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Abstract
Purpose  Intensity domains are recommended when prescribing exercise. The distinction between heavy and severe domains 
is made by the critical speed (CS), therefore requiring a mathematically accurate estimation of CS. The different model 
variants (distance versus time, running speed versus time, time versus running speed, and distance versus running speed) 
are mathematically equivalent. Nevertheless, error minimization along the correct axis is important to estimate CS and the 
distance that can be run above CS (d′). We hypothesized that comparing statistically appropriate fitting procedures, which 
minimize the error along the axis corresponding to the properly identified dependent variable, should provide similar esti-
mations of CS and d′ but that different estimations should be obtained when comparing statistically appropriate and inap-
propriate fitting procedure.
Methods  Sixteen male runners performed a maximal incremental aerobic test and four exhaustive runs at 90, 100, 110, and 
120% of their peak speed on a treadmill. Several fitting procedures (a combination of a two-parameter model variant and 
regression analysis: weighted least square) were used to estimate CS and d′.
Results  Systematic biases (P < 0.001) were observed between each pair of fitting procedures for CS and d′, even when com-
paring two statistically appropriate fitting procedures, though negligible, thus corroborating the hypothesis.
Conclusion  The differences suggest that a statistically appropriate fitting procedure should be chosen beforehand by the 
researcher. This is also important for coaches that need to prescribe training sessions to their athletes based on exercise 
intensity, and their choice should be maintained over the running seasons.

Keywords  Running · Curve fitting · Linear model · Hyperbolic model · Exercise prescription · Intensity domains

Abbreviations
CP	� Critical power
CS	� Critical speed
d′	� Distance that can be run above critical speed
LS	� Least squares
s
V̇O

2
max

	� Speed associated with maximum oxygen 
consumption

PS	� Peak speed of the incremental test
WLS	� Weighted least squares

Introduction

Exercise intensity, one of the most important criteria for 
obtaining the desired metabolic stimulus and inducing spe-
cific adaptations to training (MacInnis and Gibala 2017), is 
often prescribed based on the percentage of the maximal rate 
of oxygen uptake or maximal heart rate (American College 
of Sports Medicine 2000; Roy et al. 2018). However, there 
is a large variability in the characteristics of the metabolic 
responses and the duration of exercise at a common per-
centage of the maximum between individuals. For example, 
Fontana et al. (2015) showed that the lactate threshold as 
well as critical power/speed (CP/CS) can occur at different 
percentages of the maximum oxygen consumption between 
individuals. Therefore, the control of exercise intensity is 
not guaranteed when the prescription is based on percent-
ages of maximum values (DiMenna and Jones 2009; Lansley 
et al. 2011). Instead, Iannetta et al. (2020) recommended the 
use of a model that considers exercise intensity domains for 
exercise prescription. These different intensity domains can 

Communicated by Guido Ferretti.

Davide Malatesta and Fabio Borrani authors contributed equally 
to this work.

 *	 Aurélien Patoz 
	 aurelien.patoz@unil.ch

1	 Institute of Sport Sciences, University of Lausanne, 
1015 Lausanne, Switzerland

2	 Research and Development Department, Volodalen Swiss 
Sport Lab, Aigle, Switzerland

http://orcid.org/0000-0002-6949-7989
http://orcid.org/0000-0003-3905-5642
http://orcid.org/0000-0002-7672-3307
http://crossmark.crossref.org/dialog/?doi=10.1007/s00421-021-04675-8&domain=pdf


2028	 European Journal of Applied Physiology (2021) 121:2027–2038

1 3

be defined based on the oxygen uptake kinetics (Whipp and 
Mahler 1980), maximum lactate steady-state (Iannetta et al. 
2018), ventilatory threshold (Wasserman et al. 1973), or CP/
CS (Vanhatalo et al. 2007; Jones et al. 2019).

Exercising above or below such thresholds leads to con-
siderable differences in the physiological responses (Black 
et al. 2017). Therefore, training across disparate specific 
work intensities spanning different intensity domains is 
important to improve athletic performance. The CP/CS 
concept is widely used to evaluate the threshold intensity 
associated with the lower extremity of the severe intensity 
domain (Galán-Rioja et al. 2020; Jones et al. 2019). There-
fore, having an accurate estimation of CP/CS, i.e., a very 
good approximation of the critical intensity but not the criti-
cal intensity per se, is important. This is usually obtained 
using the relationship between power/speed and time to 
exhaustion.

