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Abstract: The human gut microbiota plays a dual key role in maintaining human health or induc-
ing disorders, for example, obesity, type 2 diabetes, and cancers such as colorectal cancer (CRC).
High-throughput data analysis, such as metagenomics and metabolomics, have shown the diverse
effects of alterations in dynamic bacterial populations on the initiation and progression of colorectal
cancer. However, it is well established that microbiome and human cells constantly influence each
other, so it is not appropriate to study them independently. Genome-scale metabolic modeling is a
well-established mathematical framework that describes the dynamic behavior of these two axes
at the system level. In this study, we created community microbiome models of three conditions
during colorectal cancer progression, including carcinoma, adenoma and health status, and showed
how changes in the microbial population influence intestinal secretions. Conclusively, our findings
showed that alterations in the gut microbiome might provoke mutations and transform adenomas
into carcinomas. These alterations include the secretion of mutagenic metabolites such as H2S, NO
compounds, spermidine and TMA (trimethylamine), as well as the reduction of butyrate. Further-
more, we found that the colorectal cancer microbiome can promote inflammation, cancer progression
(e.g., angiogenesis) and cancer prevention (e.g., apoptosis) by increasing and decreasing certain
metabolites such as histamine, glutamine and pyruvate. Thus, modulating the gut microbiome could
be a promising strategy for the prevention and treatment of CRC.

Keywords: microbiome; genome-scale metabolic model; community metabolic modeling; colorec-
tal cancer

1. Introduction

Cancer is generally known as a disease of the genome arising out of a combination
of genetic mutations, epigenetic modifications and altered signaling pathways. These
mutations occur diversely, sometimes with undetermined origins. However, some cancers
are associated with infectious agents, and some appear in tissues that are exposed to
microbiota (a set of microbial agents present in a specific environment) [1].

Microbial agents constitute about 90% of the cells in the human body, and it is es-
timated that there are 1014 bacteria, comprising 103 species, in the human colon. This
signifies that bacterial genes outnumber human genes in the human body [2–5]. Addition-
ally, the density of large intestinal bacteria is approximately 1010 times higher than that of
the small intestinal bacteria, and the risk of cancer in the large intestine is 12 times higher
than that that in the small intestine [6,7].

The transformation of adenoma into carcinoma tumors in colorectal cancer (CRC)
requires mutations in the cancer-driver genes, which normally takes up to 10 years, and
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additional mutations accelerate its progression. There is also a hypothesis that considers the
role of the microbiome in CRC, mostly adenomas. The driver–passenger hypothesis states
that driver bacteria cause this transformation by triggering DNA damage and persistent
inflammation. On the other hand, the tumor microenvironment provides another growth
site for opportunistic bacteria called passengers. This even suggests that some probiotic
bacteria may take advantage of the tumor microenvironment and prevent the progression
of cancer [8].

With the advent of high-throughput technologies, researchers can quantify molecular
changes at different cellular levels. These technologies can reveal the complete picture
of cell metabolic activity in one snapshot and can unveil the metabolic patterns and
function of cells, including the activities of enzymes, gene products, transporters and
chemical reactions. Therefore, they would be suitable tools for the metabolic profiling of
different cells, both to identify differences between organs and to distinguish metabolic
diseases [9–13].

Genome-scale metabolic models (GEMs) provide quantitative information about the
metabolism of large-scale systems [14]. Using GEMs and optimization methods, such as
flux balance analysis (FBA) or flux variable analysis (FVA), the metabolic flux rate for all
the reactions in the model can be predicted [15,16]. For deciphering the role of the entire
system and the complex relationships of a microbial community, community metabolic
modeling (CMM) is introduced [17]. Briefly, CMM is the combination of the ecological
model of the microbiota (presence in an environment) and their microbiota GEMs [18].
CMM can employ GEMs to examine the interactions between different microorganisms
and the cross-feeding in a population (the exchange of metabolites among microorganisms).
Different studies have assessed the effect of cross-feeding between host human cells and
environmental absorption using CMM. For example, Kumar et al. reconstructed CMM of
malnourished children’s gut microbiota by the integration of GEMs. This model revealed
a reduction in essential amino acid production by the gut microbiota in malnourished
children [19]. Another study investigated metabolic alterations following changes to
the gut microbiota composition in metformin-treated type 2 diabetes patients [20]. They
suggested that lipopolysaccharide synthesis, nucleotide sugar metabolism and amino acid
metabolism are susceptible to changes in gut microbes. The intestinal microbiota and
metabolic changes in CRC have been studied using metagenomics and metabolic data,
respectively [21,22]. Researchers have proposed some tumor-specific bacterial populations
and metabolite regulation in CRC. Kehan Xu et al. investigated the co-occurrence and
co-exclusion of bacterial species in the mucosa-associated microbiota of CRC tumors and
found potential bacterial biomarkers in the CRC tumor’s microbiota [23].

