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ABSTRACT

Diabetes is a common cause of chronic kidney disease (CKD), but in aggregate, non-diabetic diseases account for a
higher proportion of cases of CKD than diabetes in many parts of the world. Inhibition of the renin–angiotensin system
reduces the risk of kidney disease progression and treatments that lower blood pressure (BP) or low-density lipoprotein
cholesterol reduce cardiovascular (CV) risk in this population. Nevertheless, despite such interventions, considerable
risks for kidney and CV complications remain. Recently, large placebo-controlled outcome trials have shown that
sodium-glucose co-transporter-2 (SGLT-2) inhibitors reduce the risk of CV disease (including CV death and
hospitalization for heart failure) in people with type 2 diabetes who are at high risk of atherosclerotic disease, and these
effects were largely independent of improvements in hyperglycaemia, BP and body weight. In the kidney, increased
sodium delivery to the macula densa mediated by SGLT-2 inhibition has the potential to reduce intraglomerular
pressure, which may explain why SGLT-2 inhibitors reduce albuminuria and appear to slow kidney function decline in
people with diabetes. Importantly, in the trials completed to date, these benefits appeared to be maintained at lower
levels of kidney function, despite attenuation of glycosuric effects, and did not appear to be dependent on ambient
hyperglycaemia. There is therefore a rationale for studying the cardio-renal effects of SGLT-2 inhibition in people at risk
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of CV disease and hyperfiltration (i.e. those with substantially reduced nephron mass and/or albuminuria), irrespective
of whether they have diabetes.

Keywords: cardiovascular, CKD, clinical trial, diabetic kidney disease, SGLT-2 inhibitor

INTRODUCTION

In high-income countries, the overall prevalence of chronic kidney
disease (CKD) is �10% [1, 2] and this proportion is expected to rise
as populations age further and diabetes mellitus becomes more
common [3]. Worldwide, diabetic kidney disease accounts for a
large proportion of advanced CKD (i.e. Stages 4 and 5), but the pro-
portion of those without diabetes still ranges from �50 to 70% [4,
5]. CKD can often be a progressive condition, with proteinuria rep-
resenting a significant risk factor for more rapid decline in kidney
function [6]. The avoidance of progressive CKD is important, as
end-stage kidney disease (ESKD) has adverse effects on morbidity
and quality of life, dialysis or transplantation incur substantial so-
cietal costs [7, 8] and low levels of kidney function increase cardio-
vascular (CV) risk and premature mortality [9].

The current standard of care in many forms of CKD is inhibi-
tion of the renin–angiotensin system (RAS) with an angiotensin-
converting enzyme inhibitor (ACEi) or angiotensin II receptor
blocker (ARB). RAS inhibition has been shown to moderately
reduce albuminuria and to slow the rate at which proteinuric kid-
ney diseases progress [10–12]. Compared with RAS inhibition with
a single drug, combination therapy (e.g. ACEi plus ARB) has not
been shown to further delay kidney disease progression but does
increase the risk of serious hyperkalaemia or acute kidney injury
[13]. In people with diabetes, intensification of glycaemic control
has been demonstrated to have moderately beneficial effects on
markers of kidney disease progression compared with ‘standard’
regimens [14–16], and in the long-term this may translate into re-
duced risk of ESKD [17]. Trials of intensification of blood pressure
(BP) lowering also suggest small benefits on CKD progression may
perhaps exist among those with proteinuria [18–21]. Despite these
interventions, however, substantial residual risk of ESKD remains.