This relationship has been characterized with a number of 
models that differ in their mathematical form and number of 
parameters (Monod and Scherrer 1965; Moritani et al. 1981; 
Whipp et al. 1982; Morton 1996, 1986; Wilkie 1980; Peron-
net and Thibault 1989). The original linear model formula-
tion was proposed by Monod and Scherrer (1965) and relates 
the work performed during an exhaustive bout and the actual 
time to exhaustion through two parameters: the highest sus-
tainable oxidative metabolic rate and the fixed anaerobic 
work capacity. The first parameter, known as CP (Monod and 
Scherrer 1965) or threshold of fatigue (Bigland-Ritchie and 
Woods 1984), separates power outputs for which exercise 
tolerance is predictably limited (exercise > CP) from those 
that can be sustained for longer periods (exercise < CP). The 
second parameter represents the energy reserve located in 
the muscle that can be utilized above CP as fast or as slow 
as needed (i.e., the sustainable work of exercise above that 
metabolic rate) (Monod and Scherrer 1965). Later, some 
authors related power and time to exhaustion by dividing 
the variables of the original model by the exercise duration 
(Poole et al. 1986; Gaesser and Wilson 1988; Housh et al. 
1989). As exercise duration is the dependent variable and 
power the independent variable when considering bouts of 
fixed power, Gaesser et al. (1990) proposed expressing this 
exercise duration as a function of the power, which led to 
the well-known hyperbolic model (Morton and Hodgson 
1996). Another model variant, proposed by Morton (2006), 
expresses the work performed as function of power, since 
this work (power multiplied by time to exhaustion) is also a 
dependent variable. However, this model has, to our knowl-
edge, never been used so far.

A straightforward transposition of CP to running has 
been studied by several researchers (Hughson et al. 1984; 
Housh et al. 1991, 2001; McDermott et al. 1993). By anal-
ogy to the power versus time relationship, the running 
speed and time variables are related through critical speed 

(CS; the running analogue of CP for cycle ergometry) and 
anaerobic running capacity (d’; the running analogue of 
the anaerobic work capacity) (Hill and Ferguson 1999; 
Housh et  al. 1991; Hughson et  al. 1984; Pepper et  al. 
1992). The latter was more recently and accurately defined 
as the distance that can be run above CS (Jones and Van-
hatalo 2017). It implicitly follows that the work performed 
during an exhaustive bout becomes the distance travelled. 
These different two-parameter model variants are still 
extensively used to assess CS and d′ (for review see Jones 
and Vanhatalo (2017) and Jones et al. (2019)).

The estimation of CS and d′ are usually obtained from 
data provided by the critical speed test procedure (Poole 
et al. 1988), where the number and duration of the exhaus-
tive runs were shown to play an important role in these 
estimations (Bishop et al. 1998; Mattioni Maturana et al. 
2018). Based on the data provided by this test, CS and 
d′ could be estimated using a regression fitting routine. 
In general, the least squares (LS) loss function is used to 
minimize the error. In that case, the dependent variable 
must be observed with additive error (white noise) while 
the independent variable does not (Morton and Hodgson 
1996). As heteroscedasticity is taking place (a smaller 
error is most likely to occur in the measurement of time to 
exhaustion for high running speeds, i.e., for short times to 
exhaustion (McLellan and Skinner 1985; Poole et al. 1988; 
Faude et al. 2017)), Morton and Hodgson (1996) suggested 
using weighted LS (WLS) in the regression analysis with 
weights proportional to the inverse of the variance of time 
to exhaustion, where the variance is itself proportional to 
the time to exhaustion.

The different model variants (distance versus time, run-
ning speed versus time, time versus running speed, and 
distance versus speed) are mathematically equivalent. 
Nevertheless, error minimization along the correct axis is 
important to estimate CS and d′, as already highlighted but 
not yet investigated by Gaesser et al. (1995). Therefore, the 
purpose of this study was to compare the estimations of CS 
and d′ obtained using statistically appropriate fitting proce-
dures (which minimize the error along the axis correspond-
ing to the properly identified dependent variables (Vinetti 
et al. 2020)), and statistically inappropriate fitting proce-
dures (which do not minimize the error along the axis that 
contain the dependent variable) but are frequently used in 
the literature (Jones et al. 2019; Jones and Vanhatalo 2017). 
These estimations were obtained using several combinations 
of a linear two-parameter model variant and a regression 
analysis (fitting procedure). We hypothesized that the com-
parison of statistically appropriate fitting procedures should 
provide similar estimations of CS and d′. On the other hand, 
different estimations of CS and d′ should be obtained when 
comparing a statistically appropriate with a statistically inap-
propriate fitting procedure.
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Materials and methods