Additionally, previous studies have explored changes in the bacterial population and
their potential impact on CRC initiation or development, as well as metabolic alterations in
the CRC tumor lumen and blood serum. By using the same modeling approach, they high-
lighted the role of Fusobacterium spp. in the production of glutarate and in the suppression
of butyrate and acetate levels in feces [23,24]. Since then, many high-throughput data have
unraveled the etiology and complexity of CRC; however, the investigation of CRC and
microbiome metabolism remain a subject of inquiry. In the current study, we evaluated the
CMM of the gut microbiome and its influence on the initiation and progression of CRC with
a comprehensive and metabolomic approach. Our results indicate that alterations in the
gut microbiome might provoke CRC’s transformation from an adenoma into a carcinoma.

2. Results
2.1. Community Microbiome Metabolic Models of CRC in Different Tumors

The community modeling of the microbiome requires the integration of individual
bacterial metabolic models (GEMs) based on the proportions of different bacteria present
through ecological modeling. In this work, we made use of the MGYS00001248 data [25],
an ecological model that consists of metagenomic data of mucus biopsy specimens with
adenomas and their adjacent tissue, as well as non-tumor tissue as a control [21]. Adjacent
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tissue samples of adenomas and carcinomas were discarded on the assumption that we
did not know whether they were directly related to CRC (Table 1).

Table 1. Numbers of samples at different steps of this study. Adjacent tissue samples in MGYS00001248 data were discarded
since we wanted to focus on in situ tumor and polyp microbiomes. In the normalization step, samples with low read counts
were removed (in total, 76 of 170 samples were removed). At the modeling step, due to unknown errors, some models were
infeasible, which we excluded from further analysis. Finally, we considered microbiome metabolism profiles clustered as
meta-models.

Normalization Input
Normalized Input for

Microbiome
Metabolic Modeling

Reconstructed
Microbiome

Metabolic Models

Data Analysis and
Meta-Model Selection

Adenoma 57 41 37 8
Carcinoma 52 26 24 7

Normal 61 27 27 6
Total 170 94 88 21

To select the GEMs’ best matching with existing metagenome data, we firstly tried to
combine both publicly available databases, AGORA and EMBL. In 2016, AGORA models
(consisting of 773 GEMs of well-known bacteria) were reconstructed to investigate the
reciprocal association of bacterial behaviors and human metabolic diseases [26]. The
AGORA developers showed that the interaction of the species depends on the availability
of nutrients in the diet and the metabolic potential of the models. EMBL–GEMs were
used to create and store automated GEMs of 5587 organisms at the strain level [27]. The
AGORA models were compatible with the COBRA toolbox, but we found that the EMBL–
GEMs were not. Furthermore, the EMBL–GEMs are insufficient in requisite models for
the creation of community models. Since metagenomic data, which consist of bacteria’s
taxonomy and their measure of presence, have insufficient resolution regarding the strains
or species of bacteria, we should modify the taxon list based on experimental knowledge.
Additionally, metagenomic data vary in depth and sample size, which could lead to missing
data. Matching GEMs with bacteria requires identification at the strain or species level.
To minimize the loss of the accuracy of microbial population information, pan-AGORA
models (Supplementary File S1) were constructed using the COBRA toolbox, which are
infrastructure models of subclasses of the family, genus and species models. Then, to
estimate low-resolution reads of taxonomy assignment data, we used publications and
the Disbiome database [28]. Thus, we created a table (Supplementary File S2) of bacterial
GEMs’ names and their abundance for further analysis.

Although using the rarefaction method for metagenomic data analysis is controver-
sial [29–31], it seems rational for metagenomic data normalization [31]. However, one
of the challenges with this method is choosing the right threshold value. In general, an
appropriate value is one in which most of the samples are larger [32]. In the same way,
the rarefaction curves can provide an estimate of the asymptotic richness concerning the
sample counts that are suitable for normalization (Figure 1). By considering these two
approaches, we selected a sample size of 10,000 for normalization. Therefore, samples with
read counts below this value were discarded and, then, the abundances were normalized.
Finally, the taxonomy assignment data were modified and normalized for input data from
864 read rows corresponding to 219 bacterial GEMs collected as the microbiome modeling
toolbox input data (Supplementary File S2).
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 Figure 1. Rarefaction curves: the relations between the number of species present and total reads in
each sample. We used them to perceive and select an appropriate sample size for normalization. As
shown, most of the samples were about 10,000 or larger. Furthermore, at sample size n = 10,000, most
of the curves are in asymptotes, which indicates that most of the species are present at this size.

Since diet can also affect the survival of bacterial models in the community model,
we postulated that the environmental conditions of the microbial population were food-
intensive, so all the simulations were performed under the rich diet. Finally, from 160 mu-
cosal microbiome samples, 88 microbiome community models were constructed based on
AGORA and Pan models (Supplementary File S3).