Lowering low-density lipoprotein cholesterol has been shown
to reduce the incidence of atherosclerotic events in people with
CKD [22], and statin-based regimens are widely recommended for
those at risk [23, 24]. A key feature of CKD, however, is the high
prevalence of non-atherosclerotic heart disease. About half of
patients with advanced CKD have abnormal cardiac structure [25,
26], increasing to more than three-quarters by the time dialysis is
initiated [26, 27]. Although ejection fraction is often preserved,
some degree of left ventricular diastolic dysfunction is common
in CKD [25]. Lowering BP may reduce CV disease risk in CKD [28],
but there is a general lack of reliable information about other
treatments that may be effective for the prevention of heart dis-
ease in CKD [29]. Therefore, in addition to testing new interven-
tions that could reduce the risk of CKD progression, there is a
need for more trials of treatments that could further reduce the
types of CV disease commonly experienced by people with CKD.

Sodium-glucose co-transporter-2 (SGLT-2) inhibitors were
originally developed to treat hyperglycaemia in people with dia-
betes [30]. Recent large placebo-controlled outcome trials have
shown that empagliflozin and canagliflozin reduce the risk of
CV disease in people with type 2 diabetes mellitus (T2DM) at
high risk of CV disease. Exploratory analyses also suggested
they may reduce kidney disease progression in this population
[31–33]. These CV and kidney effects appeared to be largely in-
dependent of effects on glycaemic control, BP and body weight.

In this review we introduce the mechanisms of SGLT-2 inhi-
bition on the kidney and summarize the key clinical evidence
providing a rationale for the testing the effects of SGLT-2 inhibi-
tion on kidney and CV outcomes in people with diabetic kidney
disease. We then introduce the hypothesis that SGLT-2 inhibi-
tion may also have beneficial cardio-renal effects in people with
CKD but without diabetes. Lastly, using randomized data from
the Empagliflozin, Cardiovascular Outcomes, and Mortality in
Type 2 Diabetes (EMPA-REG OUTCOME) trial, we describe what
is currently known about the safety of empagliflozin in T2DM,
both overall and in people with concomitant CKD.

MECHANISMS OF ACTION AND
PHYSIOLOGICAL EFFECTS OF SGLT-2
INHIBITORS ON THE KIDNEY

SGLT-2 is a kidney-specific solute transporter responsible for
the vast majority (80–90%) of kidney tubular glucose reabsorp-
tion under normal physiological conditions [34]. Mutations that
affect its function cause familial renal glycosuria, which
appears to be a relatively benign condition [35]. In hyperglycae-
mic states, SGLT-2 expression can increase, causing more proxi-
mal tubular glucose and sodium reabsorption [36, 37]. The
reduced sodium delivery to the distal convoluted tubules may
result in a potentially maladaptive hyperfiltration state [30].

SGLT-2 inhibitors cause about half of filtered glucose to be
excreted. This equates to �50–80 g/day under normoglycaemic
and modest hyperglycaemic conditions and perhaps >100 g/day
in people with diabetes and hyperfiltration [38]. Sodium-glucose
co-transporter-1 (SGLT-1) is a distinct co-transporter that is pre-
sent in the intestine, heart, skeletal muscle and kidney. It has a
higher affinity but lower transporting capacity compared with
SGLT-2. Nevertheless, increased SGLT-1 expression or activity
in the distal segment of the proximal tubule in response to
SGLT-2 inhibition may partly explain why a large proportion
(perhaps 50%) of filtered glucose is still reabsorbed in those
treated with an SGLT-2 inhibitor [39].

As each reabsorbed molecule of glucose by SGLT-2 is accom-
panied by a sodium ion [30], inhibition of SGLT-2 causes natri-
uresis in addition to the osmotic diuretic effect of glycosuria.
This non-glycaemic effect may modify CV risk through reduc-
tions in plasma volume, organ congestion and central and sys-
temic BP [40] and may be particularly beneficial at preventing
heart failure (HF) [31, 32, 41, 42].