Participant characteristics

Sixteen male runners participated in the present experi-
ment (age: 25.6 ± 3.9 years old; height: 1.79 ± 0.05 m; 
body mass: 69.2 ± 5.3 kg; speed associated with maximum 
oxygen consumption ( s

V̇O
2
max

 ): 18.2 ± 1.4 km/h; maximum 
oxygen consumption: 63.0 ± 4.9 ml/min/kg). For study 
inclusion, participants were required to be in good self-
reported general health with no symptoms of cardiovas-
cular disease or major coronary risk factors, no current or 
recent lower-extremity injury that could prevent them from 
giving 100% of their capacity during the test and to meet 
a certain level of running performance. More specifically, 
runners were required to have an s

V̇O
2
max

 greater or equal 
to 16 km/h.

Experimental procedure

Each participant completed five experimental sessions 
interspersed by at least two days in the laboratory. All 
participants were advised to avoid strenuous exercise the 
day before a test but to maintain their usual training pro-
gramme otherwise. During the first session, participants 
completed a maximal incremental aerobic test on a tread-
mill (Arsalis T150—FMT-MED, Louvain-la-Neuve, Bel-
gium). This test consisted of a 10-min warm-up at 10 km/h 
followed by an incremental increase in the running speed 
of 1 km/h every two minutes until exhaustion. This test 
was used to determine the peak speed (PS) of the incre-
mental test of each participant. PS is defined as the running 
speed of the last fully completed increment ( s

V̇O
2
max

 ) plus 
the fraction of time spent in the following uncompleted 
increment ( � ) multiplied by the running speed increment 
(∆s = 1 km/h) (Kuipers et al. 2003): PS = s

V̇O
2
max

+ 𝛼Δs.

The other four tests were performed in a randomized 
order and consisted of exhaustive runs at a given percent-
age of the participant’s PS (90, 100, 110, or 120%). These 
tests were as follows: after a 10-min warm-up at 10 km/h 
and a 5-min rest period, the running speed was increased 
to a given percentage of PS, and the participant had to 
maintain the pace until exhaustion. The time to exhaustion 
was collected for each of the four sessions. No informa-
tion about the timings or running speed was given to any 
participant during any of the five experimental sessions. 
All participants were familiar with running on a treadmill.

Mathematical modelling

The estimations of CS and d′ were obtained from the 
following four different but mathematically equivalent 
equations

where t , s, and d stand for time to exhaustion, running speed, 
and distance, respectively. Equation 4 represents the orig-
inal linear model of Monod and Scherrer (1965). Whipp 
et al. (1982) and Gaesser et al. (1990) proposed the models 
given by Eqs. 3 and 1, respectively. Equation 2 denotes the 
distance as function of running speed model proposed by 
Morton (2006).

Data analysis

Four different fitting procedures were used on the data 
set obtained for each subject to estimate CS and d′. More 
specifically, t(s) (Eq. 1) using WLS and d(s) (Eq. 2) using 
WLS were evaluated. These first two fitting procedures are 
statistically appropriate. The two other fitting procedures 
that have been evaluated were s(t) (Eq. 3) using LS and 
d(t) (Eq. 4) using LS. These two fitting procedures are 
statistically inappropriate but are frequently used in the 
literature (Jones et al. 2019; Jones and Vanhatalo 2017). 
In the first case, time to exhaustion should be considered 
as the dependent variable and not speed. In the second 
case, both distance and time to exhaustion should be 
considered as dependent variables and not only distance. 
However, the errors of both variables are correlated, i.e., 
the error of distance is given by the product of speed and 
the error of time to exhaustion variable, since speed does 
not carry any error. This is known as endogeneity and, 
to the best of our knowledge, there exists no regression 
method that can handle such case (Antonakis et al. 2014). 
Weights were applied to corresponding dependent vari-
ables (time to exhaustion or distance) only in the statisti-
cally appropriate fitting procedures. Error minimization 
was performed iteratively using the Levenberg–Marquardt 
algorithm (Levenberg 1944; Marquardt 1963) for (W)LS 
regression. The standard error of the estimate (SEE) in 

(1)t(s) =
d�

s − CS

(2)d(s) = s
d�

s − CS

(3)s(t) =
d�

t
+ CS

(4)d(t) = d� + CSt
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absolute numbers for both CS and d′, the combined SEE 
(%SEE), i.e., the sum of SEE of CS and d′ transformed to 
percent units, and the residual standard error (RSE) of the 
fitting procedure were computed to assess the quality of 
the fit. Data analysis was performed using Python (version 
3.7.4, Python Software Foundation. Available at http://​
www.​python.​org).