The NMPC (net maximal production capability), which simulates the capacity of the
microbiota to create the intestinal lumen environment, was calculated by FVA (Supplemen-
tary File S4). This simulation was utilized to analyze the differences in the effects of the
microbiome in each group on the metabolic conditions around the tumor and intestine. We
consider the NMPC as the microbiome’s role in creating the intestinal environment.

2.2. Meta-Model Selection and Data Analysis for Simulated Metabolism of CRC Microbiome

Studies have demonstrated that the CRC microbiota and its healthy counterpart have
diverse patterns [21], which are called a meta-community. Accordingly, we call models
with the same patterns a meta-model. Thus, we first detected the meta-models of all the
groups based on the NMPC data and then selected a meta-model for each group (n8, n9,
n22, n23, n26 and n27 as a normal meta-model; a3, a5, a20, a21, a28, a29, a34 and a36
as an adenoma meta-model; and c1, c7, c9, c10, c16, c18 and c24 as a carcinoma meta-
model). This step was performed by PCA (Figure 2). The PCA plots show the similarity
of the microbiome metabolic models based on their NMPCs according to the first two
components. Presumably, microbiome metabolic models with the greatest similarity in
NMPC data have the same patterns. We selected meta-models with the most similarity
within groups and the most dissimilarity between groups. Cross-validation with the
SIMCA software indicated the significance of PCA models, with R2X(cum) = 0.85, and
Q2(cum) = 0.727. Supplementary File S5 shows more statistical tests for this model.
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Figure 2. Scatter plot of PCA scores for all models. Using PCA, meta-models were selected for each group by considering
the greatest similarity in groups (nearest) and the greatest differences between groups (farthest). a3, a5, a20, a21, a28, a29,
a34 and a36 as an adenoma meta-model; c1, c7, c9, c10, c16, c18 and c24 as a carcinoma meta-model; and n8, n9, n22, n23,
n26 and n27 as a normal meta-model. In this figure, a, c and n stand for adenoma, carcinoma and normal, respectively. This
PCA was plotted by the first two components, in which R2X[1] = 0.417 and R2X[2] = 0.21.

2.3. Meta-Models Reveal Different Patterns Among CRC Tumors

We used pairwise PLS-DA to find metabolic patterns among the meta-models of each
group. PLS-DA is an efficient tool for analyzing metabolomic data [33]. It can effectively
find patterns for differentiation between carcinoma vs. normal (Figures 3 and 4), adenoma
vs. normal (Figures 5 and 6) and carcinoma vs. adenoma (Figures 7 and 8) groups. In all the
PLS-DA models’ first components, the most important metabolites that were involved in
this differentiation were extracted from a VIP plot with a VIP criterion more than 1 [34,35].
We performed a cross-validation analysis of the PLS-DA models using the SIMCA software
(which returns the significance of models). Supplementary File S5 describes the statistical
parameters of the PLS-DA models in detail.

Metabolite set enrichment analysis (MSEA) was used to determine the role of metabo-
lites in human cell metabolism. For this purpose, VIP was used to extract metabolites
that were involved in human metabolism, filtered by the VMH database. This analysis
was performed for metabolites that were increased or decreased in a pairwise analysis of
groups. p-values < 0.05 were considered significant for the pathways detected in MSEA.
Therefore, the results show that microbiota-derived metabolites could be involved in CRC
metabolism by altering pathways under different conditions during CRC progression.
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Figure 3. Extraction of the most important metabolites in carcinoma vs. normal meta-model comparison. The column plot
of metabolites excluded by the VIP plot shows which metabolite correlates with which group. Red columns (positive w*c)
are metabolites more abundant in carcinoma, and blue columns (negative w*c) are those more abundant in the normal
group. These w*c measures are from the first component of the PLS-DA model. For this PLS-DA model, the first component
R2 and Q2 parameters were R2X = 0.532 and Q2 = 0.972.
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Figure 4. MSEA of the most important metabolites in PLS model of carcinoma vs. normal. Metabolites more abundant
in carcinoma meta-models than normal meta-models involved in pathways are shown in the left-side table. Those more
abundant in normal are shown in the right-side table. We considered p-values < 0.05 significant for this analysis.
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Figure 5. Extraction of most important metabolites in adenoma vs. normal meta-model comparison. The column plot of
metabolites excluded by the VIP plot shows which metabolite correlates with which group. Red columns (positive w*c) are
metabolites more abundant in adenoma, and blue columns (negative w*c) are those more abundant in the normal group.
These w*c measures are from the first component of the PLS-DA model. For this PLS-DA model, the first component R2 and
Q2 parameters were R2X = 0.783 and Q2 = 0.976.
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Figure 6. MSEA of the most important metabolites in PLS-DA model of adenoma vs. normal. Metabolites more abundant
in the adenoma meta-model than the normal meta-model involved in pathways are shown in the left-side table. Those more
abundant in normal are shown in the right-side table. We considered p-values < 0.05 significant for this analysis.