Natriuresis and altered tubular handling of filtered sodium
may also have important modulatory effects on glomerular fil-
tration rate (GFR) through reducing intraglomerular pressure
[41, 43]. Hyperfiltration is driven in part by neurohormonal
stimuli that cause either a net reduction in afferent glomerular
arteriolar resistance or a net increase in efferent arteriolar resis-
tance [43]. Angiotensin II is one key mediator of efferent arterio-
lar resistance and ACEi/ARBs effectively reduce intraglomerular
pressure and slow kidney disease progression through a reduc-
tion of efferent vascular resistance [11, 12]. An alternative po-
tential therapeutic strategy to reduce intraglomerular pressure
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might be to induce an increase in afferent arteriolar tone.
Tubuloglomerular feedback and afferent arteriolar tone are atten-
uated in diabetes by up-regulation of tubular SGLTs and other
sodium-exchange transport mechanisms. This leads to increased
tubular sodium reabsorption and consequently to reduced deliv-
ery of sodium to the macula densa, where afferent arteriolar tone
is relaxed in response to decreased adenosine production [41, 43].
SGLT-2 inhibition restores delivery of sodium to the macula
densa, promoting adenosine production and increased afferent
arteriolar tone (Figure 1). Some restoration of blunted tubuloglo-
merular feedback is apparent after a single dose, probably ac-
counting for the acute reduction in GFR and the subsequent
reduction in albuminuria [44] observed in people treated with
SGLT-2 inhibitors, as well as the swift return towards pre-
treatment levels of GFR shortly after drug discontinuation [33,
44]. Importantly, these effects do not appear to be modified by
concomitant use of a RAS blocker [31, 33] or loop diuretic [45]. The
latter observation may be of interest as loop diuretics block Na-K-
Cl co-transporter (NKCC2) channels, which are the main mecha-
nism by which chloride ions enter the macula densa to initiate
tubuloglomerular feedback [46]. It is therefore hypothesized that
additional mechanisms beyond NKCC2 sensing may also be me-
diating the renal haemodynamic effects of SGLT-2 inhibition.

Attenuation of tubuloglomerular feedback and intraglomer-
ular ‘hypertension’ are not unique to diabetes. Activation of the
sympathetic nervous system has been shown to increase proxi-
mal tubular sodium reabsorption in HF [47] and is recognized in
people with pre-diabetes, pre-hypertension [48] and obesity
[49]. Moreover, among those with reduced nephron mass, which
includes many people with chronically reduced GFR, intrarenal
vasodilatation may explain why the remaining nephrons

undergo structural hypertrophy and single-nephron GFR
increases [43, 50].

Intraglomerular hypertension has long been considered to
be a final common pathway for kidney disease progression
shared by many forms of CKD [51]. Support for this hypothesis
includes the observations that for a given level of urinary albu-
min excretion, the risk of ESKD is relatively independent of the
primary cause of kidney disease [52] and RAS blockade appears
effective at slowing both the progression of non-diabetic [10, 53]
and diabetic [11, 12] proteinuric kidney diseases. SGLT-2 inhibi-
tion may restore tubuloglomerular feedback and reduce intra-
glomerular pressure through non-glycaemic mechanisms in
people with diabetes (including those already on RAS blockade)
[31, 33, 44] and has acute effects on GFR in people without dia-
betes [54–56]. It is therefore reasonable to hypothesize that in
people who are at high risk of hyperfiltration (i.e. those with al-
buminuria and/or low GFR), SGLT-2 inhibition may lower intra-
glomerular pressure and be nephroprotective even in the
presence of ambient normoglycaemia.

RANDOMIZED TRIAL EVIDENCE FOR EFFECTS
OF SGLT-2 INHIBITION ON INTERMEDIATE
FACTORS
Effects of SGLT-2 inhibition on glycaemic control and
urinary glucose excretion

In people with T2DM, trials have established the glucose-
lowering effects of SGLT-2 inhibition, and there appears to be
little difference between empagliflozin, canagliflozin and dapa-
gliflozin in this regard [57]. In short- and medium-term
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FIGURE 1: Mechanistic concept of the effects of RAS and SGLT-2 inhibition on intraglomerular pressure.
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mechanistic trials, on average, adding SGLT-2 inhibition to vari-
ous background glucose-lowering therapies reduced glycosy-
lated haemoglobin (HbA1c) by �0.7% [58], with absolute
reductions in HbA1c often larger among those with the highest
baseline HbA1c [59, 60].