Statistical analysis

Descriptive statistics are presented using mean ± standard 
deviation (SD) unless otherwise indicated. The normal-
ity of the data was confirmed through the Shapiro–Wilk 
test. Bland–Altman plots were constructed to examine the 
presence of systematic and proportional bias on CS and 
d′ estimated from two different fitting procedures (Bland 
and Altman 1995; Atkinson and Nevill 1998). System-
atic bias was also identified by a significant difference 
obtained from a paired two-sided Student’s t-test. After 
confirming no correlation amongst the residuals using the 
Durbin-Watson test (Durbin-Watson statistic between 1.5 
and 2.5), the proportional bias (heteroscedasticity) was 
identified by a significant slope of the regression line. In 
addition, the estimations of CS and d′ obtained from the 
two statistically appropriate fitting procedures as well 
as from a statistically appropriate and both statistically 
inappropriate fitting procedures were compared using 
one-way repeated measures ANOVA (RM-ANOVA) with 
Mauchly’s correction for sphericity and employing Holm 
corrections for pairwise post hoc comparisons. Statisti-
cal analysis was performed using Jamovi (version 1.0.8, 
[Computer Software], retrieved from https://​www.​jamovi.​
org) and R (version 3.5.0, The R Foundation for Statistical 

Computing, Vienna, Austria) with a level of significance 
set at P ≤ 0.05.

Results

Table 1 depicts the time to exhaustion corresponding to the 
four exhaustive runs performed at 90, 100, 110, and 120% 
of the participant’s PS.

Table 2 depicts the estimations of CS and d′ obtained 
from the two statistically appropriate [ t(s) using WLS and 
d(s) using WLS] and the two statistically inappropriate 
but frequently used [ s(t) using LS and d(t) using LS] fit-
ting procedures together with their corresponding %SEE 
and RSE. Note that as the units of the residual sum of 
squares depend on the fitting procedure itself, the RSE 
cannot be compared between the different fitting proce-
dures employed. The smallest to largest estimations of CS 
were given by t(s) using WLS and d(s) using WLS (same 
CS), d(t) using LS, and s(t) using LS, while those for d′ 
were ordered as s(t) using LS, d(t) using LS, d(s) using 
WLS, and t(s) using WLS (Table 2).

Comparison between statistically appropriate [ t(s) 
using WLS and d(s) using WLS] fitting procedures

Bland–Altman plots comparing statistically appropriate 
fitting procedures for both CS and d′ are depicted in Fig. 1, 
while Table 3 reports their systematic and proportional 
biases.

Table 1   Means ± standard deviations of the time to exhaustion corresponding to the four exhaustive runs performed at 90, 100, 110, and 120% of 
the participant’s peak aerobic speed (PS)

Running speed (%PS) 90 100 110 120
Time to exhaustion (min) 14.8 ± 2.57 5.94 ± 1.21 2.78 ± 0.78 1.68 ± 0.50

Table 2   Means ± standard deviations of the critical speed (CS) and 
distance that can be run above CS (d′) and their corresponding stand-
ard error of estimate (SEE, in parenthesis) obtained from statistically 
appropriate [ t(s) using weighted least squares (WLS) and d(s) using 

WLS] and statistically inappropriate [ s(t) and d(t) both using LS] fit-
ting procedures together with the combined SEE (%SEE), i.e., the 
sum of SEE of CS and d′ transformed to percent units, as well as the 
residual standard errors (RSE)

Statistically appro-
priate

Fitting procedure CS (m/s) d′ (m) %SEE RSE

Yes t(s) using WLS 4.39 ± 0.41 (0.03 ± 0.01) 226.0 ± 57.0 (20.3 ± 8.0) 9.8 ± 3.4 37.0 ± 14.5
d(s) using WLS 4.39 ± 0.40 (0.03 ± 0.01) 222.3 ± 56.0 (19.8 ± 7.6) 9.7 ± 3.4 201.5 ± 79.3

No s(t) using LS 4.59 ± 0.43 (0.07 ± 0.02) 167.3 ± 46.2 (11.2 ± 4.3) 8.3 ± 2.6 0.11 ± 0.04
d(t) using LS 4.42 ± 0.39 (0.04 ± 0.02) 210.2 ± 50.5 (19.7 ± 7.7) 10.5 ± 3.9 34.4 ± 11.9

http://www.python.org
http://www.python.org
https://www.jamovi.org
https://www.jamovi.org
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Comparison between the statistically appropriate 
[ t(s) using WLS] and the two statistically 
inappropriate [ s

(

t
)

 and d(t) both using LS] fitting 
procedures

Bland–Altman plots comparing the statistically appropriate 
t(s) using WLS fitting procedure to the two frequently used 
but statistically inappropriate fitting procedures for both CS 
and d′ are depicted in Fig. 2, while Table 4 reports their 
systematic and proportional biases.