Metabolites 2021, 11, 456 8 of 20

 

7 

 

 Figure 7. Extraction of the most important metabolites in carcinoma vs. adenoma meta-model comparison. The column plot
of metabolites excluded by the VIP plot shows which metabolite correlates with which group. Red columns (positive w*c)
are metabolites more abundant in carcinoma, and blue columns (negative w*c) are those more abundant in the adenoma
group. These w*c measures are from the first component of the PLS-DA model. For this PLS-DA model, the first component
R2 and Q2 parameters were R2X = 0.572 and Q2 = 0.933.

 

8 

Figure 8. MSEA of the most important metabolites in PLS-DA model of carcinoma vs. adenoma. Metabolites more abundant
in the carcinoma meta-model than the adenoma meta-model involved in pathways are shown in the left-side table. Those
that are more abundant in adenomas are shown in the right-side table. We considered p-values < 0.05 significant for this
analysis.

2.4. Comparison between Carcinoma and Normal Meta-Models

The results reveal that L-glutamine, L-tyrosine, pyruvate, tyramine, tryptamine and
ten other metabolites were significantly increased in the normal meta-model. Furthermore,
metabolites such as taurine, L-serine, chondroitin sulfate, mannose, putrescine and 73 other
metabolites were decreased in this comparison (Figure 3).

The MSEA results indicated that thyroid hormone synthesis, purine metabolism,
phenylalanine metabolism, the urea cycle, ammonia recycling, tyrosine metabolism and
amino sugar metabolism pathways were enriched in the list of increased metabolites. The
decreased metabolites were involved in spermidine and spermine biosynthesis, galac-
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tose metabolism, the urea cycle, taurine and hypotaurine metabolism and phosphatidyl
ethanolamine biosynthesis (Figure 4).

2.5. Comparison between Adenoma and Normal Meta-Models

Histamine, spermidine, putrescin, hydrogen sulfide, L-tryptophan and 75 other com-
pounds were the metabolites most significantly increased in the adenoma meta-model
compared with the normal meta-model. Butyrate, phenol acetate, cobalt, taurine and 69
others were decreased (Figure 5).

As the MSEA demonstrated (Figure 6), the metabolites that decreased in the adenoma
versus normal meta-models are those contributing to purine metabolism, the transfer of
acetyl groups in mitochondrial pathways, the urea cycle and phosphatidyl ethanolamine
biosynthesis. Furthermore, the metabolites increased are those contributing to the urea
and TCA cycles; the metabolism of arginine, proline, phenylalanine, tyrosine and galac-
tose; the biosynthesis of cardiolipin; and the mitochondrial electron transport chain. The
biosynthesis of spermidine and spermine, unlike in the carcinoma meta-model, seem to be
downregulated.

2.6. Comparison between Carcinoma and Adenoma Meta-Models

In the carcinoma versus adenoma meta-model comparison, we found shared and
distinct metabolites that distinguish these tumor types. Adenine, D-glucose, L-aspartate,
L-histidine, pyruvate and 32 other substances were substantially increased in the carcinoma
meta-model. Additionally, acetaldehyde, trimethylamine, putrescine, ethanol, hydrogen
sulfide and 85 others were significantly increased in the adenoma meta-model (Figure 7).

Furthermore, in the MSEA, cycles such as TCA and urea, and the metabolism of
amino acids, such as arginine, proline, cysteine and alanine, were related to the increased
metabolites. The synthesis of spermidine, spermine and carnitine, and the Warburg effect
are related to these metabolites (Figure 8).

By the comparison of important metabolites between samples, we found that some of
these metabolites are group-specific and some shared (Figures 9 and 10). It showed that
metabolites could be tumor-specific and have different roles in tumors. Notably, 37 metabo-
lites significantly differentiated between normal, adenoma and carcinoma meta-models,
and 13 specifically differentiated between two meta-models. As the driver–passenger
hypothesis states, the metabolites of the CRC microbiota show different patterns in ade-
noma and carcinoma tumors. Some promote tumors and are released or remain and
support tumor growth and development. Some metabolites only play a supportive role
in carcinomas. On the other hand, the significant downregulation of certain metabolites,
especially in the carcinoma meta-model, could be one reason for the detrimental effects
of the carcinoma microbiota. As Figure 9 and Supplementary Figure S1 demonstrate, the
carcinoma meta-model showed more downregulated than upregulated metabolites.
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Figure 9. Significant metabolites in CRC microbiome. This heatmap briefly highlights significant
metabolites altered in different tumors of CRC by our CMMs. Blue and red colors indicate decreases
and increases in the intestinal lumen, respectively. White color means neither a significant alteration
nor a contributor.
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Figure 10. Proposed workflow for metabolic discrimination analysis of microbiome community constraint-based models,
from data preparation to data analysis.