In people with T2DM and CKD, previous pharmacodynamic
studies have consistently shown a linear relationship between
24-h urinary glucose excretion and kidney function [41].
Consequently, compared with those with preserved GFR, HbA1c
reductions with SGLT-2 inhibition are smaller in people with
lower GFR. In pooled analyses of randomized trials comparing
dapagliflozin or empagliflozin versus placebo among people
with T2DM and estimated GFR (eGFR) levels <60 mL/min/1.73
m2, HbA1c differences were generally attenuated to �0.3 and
�0.4%, respectively [61, 62].

In people without diabetes, studies have found that empagli-
flozin 25 mg/day and canagliflozin 300 mg/day each induce �50–
60 g/day of urinary glucose excretion [55, 63], which is approxi-
mately half the corresponding amount induced in people with
diabetes [64].

Effects of SGLT-2 inhibition on body fat and whole-body
fluid homeostasis

Glycosuria induced by SGLT-2 inhibition provides a direct
source of calorie loss, but there are also indirect metabolic
responses induced that are expected to enhance lipolysis.
These include a decrease in insulin and an increase in glucagon
secretion, resulting perhaps from both the expected reduction
in plasma glucose and effects on both pancreatic alpha and beta
cells [65]. The metabolic consequence is a shift to more utiliza-
tion of fat for energy production. Modestly increased plasma
glycerol and fatty acid levels (reflecting accelerated lipolysis)
and higher levels of the ketone b-hydroxybutyrate (reflecting
higher liver fat oxidation) are apparent within 2 weeks of start-
ing empagliflozin, and these effects, although perhaps attenu-
ated, are also present in people without diabetes [54].

Together, these metabolic effects lead to reductions in body
weight [66], including loss of visceral and subcutaneous adipose
tissue [67]. Although there are effects on fluid homeostasis, af-
ter 2 years, weight loss resulting from SGLT-2 inhibition in
T2DM appears attributable in large part to reduced adipose tis-
sue (measured using dual-energy X-ray absorptiometry) [67]. In
the EMPA-REG OUTCOME trial, empagliflozin 10–25 mg/day led
to a sustained difference in weight of about �2 kg (from a mean
of 86 kg) and a �2 cm difference in waist circumference com-
pared with placebo (from a mean of 105 cm) in 7020 people with
T2DM and prior atherosclerotic CV disease [32]. There were al-
most identical-sized reductions observed with canagliflozin
100–300 mg versus placebo among the 10 142 participants in the
Canagliflozin Cardiovascular Assessment Study (CANVAS) and
CANVAS-Renal (CANVAS-R) [31]. However, fat loss is less than
predicted from estimated urinary calorie loss, perhaps because
participants allocated active drug were more likely to increase
calorie intake than those allocated placebo [68].

Nevertheless, despite the reduced glycosuric effects of SGLT-
2 inhibition in people with T2DM and CKD, lower eGFR has not
been shown to attenuate these weight-lowering effects, at least
within the range of eGFR studied to date. In placebo-controlled
trials testing dapagliflozin [61, 69] and empagliflozin [62] in
T2DM, differences in weight among those with preserved kid-
ney function were similar to differences observed in those with
CKD Stages 3A, 3B or 4. Part of the preserved effect of SGLT-2 in-
hibition on body weight in CKD may therefore result from

increased urinary sodium and electrolyte free-water excretion
[70] (although non-renal effects centrally or in the gut cannot be
excluded).