The comparison of the three fitting procedures using RM-
ANOVA yielded a significant main effect (P < 0.001) for 
both CS and d′. In addition, post hoc comparisons gave sig-
nificant differences between each pair of fitting procedures 
and for both CS and d′ (P ≤ 0.01). Notably, the pair [ t(s) 
using WLS, d(t) using LS] was the only comparison giving 
P values larger than 0.001 for CS, i.e., 0.01.

Comparison between the statistically appropriate 
[ d(s) using WLS] and the two statistically 
inappropriate [ s(t) and d(t) both using LS] fitting 
procedures

Bland–Altman plots comparing the statistically appropriate 
d(s) using WLS fitting procedure to the two frequently used 
but statistically inappropriate fitting procedures are depicted 
in Fig. 3, while Table 5 reports their systematic and propor-
tional biases.

The comparison of the three fitting procedures using RM-
ANOVA yielded a significant main effect (P < 0.001) for 
both CS and d′. In addition, post hoc comparisons yielded 
significant differences between each pair of fitting proce-
dures and for both CS and d′ (P ≤ 0.02). Notably, the pair 
[ d(s) using WLS, d(t) using LS] was the only comparison 
giving P values larger than 0.001 for CS and d’, i.e., 0.02 
and 0.006, respectively.

Discussion

Conventional statistical approaches demonstrated a system-
atic bias between each pair of fitting procedures for the esti-
mation of both CS and d′. These results were in line with 
the hypothesis that different estimations of CS and d′ should 
have been obtained when comparing a statistically appro-
priate with a statistically inappropriate fitting procedure. 
Although these findings seem to refute the hypothesis that 
similar estimations of CS and d′ should have been obtained 
when comparing statistically appropriate fitting procedures, 
the differences for these estimations between statistically 
appropriate fitting procedures were negligible.

As pointed out by Iannetta et al. (2020), coaches are rec-
ommended to prescribe exercise based on intensity domains. 

Fig. 1   Comparison between statistically appropriate fitting pro-
cedures. Bland–Altman plots comparing t(s) using weighted least 
squares (WLS) and d(s) using WLS for (i) critical speed (CS) and (ii) 
distance that can be run above CS (d′)

Table 3   Systematic bias ± random error (RE, i.e., 1.6 standard devia-
tion) and proportional bias ± residual standard error (RSE) for critical 
speed (CS) and distance that can be run above CS (d′) when compar-
ing statistically appropriate fitting procedures, i.e., t(s) using weighted 
least squares (WLS) and d(s) using WLS

Significant differences (P ≤ 0.05) are depicted in bold font

t(s) using WLS vs. d(s) using WLS

CS d′

Systematic bias ± RE
P

− 0.005 ± 0.001
 < 0.001

3.8 ± 0.8
 < 0.001

Proportional bias ± RSE
P

0.002 ± 0.001
0.12

0.02 ± 0.005
0.006
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To do so, one possibility is to estimate CS and use it as a 
limit between the heavy and severe intensity domains (Jones 
et al. 2019). Therefore, an accurate estimation of CS is 
required. There exist two statistically appropriate fitting pro-
cedures for the two-parameter model variants that allow us to 
estimate CS: t(s) using WLS and d(s) using WLS. The com-
parison of these two fitting procedures yielded significant 
systematic biases − 0.005 ± 0.001 m/s (0.018 ± 0.004 km/h) 
and 3.8 ± 0.8 m for CS and d′, respectively (P < 0.001). 
However, the bias for CS was less than treadmills’ speed 
resolution. Therefore, these differences could be assumed to 
be negligible when prescribing a training session based on 
exercise intensity because they would be practically mean-
ingless. Nonetheless, they could be due to the specific data 
set used in this study and could potentially be larger with 

another data set, other choices of running speeds, a larger 
number of exhaustive runs, or another underlying model 
(e.g., three-parameters or exponential). In addition, even 
though the estimated CS should be a very good approxi-
mation of the critical intensity but not the critical intensity 
per se, we suggest coaches to physiologically verify that the 
estimated CS represents the upper boundary of sustainable 
exercise. Moreover, there is a day-to-day variation in human 
performance and given the SEE of CS (0.03 ± 0.01 m/s or 
0.11 ± 0.04 km/h, Table 2), its confidence limits are about 
10% of its value. Therefore, it would be justified to prescribe 
exercise intensity outside these confidence limits to avoid 
being in a range of values that are uncertain due to measure-
ment error, which could be defined as the phase transition 
between heavy and severe intensity domains (Anderson et al. 