3. Discussion

Several studies have examined the association of metabolites with CRC. In vivo and
in vitro environments cannot accurately indicate the sources of metabolic changes, espe-
cially in CRC, where the gut microbiome is an inseparable part. Based on the results
of our microbiome community modeling and simulating the intestinal lumen metabolic
environment (we have summarized the main results in Supplementary Figure S2), we
hypothesized about how the microbiome composition affects CRC metabolism:

1. The adenoma microbiome plays an important role in the mutagenesis and the pro-
gression of the adenoma to carcinoma.

2. The metabolic changes in the adenoma microbiota increase inflammation and regulate
the immune system.

3. The metabolites of the CRC microbiota contribute to the growth and proliferation of
cancer cells in both adenoma and carcinoma tumors.

4. Microbial metabolites of adenomas and carcinomas are involved in the progression of
CRC, for example, (the inhibition of) apoptosis and invasion.

Therefore, this workflow has the potential to investigate the underlying metabolic
mechanisms regulating CRC progression, and it can be adopted to other disease microbial
community models (Figure 10).

3.1. Adenoma Microbiota Plays an Important Role in Mutagenesis and Progression of Adenoma to
Carcinoma

An increase in mutagenic metabolites and a decrease in their inhibitors involved in
the progression of adenoma to carcinoma were observed in the metabolism of the adenoma
microbiota. Short-chain fatty acids have many important functions within the human
body, and numerous studies have shown that their levels significantly change in the fecal
samples of patients with CRC [36]. Butyrate, one of the most important and controversial
metabolites of the CRC microbiota, is significantly reduced in adenoma compared to healthy
models. Butyrate is also involved in reducing inflammation and inducing apoptosis. In
addition, it prevents the accumulation and formation of microbiota that cause epithelial
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cell mutations by regulating the immune system of the intestinal environment [37]. On
the other hand, hydrogen sulfide (a toxic substance produced from the catabolism of meat
foods) prevents the oxidation of butyrate and causes toxicity by disrupting the barrier
of epithelial cells. It has been observed that these effects are more related to microbiota
activity than diversity [37,38]. In our study, we showed that, in adenoma models, as H2S
increases, ROS increase simultaneously. This is a point to consider in the bacterial flora’s
role in pathogenicity, including CRC initiation.

Subsequently, other metabolites showed cooperation in CRC initiation. Adenoma mod-
els predicted an increase in spermidine and putrescine, which are polyamines. Polyamines
play a critical role in mutagenesis and tumorigenesis by producing ROS [39]. The increased
nitrite and electron transfer chain (ETC) activity in the MSEA indicates augmented ROS
and mutagenicity. Nitrite acts as a precursor to N-nitroso compounds (NOCs) that are
genotoxic and cause an increase in ROS [40]. Trimethylamines, including trimethylamine
(TMA) and trimethylamine N-oxide (TMAO), are involved in DNA damage [41]. Increased
urea can also increase ammonia production. Ammonia is involved in mutagenesis and
tumorigenesis by damaging mucus, inducing genotoxicity and increasing ROS production.
Increases in urea, TMA and TMAO are seen in adenoma models compared to healthy
specimens [42].

Our models provide more evidence for the adenoma microbiota’s influence in CRC
initiation by mutagenesis, although a VIP index greater than 1 was considered in the
isolation of important metabolites. VIP values of 0.5 to 1 could also be significant [43].
Ethanol and acetaldehyde are among the substances whose mutagenic role in CRC has
been discussed [37]. An increase in ethanol and acetaldehyde with a VIP of approximately
0.8 was seen in adenoma models. Increased tyramine was evident in both adenoma and
carcinoma models. It is genotoxic to intestinal cells. It also further damages cancer cells by
disrupting the DNA repair system [44]. In our opinion, despite the significant evidence in
this section, there is still room for further investigation in future research.

3.2. Metabolic Alterations in the Adenoma Microbiota Increase Inflammation and Regulate the
Immune System

Some metabolites play a key role by being multifunctional at different CRC levels. Hy-
drogen sulfide increases inflammation by reducing the oxidation of butyrate and breaking
down the intestinal epithelial cell barrier. Furthermore, butyrate plays a role in reducing
inflammation and the accumulation of harmful species by interacting with the immune sys-
tem and producing a suitable environment [37]. Trimethylamines, in addition to inducing
DNA damage, cause inflammation [37,41]. Increased hydrogen sulfide and trimethy-
lamines and decreased butyrate in the adenoma microbiota meta-model, in addition to the
role of mutagenicity, showed increasing inflammation.