In a mathematical extrapolation of a short-term randomized
trial in healthy individuals, dapagliflozin was shown to cause
proportionally larger reductions in interstitial fluid volume
(�480 mL) than blood volume (�150 mL), which is in contrast to
the effects of the loop diuretic bumetanide, which caused
smaller reductions in interstitial fluid volume (�510 mL) than
blood volume (�780 mL) [70]. Relatively larger reductions in in-
terstitial fluid compared with plasma volume, perhaps the re-
sult of combined natriuretic and osmotic diuretic effects of
SGLT-2 inhibition, may have the potential to significantly im-
prove organ congestion in people with fluid overload with less
risk of causing arterial underperfusion or symptomatic dehy-
dration [70], but studies directly measuring changes in intersti-
tial and blood volume in people with CKD and people with HF
are needed to test both the mathematical extrapolation and
these hypotheses.

Effects of SGLT-2 inhibition on BP

Short- and medium-term mechanistic trials in T2DM show that
SGLT-2 inhibitors produce modest reductions in office-
measured and 24-h ambulatory BP [66, 71], central systolic BP
and central pulse pressure [40]. A systolic BP difference of a sim-
ilar size (�4 mmHg) to that measured in these smaller studies
was observed in those allocated empagliflozin versus placebo in
the EMPA-REG OUTCOME trial [32].

As is the case for body weight, the effects of SGLT-2 inhibi-
tion on BP are not diminished at lower eGFR levels, at least
within the range of eGFR studied to date. For example, in 2286
people with T2DM randomized to empagliflozin versus placebo,
BP reductions were at least as large even at an eGFR <30 mL/
min/1.73 m2. Similarly, CKD Stages 3A and 3B have not been
shown to modify the BP-lowering effect of dapagliflozin [61, 69].
The persistence of the BP-lowering effects of SGLT-2 inhibition
in CKD is yet to be fully understood, and possibilities include BP
being more responsive to salt mobilization and/or removal in
CKD, increased response to the possible beneficial effects of
SGLT-2 inhibition on arterial stiffness, sympathetic system
overactivity, oxidative stress and endothelial dysfunction [62]
and/or augmentation of the effect of other antihypertensive
medications [62].

In people without diabetes, a randomized study of 376 obese
individuals found that 12 weeks of canagliflozin 100–300 mg/
day caused a systolic BP difference of between �1 and �2
mmHg compared with placebo [56]. Few randomized data are
currently available in people with CKD but without diabetes, but
the data from studies in other populations suggest that a mod-
est BP-lowering effect of SGLT-2 inhibition might be expected in
such people.

Effects of SGLT-2 inhibition on albuminuria and short-
term effects on GFR

In the EMPA-REG OUTCOME trial and CANVAS/CANVAS-R, both
empagliflozin 10–25 mg/day and canagliflozin 100–300 mg/day
were found to reduce albuminuria by between 25 and 50% in
those with T2DM and either micro- or macroalbuminuria, irre-
spective of use of RAS blockade. The albuminuria-lowering
effect was apparent early and maintained throughout the
3–4 years of follow-up [44, 72]. Furthermore, in the EMPA-REG
OUTCOME trial, compared with those allocated to placebo,
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albuminuria remained lower among those allocated to empagli-
flozin about 1 month after stopping study treatment, suggesting
that SGLT-2 inhibition prevented diabetes-related structural
changes in the kidney (although this hypothesis has not been
tested by kidney biopsy studies) [44].

The EMPA-REG OUTCOME trial included people with T2DM
with both preserved and modestly reduced kidney function.
Commencement of SGLT-2 inhibition led to an initial acute decline
in eGFR of �3 mL/min/1.73 m2. The magnitude of this effect was
consistent at daily empagliflozin doses of 10 and 25 mg [33]. The
initial dip in eGFR, which is considered an indicator of reduced
intraglomerular pressure, was followed by a marked slower decline
in eGFR compared with those allocated placebo during longer-term
treatment (Figure 2) [33]. These findings have since been replicated
in the CANVAS/CANVAS-R data [73].