Fig. 2   Comparison between the 
statistically appropriate [ t(s) 
using weighted least squares 
(WLS)] and the two statistically 
inappropriate fitting procedures. 
Bland–Altman plots compar-
ing a t(s) using WLS and s(t) 
using LS and b t(s) using WLS 
and d(t) using LS for (i) critical 
speed (CS) and (ii) distance that 
can be run above CS (d′)

Table 4   Systematic bias ± random error (RE, i.e., 1.6 standard devia-
tion) and proportional bias ± residual standard error (RSE) for critical 
speed (CS) and distance that can be run above CS (d′) when compar-

ing t(s) using weighted least squares (WLS) with both s(t) using least 
squares (LS) and d(t) using LS

Significant differences (P ≤ 0.05) are depicted in bold font

t(s) using WLS vs. s(t) using LS t(s) using WLS vs. d(t) using LS

CS d′ CS d′

Systematic bias ± RE
P

− 0.20 ± 0.04
 < 0.001

58.7 ± 12.2
 < 0.001

− 0.04 ± 0.01
 < 0.001

15.8 ± 4.6
 < 0.001

Proportional bias ± RSE
P

− 0.05 ± 0.04
0.24

0.22 ± 0.11
0.06

0.03 ± 0.01
0.07

0.12 ± 0.03
 < 0.001
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2019). From a practical perspective, coaches could still pre-
scribe exercise intensity at CS, but should acknowledge that 
there might be a source of error, especially if no physiologi-
cal verification was performed.

The comparison between the statistically appropriate t(s) 
using WLS [or d(s) using WLS] and statistically inappropri-
ate d(t) using LS fitting procedures produced systematic but 
reasonably small biases for both CS (< − 0.04 ± 0.01 m/s; 

Fig. 3   Comparison between the statistically appropriate [ d(s) using 
weighted least squares (WLS)] and the two statistically inappropriate 
fitting procedures. Bland–Altman plots comparing a d(s) using WLS 

and s(t) using LS and b d(s) using WLS and d(t) using LS for (i) criti-
cal speed (CS) and (ii) distance that can be run above CS (d’)

Table 5   Systematic bias ± random error (RE, i.e., 1.6 standard devia-
tion) and proportional bias ± residual standard error (RSE) for critical 
speed (CS) and distance that can be run above CS (d′) when compar-

ing d(s) using weighted least squares (WLS) with both s(t) using least 
squares (LS) and d(t) using LS

Significant differences (P ≤ 0.05) are depicted in bold font

d(s) using WLS vs. s(t) using LS d(s) using WLS vs. d(t) using LS

CS d′ CS d′

Systematic bias ± RE
P

− 0.19 ± 0.04
 < 0.001

55.0 ± 11.3
 < 0.001

− 0.03 ± 0.01
 < 0.001

12.0 ± 3.9
 < 0.001

Proportional bias ± RSE
P

− 0.06 ± 0.04
0.21

0.20 ± 0.10
0.07

0.03 ± 0.01
0.07

0.11 ± 0.02
 < 0.001
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0.14 ± 0.04 km/h) and d′ (< 15.8 ± 4.6 m). These differ-
ences are quite small and could be assumed to be negli-
gible. The largest biases were obtained between the sta-
tistically appropriate t(s) using WLS [or d(s) using WLS] 
and statistically inappropriate s(t) using LS fitting pro-
cedures (CS: < −  0.20 ± 0.04  m/s or 0.72 ± 0.14  km/h, 
d′: < 58.7 ± 12.2 m). In this case, the observed differences 
could have an impact when prescribing a training session 
based on exercise intensity. Nonetheless, as previously men-
tioned already, the magnitude of all the observed differences 
could be due to the specific data set and could potentially 
be smaller or larger. Moreover, as all comparisons of fit-
ting procedures yielded systematic biases, it suggests that 
each fitting procedure produced specific estimations of CS 
and d′. Therefore, we encourage coaches to verify that the 
estimated CS coincide with the physiological CS and make 
small adjustments based on the observed performance.