Histamine is a chemical messenger made by immune cells that is also involved in
inflammation. Previous studies have shown increased production of histamine in CRC and
decreased catabolism in CRC adenomas. It may also play a role in the development of CRC
by affecting the histamine 2 receptor (H2R) [45]. Although the production of this substance
has not been studied in previous studies from the perspective of the microbiota and the
role of this organ, in the adenoma meta-model, histamine production was significantly
increased. Simultaneous reductions in chondroitin sulfate and glucosamine were observed
in both the adenoma and carcinoma meta-models. The possible effects of these two
substances on the initial prevention of CRC, with anti-inflammatory properties, were
previously investigated [46].

3.3. CRC Microbiota Contribute to the Growth and Proliferation of Cancer Cells in Both Tumors

The complete urea cycle converts excess nitrogen to urea and excretes it in the urine.
This complete cycle is mainly active in the liver, but enzymes in other cells are responsible
for the synthesis of the intermediates of this cycle through the use of nitrogen according
to cells’ needs. Extrahepatic urea cycle enzymes are the only intracellular producers of
arginine, citrulline and ornithine, which are precursors for the synthesis of polyamines,
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nitric oxide (NO) and proline. In cancer, unlike in liver cells that secrete nitrogen, urea cycle
mediators, including arginine, proline and ornithine, enter anabolic pathways, and changes
in their enzymes contribute to tumor growth [42]. As ammonia production increases,
ammonia condensation with bicarbonate produces carbamoyl phosphate (CP) through
the enzyme carbamoyl phosphate synthase (CPS1), which prevents ammonia toxicity.
It has been observed that, in cancer, the CP barrier between the mitochondria and the
cytoplasm disappears, and cytoplasmic CP increases [47,48]. Finally, the CAD protein (a
trifunctional multi-domain enzyme including carbamoyl phosphate synthase 2, aspartate
trans-carbamylase and dihydro-orotase) converts cytoplasmic CP to pyrimidines, which are
required for cell proliferation. Furthermore, increased CPS1 expression has been observed
to be associated with a poor prognosis in CRC [49,50]. In the MSEA, the urea cycle was
increased in the adenoma and carcinoma meta-models, and it was shown that the CRC
microbiota may play a key role in increasing the activity of this cycle in human cells.

Interestingly, arginine, proline and ornithine, which are important in the urea cycle,
were increased in the adenoma models. Furthermore, the increase in arginine and proline
metabolism in human cells was increased according to the MSEA results. Arginine and
proline replace glucose in the energy supply under glucose deprivation and energy defi-
ciency. The enzyme arginine succinate lyase (ASL) is highly expressed in various cancers,
including CRC, which produces arginine, NO and citrulline. Furthermore, the production
of intracellular NO from arginine is dependent on this enzyme, so the inhibition of this
enzyme has similar effects on the reduction of NO. NO promotes cell proliferation [42].

The amount of secreted glutamine, an important hallmark metabolite of cancer
metabolism, was increased in the carcinoma meta-model. Cancer cells use glutamine
during glutaminolysis for cell growth and proliferation. This is one of the hallmarks of
cancers, and many treatment strategies have been developed based on it. Cancer cells use
mediators created in the glutaminolysis cycle to replenish the TCA cycle [51]. Glutamine
is probably needed for tumors to become malignant. By producing ammonia, glutamine
regulates the intercellular physiological pH of cancer cells as a buffer [52]. In addition to
glutamine, pyruvate was further increased in the carcinoma meta-model.

Pyruvate is present in anaplerotic reactions in ovarian cancer and affects mitochondrial
functions [53]. By affecting the ETC, it causes the production of ROS and alters cell
proliferation [54]. The serine racemase enzyme produces pyruvate from serine. The role
of this enzyme in CRC becomes more prominent with the production of pyruvate, and
it aids tumor growth and is being investigated as a drug target [55]. Interestingly, our
models confirmed these findings: firstly, its gene is present in Firmicutes, Actinobacteria
and Fusobacteria, which are present and prevalent in CRC microbiota models. Secondly,
there were decreased levels of serine and increased levels of pyruvate in the carcinoma
meta-model and, thirdly, there is increased pyruvate uptake from the environment in some
cancers. Finally, the increase in pyruvate demonstrated its supportive role as an energy
supplier and in increasing cell proliferation in the carcinoma meta-model. According to
the results of our modeling, the influence of the microbiome in this regard can be very
significant.

Despite the principle of ignoring the TCA cycle and the priority of aerobic glycolysis
in cancer cell metabolism, the TCA cycle was increased in the MSEA of the adenoma meta-
model. The TCA is involved in the production of required macromolecules and the energy
production of cancer cells [51]. From these results, we could deduce that the microbiome
contributed to an increase in the metabolic cycle, energy production and cancerous tumor
formation.