Canagliflozin 100–300 mg/day has been compared with the
sulfonylurea glimepiride in 1450 people with T2DM [72]. This
comparison was particularly informative as the reductions in
HbA1c were very similar among those allocated the two differ-
ent classes of glucose-lowering drug. However, after an initial
eGFR dip of �6 mL/min/1.73 m2, the average annual rate of de-
cline in eGFR was 0.5–1.0 mL/min/1.73 m2/year among those al-
located to canagliflozin compared with 3.3 mL/min/1.73 m2/year
among those allocated to glimepiride (in whom no acute change
in eGFR was observed). Such data further support the hypothe-
sis that non-glycaemic effects of SGLT-2 inhibition are central
to any nephroprotective effects.

In a subgroup analysis of the EMPA-REG OUTCOME trial, par-
ticipants with reduced eGFR had a similar-sized initial eGFR dip
followed by a relative slowing in the annual rate of decline in
eGFR [33]. Similarly, data from five medium-term (i.e. 6 month)
placebo-controlled trials of empagliflozin also confirm the ini-
tial dip in eGFR is at least as large in those with an eGFR be-
tween 30 and 60 mL/min/1.73 m2 compared with those with
preserved kidney function. To date, too few people with an
eGFR <30 mL/min/1.73 m2 have been studied to be certain, but
there is some evidence that the initial eGFR dip is also present
at this low level of kidney function [62].

In obese but otherwise healthy adults with normal kidney
function, canagliflozin has been shown to cause an initial dip in
eGFR, which in this population was �1–2 mL/min/1.73 m2 [56].
Two non-randomized studies in people without diabetes and
with normal kidney function starting empagliflozin have also
noted initial dips in eGFR of �8 to �16 mL/min/1.73 m2, respec-
tively, although the lack of a control arm may mean these re-
flect substantial overestimates of effect [54, 55]. Nonetheless,
this evidence suggests that lowering of intraglomerular pres-
sure can be achieved without the need for ambient hyperglycae-
mia. There are no long-term published studies in non-diabetic
populations exploring whether this initial dip in kidney func-
tion with SGLT-2 inhibition is associated with beneficial effects
on subsequent eGFR slopes.

Taken together, these data on intermediate clinical parame-
ters show that although the effects on HbA1c are attenuated
among people with T2DM and lower kidney function, important
non-glycaemic effects on fluid balance, body weight, BP, albu-
minuria and markers of intraglomerular pressure are present in
individuals with reduced kidney function, at least down to an
eGFR of 30 mL/min/1.73 m2. Although the effects of SGLT-2 inhi-
bition on such parameters among those without diabetes
remains less well studied to date, there is reason to expect phar-
macological effects that may translate into clinical benefits.

RANDOMIZED TRIAL EVIDENCE FOR EFFECTS
OF SGLT-2 INHIBITION ON CLINICAL EFFICACY
OUTCOMES
Effects of SGLT-2 inhibition on kidney disease
progression

In exploratory analyses from two large outcome trials, a hy-
pothesis that SGLT-2 inhibition with empagliflozin or canagli-
flozin has the potential to reduce the risk of kidney disease
progression in people with T2DM was raised. In the EMPA-REG
OUTCOME trial, empagliflozin 10–25 mg/day reduced the inci-
dence of the traditional renal composite outcome of doubling of
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creatinine (with eGFR �45 mL/min/1.73 m2), initiation of renal re-
placement therapy (RRT) or renal death by 46% {hazard ratio [HR]
0.54 [95% confidence interval (CI) 0.40–0.75]} [33]. This included a
nominally significant reduction in the necessity to start RRT [HR
0.45 (95% CI 0.21–0.97)]. In the CANVAS/CANVAS-R, compared
with placebo, canagliflozin 100–300 mg/day reduced the risk of
the composite renal outcome of a 40% decline in eGFR, initiation
of RRT or renal death by 40% [HR 0.60 (95% CI 0.47–0.77)] [31].

