sparse and denser datasets,
and for all time regimes. Furthermore, with the ABC-SMC algorithm, longer
learning appears to cause overfitting. It is important to mention that the ABC-
SMC algorithm reaches the minimum RMSE after about 70 s of training. (The
minimum is flat up to 120 s and afterwards RMSE grows due to overfitting.)
Therefore, for Supermodel 70, composed of sub-models pretrained in 70 s, we
obtain a radically lower RMSE, as compared to that for ABC-SMC, as total
training time increases.

Turning attention to backward prediction, we note that although the Super-
modeling approach is still convincingly better for overall prediction (except in
one case) than the classical DA algorithm, the advantage for backward predic-
tion is not so radical as for forward prediction. This bias can be clearly seen in
Fig. 3 and Fig. 4, particularly, for the normalized RMSE plot. This behaviour
is not seen with the ABC-SMC algorithm. It is the result of the specific train-
ing procedure we employed for the Supermodeling algorithm. The algorithm is
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Table 4. RMS errors for the ABC algorithm and for the supermodel, for sparser (A)
ΔT1 = 10, and denser (B) ΔT2 = 3 datasets. Supermodel {X} is the Supermodel with
the sub-model pretraining time tsub set to X seconds. The better result for each case is
shown in bold.

Sampling ΔT1 = 10 ΔT2 = 3

Time

regime

[s]

Method Overall

prediction

[RMSE]

Backward

predic-

tion

[RMSE]

Forward

prediction

[RMSE]

Method Overall

prediction

[RMSE]

Backward

predic-

tion

[RMSE]

Forward

predic-

tion

[RMSE]

14 s ABC-SMC 4586.38 4273.77 4879.00 ABC-SMC 5708.75 5181.07 6191.62

Supermodel 10 1897.73 2497.55 982.33 Supermodel 12 2453.95 3128.33 1502.42

50 s ABC-SMC 1238.31 1213.21 1262.92 ABC-SMC 2543.26 2436.65 2645.58

Supermodel 35 1710.62 2350.98 570.37 Supermodel 20 1959.12 2652.73 799.61

100 s ABC-SMC 1153.41 947.22 1327.96 ABC-SMC 1315.0 930.0 1510.0

Supermodel 70 665.46 762.62 551.45 Supermodel 60 855.24 1098.18 506.83

250 s ABC-SMC 1380.90 1511.72 1236.32 ABC-SMC 1410.4 1355.1 1401.0

Supermodel 70 466.33 548.09 366.78 Supermodel 70 600.08 795.76 294.87

trained in five mini-batches starting from the left-hand side of the training inter-
val (Fig. 2B). Consequently, the fitting accuracy is highest at the right-hand side
of the B interval. At the last training point (t = 600) the standard deviation is
equal to 0, while at the first point (t = 450) it is distinctly greater.

In summary, we conclude that the Supermodeling scheme results in predic-
tions closer to the actual time series and with lower uncertainties, especially, for
the forward prediction task. We have observed similar effects for other data, as
presented in [31].

4 Discussion and Related Work

Classical data assimilation procedures were formulated on the basis of variational
and Bayesian frameworks [2,26]. The existing DA algorithms can be divided onto
two main groups: (1) sequential-Monte-Carlo-based (e.g., [3]) and (2) Kalman-
filter-based methods (e.g., [28])2, which have formed the core of many other DA
algorithms (e.g., [5]). Over the years, the majority of research in this direction
was focused primarily on the improvement of the predictions’ accuracy on tasks
ranging from small-scale problems (e.g. [20]) to weather prediction [18]. Recently,
more and more studies have attempted to speed-up data assimilation methods
and to enable their use with extremely complex multi-scale models (e.g., [19,26]).

The greatest challenge that arises with sequential Monte-Carlo-based meth-
ods (i.e., the ABC-SMC algorithm), is the requirement that a very large number
of simulations need be performed, especially for the inverse problem of estimating
parameters. That is, parameters can be adjoined to the model state and treated
as variable quantities to be estimated - the second level of abstraction in the
use of DA. But the number of required simulations increases exponentially with
the number of model parameters (see e.g. [17]). To outperform the classical DA

2 Kalman filtering is equivalent to the popular 4D-Var algorithm, for a perfect model.
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Fig. 3. The results for sparsely (ΔT1 = 10) sampled data and tmax = 14 s. Compari-
son between the value of Commoners predicted by the ABC-SMC method (grey), the
Supermodeling (blue) and the ground truth (points), where lines are averaged predic-
tions, while the boundaries of the shaded areas are at mean ± one standard deviation
for each ground truth point: (Top) actual; (Bottom) normalized to the value of the
ground truth. (Color figure online)

schemes, the current studies usually introduce either small algorithmic nuances
(i.e. [6,15]) or algorithm implementations that support parallelization (i.e. [19]).
For Kalman-filter-based data assimilation, the studies propose faster implemen-
tations of the algorithms [26] or hybridization with the ABC-SMC method (e.g.
[8]). However, the aforementioned optimization approaches do not change the
basic paradigms or improve DA performance radically.