The effects of hormones on pathogenicity and its origin are usually considered in
the physiology of a human body. The MSEA results revealed the enrichment of thyroid
hormone synthesis in the carcinoma meta-model. There have been many studies on
the effects of thyroid hormone and nuclear receptors on tumorigenesis and cancer cell
proliferation. Despite the heterogeneity in these studies, increased receptor expression in
CRC and increased risk in patients with hyperthyroidism may be of interest. It should
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also be noted that, given the environmental uptake of cancer cells, the role of microbiome
metabolism in the production and explanation of the effect of this hormone could be
important [56,57].

Serotonin and dopamine were also increased in the adenoma meta-model. These are
neurotransmitters produced by the central nervous system and the gastrointestinal tract.
Clinical studies have proven their effects on the growth of tumors such as CRC [58–64].
Furthermore, the overexpression of the serotonin B2 receptor, which leads to increased cell
proliferation, is potential evidence of the effect of serotonin on CRC cell proliferation [65].
These roles in CRC were also proved by our models, but with the collaboration of the
microbiota.

Other pathway alterations involved cardiolipin and ETC biosynthesis, which were
enriched in the MSEA results for the adenoma meta-model. Cardiolipin is present in the
inner membrane of the mitochondria; its overexpression and interaction with ETC proteins
in CRC cells increases and optimizes the efficiency of mitochondrial respiration [66]. The
inhibition of the ETC also reduces tumor growth [67]. Considering the role of cardiolipin
in membrane structure and its interaction with ETC, the effect of adenoma microbiome
of increasing cell proliferation through supporting mitochondrial precursors and energy
supply through the ETC has been demonstrated.

The gut microbiome can also accelerate the production of purine and pyrimidine
precursors, supporting cell proliferation and energy supply. Our results show significant
increases in nucleotides, DNA precursors and purine metabolism in the adenoma and
carcinoma models. Adenine, adenosine and deoxy-adenosine, deoxy-cytidine, uridine,
guanosine and thymidine were found among the enhanced metabolites for both models.
Thymidine catabolism is a metabolic strategy of cancer cells that provides them with energy
by supplying carbon to the glycolytic pathway under nutritional deprivation [68].

Phenolic acids and cobalt chloride have anticancer effects [69,70]. The decrease in
phenolic acids and cobalt in cancer models compared to healthy individuals is in good
agreement with the role of the microbiome in reducing cell proliferation.

3.4. Microbiome Metabolites in Adenoma and Carcinoma Are Involved in the Development of
Colorectal Cancer, such as through (the Inhibition of) Apoptosis and Invasion

Our carcinoma meta-data model indicated the prevention of apoptosis due to a sig-
nificant reduction in the synthesis of taurine, spermidine, phosphatidylethanolamine and
phenolic acid metabolites. Taurine stimulates apoptosis, and its secretion in the carcinoma
microbiome may be reduced [71,72]. Spermidine, which was increased in the adenoma
model and was involved in inflammation and tumorigenesis, was decreased in the car-
cinoma meta-model. The dual role of spermidine in cancer was previously investigated.
Spermidine can play a role in tumor suppression by increasing apoptosis and autophagy,
and decreasing immunosuppression [39]. The reduction of this metabolite in the carcinoma
meta-model showed the role of the microbiome in inhibiting the anticancer effect of sper-
midine. The role of phosphatidylethanolamine in stimulating apoptosis by reducing the
mitochondrial membrane potential in hepatocytes has been previously demonstrated [73].
The decreased synthesis of this substance in the carcinoma microbiome probably prevents
apoptosis. Decreases in galacturonate and butyrate metabolites were seen in the adenoma
meta-model. Galacturonate-containing pectins have been introduced as drugs that increase
apoptosis, as well as carriers, and in combination with anticancer drugs [74]. A decrease in
butyrate, a substance that induces apoptosis, prevents cancer cell apoptosis [75,76]. The ele-
vated glutamine and pyruvate in the carcinoma meta-model showed that the microbiome is
able to provoke malignancy and cancer migration. Pyruvate has previously been shown to
support the migration and development of ovarian cancer [53]. The presence of glutamine
may also be essential for cancer malignancy [52]. Increased arginine and, eventually, higher
production of NO, dopamine and serotonin, indicated the potential for the microbiome to
affect cancer cell angiogenesis. NO can be involved in epithelial-to-mesenchymal transition
(EMT) and angiogenesis [42]. Clinical studies have shown the effects of serotonin and
dopamine on the angiogenesis of cancers such as CRC [65]. Fumarate affects the migration
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and invasion of cancer cells by acting on the killer cell lectin-like receptor C3. An increase
in this metabolite in the adenoma meta-model could confirm this effectiveness [77].

4. Materials and Methods

In this study, we investigated microbiome metabolism in terms of the abundances of
microbiota and their distinct metabolomics in different tumors of CRC. For this purpose,
we used metabolic modeling and metabolomics analysis approaches including community
metabolic modeling (CMM), principal component analysis (PCA) and metabolite set enrich-
ment analysis (MSEA). We used metagenomics and the relative abundances of microbiota
data as the input for microbiome metabolic modeling. Figure 10 depicts the workflow used
for this study. To determine the compatibility of the input data with the methodology, we
preprocessed the metagenomic data.