The coefficient of determination is not a reliable measure to 
assess the goodness of fit when using WLS (Willet and Singer 
1988; Kvalseth 1985). Therefore, one possibility is to use the 
residual sum of squares or a parameter that depends on it, such 
as RSE. However, the units of RSE depend on the fitting pro-
cedure and, more specifically, on the choice of the vertical and 
horizontal axes for the model variant and on which axes the 
errors are being minimized, making it impossible to compare 
the RSE of different fitting procedures. Moreover, when the 
time to exhaustion is assumed to be the independent variable, 
a lower RSE is necessarily observed because the data points 
mostly lied in the region where there was a high difference 
between the measured and predicted data in the horizontal 
axis (time to exhaustion variable) but a small difference in the 
vertical axis (running speed or distance variable). Therefore, a 
lower RSE and thus a perception of a better fitting procedure 
is likely to be provided by assuming the running speed or dis-
tance as the dependent variable instead of the time to exhaus-
tion (Vinetti et al. 2020). In the case of distance as function 
of time, even if distance is indeed a dependent variable, error 
minimization only along the vertical axis (distance variable) 
is not statistically appropriate and there exists no regression 
method that can take into account the fact the errors are actu-
ally correlated. On the other hand, one could use %SEE and 
assume that the smallest %SEE provides the best fit quality 
(Triska et al. 2021). However, obtaining lower RSE or %SEE 
are not consistent with the experiment generating the data set 
but with the representation of the data set itself, as already 
pointed out by Vinetti et al. (2020). Therefore, based on these 
observations, we suggest deciding the choice of regression 
analysis and model variant beforehand. Moreover, this choice 
should be based on the specific data set (the sources of experi-
mental error) to lead to a statistically appropriate fitting pro-
cedure. Then, we suggest to physiologically verify that the 
estimated CS represents a very good approximation of the 
actual CS.

Heteroscedasticity of the dependent variable was explic-
itly depicted by Hinckson and Hopkins (2005) when using 
usual LS fitting procedure. Indeed, these authors demon-
strated systematic and nonuniform deviation from their mod-
els by showing the residuals as function of predicted values. 
In this study, the suggestion made by Morton and Hodgson 
(1996) to include weights to overcome heteroscedasticity 
was applied.

Practical applications

The preferred choice between model variants is not clear 
(Gaesser et al. 1990; Hill 1993) and researchers/coaches 
might be confused on which model variant to select and the 
corresponding regression analysis to apply based on their 
data set. Therefore, a methodology to select a statistically 
appropriate fitting procedure is provided. The following 
methodology specifically addresses running speed and dis-
tance, but any occurrence of these terms can be replaced by 
power and work, respectively. Moreover, special cases that 
need to be taken into account when dealing with power or 
work are explicitly mentioned. Furthermore, the methodol-
ogy is presented using WLS regression applied to the two-
parameter model variants. This methodology can be general-
ized to other choices of loss functions and more complicated 
(e.g., three-parameter or exponential) models.

First, an experiment that fixes running speed (independ-
ent variable: s) and measures time to exhaustion and dis-
tance (dependent variables: t and d) is considered (Fig. 4a). 
Special consideration exists in the case of extremely high 
power on an ergometer or when cycling outdoors (Vinetti 
et al. 2020; Maier et al. 2017). In such cases, power should 
be considered as a dependent variable and geometric mean 
regression should be employed. The recommendations on 
the choice of the regression analysis are as follows:

1.	 No regression analysis should be used with the models 
s(t) and s(d) [the inverse function of d(s) ] because in 
these cases, t and d, respectively, should be the depend-
ent variables, but they are not. In the case of extremely 
high power on an ergometer or when cycling outdoors, 
geometric mean regression should be used (Vinetti et al. 
2020).

2.	 WLS should be used with the models t(s) and d(s) with 
weights applied to t  and d , respectively. In the case of 
extremely high power on an ergometer or when cycling 
outdoors, geometric mean regression should be used 
(Vinetti et al. 2020).

3.	 No regression should be used with the models d(t) and 
t(d) [the inverse function of d(t) ] as the errors are cor-
related and no regression method exists to handle such 
case.
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Second, an experiment that fixes distance (independent 
variable: d) and measures time trial and running speed 
(dependent variables: t and s) is considered (Fig. 4b). The 
recommendations are as follows:

1.	 No regression analysis should be used with the models 
d(t) and d(s) because in these cases, t and s, respectively, 
should be the dependent variables, but they are not.