In the era of deep learning, formal predictive models are often replaced (or
supplemented) with faster data models for which the role of data assimilation in
estimating parameters is played by the learning of black box (e.g., neural net-
work) parameters. In general, learning a black box is a simpler procedure than
data assimilation to a formal model. A very interesting data modeling concept,
very competitive with formal models in the prediction of spatio-temporal pat-
terns in chaotic systems, is that of Echo State Machines [16,22], particularly the
Reservoir Computing (RC) approach [23]. No prior model based on physics or
other knowledge is used.

In contrast, the Supermodeling paradigm, unlike the purely data-based RC
and DA approaches, relies on the knowledge already encoded in formal mod-
els and on the partial synchronization of the chosen imprecise sub-models to
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Fig. 4. The results for densely sampled data and tmax = 14 s. Comparison between the
value of Elites predicted by the ABC-SMC method (grey), the Supermodeling (green)
and the ground truth (points), plotted as in Fig. 3 (Color figure online)

supplement the knowledge contained in any one sub-model. The original type of
supermodel relied on synchronization of the sub-models by nudging them to one
another, while simultaneously nudging them to the GT data [4]. The inter-model
nudging effectively gives inter-model data assimilation, with nudging coefficients
that can be estimated based on overall error relative to truth. Thus standard DA
methods, having been employed first to estimate states, then to adjust a model
itself by estimating its parameters, are now used to estimate inter-model cou-
plings in a suite of models - an even higher level of abstraction in the application
of DA [9,10]. This type of Supermodeling was successfully used for ensembling
toy dynamical models [4,10] like Lorenz systems (Lorenz 63, Lorenz 84) and for
combining simplified climate models (see e.g., [37]).

Recent results showed that the Supermodeling approach can also be applied
in modeling complex dynamical biological processes such as tumor evolution. In
[13] we demonstrated that in a Supermodel of melanoma the tumor evolution
can be controlled by the sub-models’ coupling factors C, producing a few quali-
tatively different tumor evolution patterns observed in reality. Recently, we have
successfully assimilated ground truth data to the supermodel, using genetic algo-
rithms [33]. However, due to computational complexity and the need for heavy
High-Performance Computing, we are now implementing the more efficient pro-
cedure described in this paper.
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5 Conclusions and Future Work

Herein we propose a novel metaprocedure for computational modeling, rooted in
an extended use of data assimilation. It leads to a radical decrease in the num-
ber of free parameters, as compared to those in the source dynamical model,
by ensembling a few imperfect sub-models - i.e., inaccurate and weak solu-
tions of a classical DA-based pre-training scheme – within a single Supermodel.
The case study demonstrates that due to the sub-models’ synchronization, a
small number of the Supermodel metaparameters can be estimated, based on
assimilated observations, much faster than the full set of parameters in the
overparametrized source model. Consequently, “effective parameter estimation”
based on Supermodeling can produce more accurate predictions than those that
could be obtained using traditional data assimilation methods to estimate a
single model’s parameters in reasonable time. It is crucial to mention that DA-
based Supermodeling can be used with any given data assimilation procedure.
The ABC-SMC algorithm was used here as the baseline classical DA method.
Supermodeling plays only the role of the meta-framework dedicated to acceler-
ating the modeling process.

We realize that our results can be treated as preliminary. A specific model
was considered, and data assimilation was run on optimally selected working
regimes and synthetic data. However, taking into account previous experience
and more complicated phenomena simulated successfully by Supermodeling, one
can expect that this procedure has wider prospects. Of course, there are still
many unresolved issues, for example: how to generate efficiently the best sub-
models and how many? How robust is the Supermodel against variations in
noise, uncertainity and number of data samples? Herein we have assumed that
the sub-models were generated in parallel because the pretraining of each can be
performed independently. However, the total CPU time still increases propor-
tionally with the number of sub-models. One can imagine that the sub-models
could instead be generated by a single ABC-SMC procedure during the pre-
training phase, by selecting more than one of the best solutions along the way.
We plan to check this strategy in the very near future. We have taken as the
ground truth the exact results from the reference (baseline) model. It would be
worthwhile to check the quality of Supermodel predictions for disturbed data,
which better simulate real observations. We are also considering a case study
where the sub-models are simplfied versions of the baseline model (preliminary
results can be found in [31]). This way, the differences between the Supermodel
and the ground-truth simulator, could better reflect the differences between the
computational model and reality. Summarizing, the application of Supermodel-
ing can be an effective remedy to the curse of dimensionality problem, caused
by model overparameterization.
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