4.1. Data Collection and Preprocessing
4.1.1. Taxonomy Assignment Data

The relative abundances of microbiota in different tumors of CRC were extracted
from the MGnify database (study MGYS00001248). The dataset consists of mucus biopsies
from 160 individuals harvested by colonoscopy and examined histologically [21], and 61
tumor-free specimens, 47 patients with adenoma polyps and 52 carcinoma patients.

4.1.2. Data Preprocessing

To create a CMM, we require (1) the relative abundances of presented and recognized
bacteria, and (2) individual GEMs that match the recognized bacteria. For data consistency,
we manually modified the taxonomy nomenclature because metagenomic data often do
not have sufficient resolution at the strain, species and genus levels for the bacteria. For the
compatibility of the data with the taxonomy assignments, high-resolution taxon data were
matched with AGORA GEM models derived from the Virtual Human Metabolism [78]
(VMH) database. For non-compatible data, we used the “createPanModels” function in the
Constraint-Based Reconstruction Analysis (COBRA) toolbox [79] to construct Pan models.
A Pan model is a GEM constructed from a combination of some other GEMs.

To modify the taxonomy nomenclature, we used the Disbiome database [28]. This
database presents the dysbiosis of the microbiome in diseases, and the nearest strain,
species, or genus affected by CRC according to its decrease or increase in abundance.
Taxonomy levels higher than family were matched to AGORA models and Pan models by
a literature review and using the Disbiome database.

Data normalization is challenging in this domain. One of the most applicable methods
is rarefaction, the applications of which in metagenomics and microbiome analysis have
been discussed [29–31]. The average number of sample read counts was about 10,000.
To confirm this value, we also plotted the rarefaction curve (Figure 1) and considered its
asymptote. Curve plotting and data normalization were performed using the rarefaction
method in the Vegan [80] library in R.

4.2. Microbiome Metabolic Modeling

Large-scale community modeling requires the integration of the relative abundances
of metagenomics data into metabolic models. For this purpose, we used the mgPipe
pipeline that is the part of the microbiome modeling toolbox in the COBRA toolbox. The
mgPipe function includes: (1) the analysis of the microbiota abundances per sample; (2) the
construction of microbiome models and adding lumen-transport reactions by connection
to a specific diet and uptake/secretion behavior; and (3) the simulation of models and the
lumen metabolic environment under the given diet by flux variable analysis (FVA). These
simulations demonstrate the maximal capability for metabolite production in a lumen
environment: the so-called net maximal production capacity (NMPC). The metabolic
modeling of the microbiome community was performed using the COBRA toolbox in
the MATLAB 2017b environment with the IBM CPLEX 12.8 solver. We used the mgPipe
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pipeline and AGORA 1.03 [26] models and their Pan models to reconstruct CMM on a rich
diet. In fact, the rich diet supports the stability of the relative abundances of bacteria in an
environment without limitations in nutrient-uptake fluxes. Therefore, we selected the rich
diet condition for further modeling.

4.3. Data Analysis
4.3.1. Multivariate Analysis

NMPC data show the maximum microbiota community capacity of each sample in
creating the intestinal lumen metabolic environment. This information was used to analyze
and compare within groups and between groups.

PCA and partial least-squares discriminant analysis (PLS-DA) are two methods that
are important in the analysis of metabolomic data [33]. In this study, due to the high number
of features, we first ran PCA to investigate the similarity and discrimination between all the
samples and to separate similar models of each group—the so-called meta-model. Then,
PLS-DA was performed for comparison between groups.

The variable important projection (VIP) used PLS-DA information to display each of
the variables in the first component of each PLS-DA model.

The PCA and PLS-DA were performed in the SIMCA software environment of UMET-
RICS company version 14.1. Autofit was performed for PCA and PLS-DA modeling with
default settings.

The cross validation of the PCA and PLS-DA was performed using the SIMCA soft-
ware, by full cross validation. The method used the Krzanowski and PRediction Error Sum
of Squares (PRESS) methods and returned the significance of the models [81,82].

4.3.2. Metabolic Set Enrichment Analysis

MSEA [83] is an approach to identifying and interpreting patterns in human metabolism
through metabolic alterations according to metabolic data. The VMH database was used
to isolate microbiota-produced metabolites involved in human metabolism from all the
metabolites derived from the PLS-DA and then VIP extraction. These metabolites were
used as input for the Metaboanalyst platform [84].

5. Conclusions

Our community metabolic models unveiled the roles of the gut microbiome in CRC
development, as well as its significant influence on adenoma and carcinoma tumors, from
provoking mutations to facilitating the spread, homeostasis and survival of colorectal
cancer cells.
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