The EMPA-REG OUTCOME trial enrolled �1800 people with
an eGFR <60 mL/min/1.73 m2, including �560 individuals with
an eGFR <45 mL/min/1.73 m2. The proportional effects of empa-
gliflozin on the traditional renal composite were similar irre-
spective of eGFR at baseline (interaction P¼ 0.18) or baseline
levels of albuminuria (interaction P¼ 0.51; Figure 3A) [33]. These

findings are reinforced by similar observations on a pre-
specified renal composite outcome that further included new-
onset macroalbuminuria (Figure 3B).

The first large-scale data on the effects of SGLT-2 inhibition
on diabetic kidney disease progression will be provided by
the Evaluation of the Effects of Canagliflozin on Renal and
Cardiovascular Outcomes in Participants with Diabetic
Nephropathy (CREDENCE) [74], which has recently been stopped
early for benefit at the formal interim analysis planned for once
405 participants had experienced a primary outcome [75, 76].
CREDENCE includes 4401 people with T2DM and macroalbumi-
nuria [urinary albumin:creatinine ratio (uACR) 300–5000 mg/g)
and an eGFR of 30–90 mL/min/1.73 m2 on stable RAS blockade.
The baseline mean eGFR was 56 mL/min/1.73 m2 and the
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initiation of maintenance RRT or death from renal disease.

†Doubling of serum creatinine, initiation of maintenance RRT or death from renal disease.

A total of 52 participants with missing baseline or post-baseline creatinine data (with no evidence of RRT or renal death)
were excluded from analyses of the post hoc traditional kidney disease progression outcome. Analyses of incident or
worsening nephropathy excluded 769 participants with macroalbuminuria at baseline and a further 127 participants
with missing baseline or follow-up laboratory values (47 creatinine and an additional 80 uACR) plus no evidence of
RRT or renal death (which differs slightly from Wanner et al. [33]).

FIGURE 3: Effect of allocation to empagliflozin versus placebo on (A) traditional kidney disease progression outcome (post hoc) and (B) incident or worsening nephropa-

thy, by baseline eGFR and uACR.
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median uACR was 927 mg/g. The treatment comparison is of
canagliflozin 100 mg versus matching placebo [75], and the pri-
mary composite outcome is a doubling of serum creatinine,
ESKD or death from renal or CV causes. Large-scale trials testing
empagliflozin versus placebo (EMPA-KIDNEY) and dapagliflozin
versus placebo (Dapa-CKD) in people with CKD are in progress
[77]. Their designs differ from CREDENCE in that both these stud-
ies are looking at a CKD population with and without diabetes

(Table 1), with EMPA-KIDNEY uniquely including people with a
low eGFR (<45 mL/min/1.73 m2) with or without albuminuria.

Effects of SGLT-2 inhibition on CV diseases

The primary endpoint in the EMPA-REG OUTCOME trial was a
CV composite of death from CV causes, non-fatal myocardial in-
farction or non-fatal stroke. Empagliflozin 10–25 mg was shown

Table 1. Ongoing large SGLT-2 inhibitor clinical trials in CKD and HF populations

Key inclusion criteria Size Interventions Primary outcomes
Selected secondary
outcomes

CKD populations
EMPA-KIDNEY: The

Study of Heart and
Kidney Protection
with Empagliflozin [82]

Age �18 years
eGFR 20–45 or eGFR 45–90

mL/min/1.73 m2 with
uACR �200 mg/g

Clinically appropriate
doses of RAS blockade,
unless not tolerated

5000 (�1/3 with DM
and �1/3 without DM)