2.	 WLS should be used with the models t(d) and s(d) with 
weights applied to t and s , respectively.

3.	 No regression should be used with the models s(t) and 
t(s) as the errors are correlated and no regression method 
exists to handle such case.

Third, an experiment that fixes time (independent vari-
able: t) and measures running speed and distance (depend-
ent variables: s and d) is considered (Fig. 4c). The recom-
mendations are as follows:

1.	 No regression analysis should be used with the models 
t(s) and t(d) because in these cases, s and d, respectively, 
should be the dependent variables, but they are not.

2.	 WLS should be used with the models s(t) and d(t) with 
weights applied to s and d , respectively.

3.	 No regression should be used with the models d(s) 
and s(d) as the errors are correlated and no regression 
method exists to handle such case.

Of note, we did not consider WLS that estimates param-
eters based on an error minimization along the horizontal 
axis of a given model f (⋅) . The reason being that using WLS 
based on an error minimization along the horizontal axis is 
equivalent to applying the usual WLS regression on f (⋅)−1 , 
i.e., the inverse of the model variant. However, it should be 
pointed out that if f (⋅)−1 does not exist (the function is not 
invertible), then WLS based on an error minimization along 
the horizontal axis of the model variant f (⋅) should be used.

Finally, potential error in the model should be acknowl-
edged and a physiological verification that the estimated 
CS represents the upper boundary of sustainable exercise 
should be made. In addition, small adjustments based on the 
observed performance could be applied.

Methodological limitations

A few limitations to the present study are worth noting. First, 
no test–retest repeatability of time to exhaustion has been 
performed. However, even if repeatability was shown to have 

Fig. 4   Recommendations on the choice of regression analysis. a Time 
to exhaustion (dependent variable: t) is measured for a fixed running 
speed (s). Distance (d) is by induction a dependent variable. b Time 
trial and running speed (dependent variables) are measured for a 
fixed distance (independent variable). c Distance and running speed 
(dependent variables) are measured for a fixed time trial (independent 

variable). For sake of clarity, the models represented in the figures are 
not representative of the outcome of the measurements. They are only 
given to demonstrate where a regression method can be applied. WLS 
weighted least squares, CS critical speed, d′ distance that can be run 
above CS, CP critical power, W′ anaerobic work capacity
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up to 15% error (Laursen et al. 2007), correctly assigning 
variables being dependent on time to exhaustion, as the 
dependent variables, automatically takes into account the 
fact that they carry error. Nonetheless, familiarization was 
shown to increase reliability but tends to be quite unpracti-
cal for the participant (Triska et al. 2017). Second, no runs 
below, at, and above CS whilst assessing oxygen uptake 
responses to exercise were performed to physiologically 
verify that the estimated CS obtained with statistically 
appropriate fitting procedures represents the threshold inten-
sity associated with the lower extremity of the severe inten-
sity domain. Although this is beyond the aim of this study, 
future studies, using these runs, may determine it. Third, the 
selected percent of PS (90, 100, 110, and 120%) resulted in 
time distributions that were relatively unbalanced. There-
fore, the estimated CS might not represent the physiologi-
cal CS (Bishop et al. 1998; Mattioni Maturana et al. 2018). 
However, this did not affect the present study as the main 
goal was not to show that estimated and physiological CS 
coincide. Nevertheless, when using the estimated CS to pre-
scribe exercise intensity, a careful choice of percent of PS 
is important to make sure the estimated CS is a very good 
approximation of the physiological CS.

Conclusion

Systematic biases were observed between each pair of fitting 
procedures for the estimations of both CS and d′, though 
negligible when comparing statistically appropriate fit-
ting procedures. The observed differences suggest that a 
statistically appropriate fitting procedure should be chosen 
beforehand by the researcher. Indeed, even if these differ-
ences could be negligible when prescribing a training ses-
sion based on exercise intensity, they might vary depending 
on the data set or the underlying model. This statement is 
also particularly important for coaches using CS and d′ for 
prescribing training session intensity: the fitting procedure 
should be maintained over the running seasons. Moreo-
ver, we suggest coaches to physiologically verify that the 
estimated CS represents a very good approximation of the 
actual CS, to acknowledge the error in the model, and make 
adjustments when they seem necessary. In addition, this 
study provides a methodology to determine the statistically 
appropriate fitting procedures that can be considered based 
on a specific data set.
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