Empagliflozin
10 mg/day versus
placebo

Sustained �40% de-
cline in eGFR,
ESKD or death
from renal or CV
causes

CV death or hospitaliza-
tion for HF

All-cause
hospitalization

All-cause mortality

CREDENCE [74, 75] Age �30 years
T2DM, HbA1c 6.5–12%
eGFR 30–90 mL/min/1.73

m2

Stable maximally toler-
ated RAS blockade

uACR 300–5000 mg/g

4401 Canagliflozin
100 mg/day versus
placebo

Doubling of creati-
nine, ESKD or
death from renal
or CV causes

CV death or hospitaliza-
tion for HF

Doubling of creatinine,
ESKD or death from a
renal cause

Dapa-CKD [77] Age �18 years
eGFR 25–75 mL/min/1.73

m2

Stable maximally toler-
ated RAS blockade, if
not contraindicated

uACR 200–5000 mg/g

4000 Dapagliflozin 5 or
10 mg/day versus
placebo

Sustained �50% de-
cline in eGFR,
ESKD or death
from renal or CV
causes

CV death or hospitaliza-
tion for HF

Sustained �50% decline
in eGFR, ESKD or death
from a renal cause

HF populations
EMPEROR-Preserved [88] Age �18 years

Symptomatic chronic HF
with LVEF >40%

NT-proBNP >300 pg/mL
(or >900 if in AF)

Stable dose of oral
diuretic

4100 Empagliflozin
10 mg/day versus
placebo

CV death or hospi-
talization for HF

eGFR slope
Sustained �40% decline

in eGFR or ESKD

EMPEROR-Reduced [89] Age �18 years
Class II–IV chronic HF

with LVEF �40%
NT-proBNP above a

certain threshold
(stratified by LVEF)

Appropriate doses of
medical therapy and
use of medical devices

2800 Empagliflozin
10 mg/day versus
placebo

CV death or hospi-
talization for HF

eGFR slope
Sustained �40% decline

in eGFR or ESKD

Dapa-HF [90] Age �18 years
Symptomatic chronic HF

with LVEF �40%
NT-proBNP �600 pg/mL
eGFR �30 mL/min/1.73 m2

Appropriate background
standard of care

4500 Dapagliflozin
10 mg/day versus
placebo

CV death, hospitali-
zation for HF or
urgent HF visit

Sustained �50% decline
in eGFR, ESKD or death
from a renal cause

AF, atrial fibrillation; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal of the prohormone of brain natriuretic peptide.

Other large placebo-controlled SGLT-2 trials in those with T2DM and high CV risk include DECLARE (dapagliflozin 5 or 10 mg) [91], VERTIS CV (ertugliflozin 5 or 15 mg)

[92] and SCORED [93] (sotagliflozin in those with an eGFR of 25–60 mL/min/1.73 m2) which are enrolling 17 276, �8000 and �10 500 people, respectively, and include kid-

ney disease progression endpoints as secondary outcomes. DELIVER (Dapagliflozin 10 mg) in �4700 with preserved LVEF heart failure and SOLOIST-WHF (sotagliflozin)

in �4000 people with heart failure and diabetes are also in development. CREDENCE has been stopped early for efficacy [76] and is likely to report in 2019. Both Dapa-

CKD and EMPA-KIDNEY are event-driven trials and are expected to complete follow-up in around November 2020 and June 2022, respectively.
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to reduce this composite by 14% compared with placebo [HR 0.86
(95% CI 0.74–0.99)] [32]. This effect was driven by a highly signifi-
cant 38% [HR 0.62 (95% CI 0.49–0.77)] reduction in CV death. A bene-
ficial effect of SGLT-2 inhibition on CV risk has also been observed
in the CANVAS/CANVAS-R. Canagliflozin 100–300 mg/day reduced
the primary composite outcome of death from CV causes, non-fa-
tal myocardial infarction or non-fatal stroke by 14% [HR 0.86 (95%
CI 0.75–0.97)] [31]. The effect on CV death in the CANVAS/CANVAS-
R [HR 0.87 (95% CI 0.72–1.06)] was directionally consistent, although
more modest, than in the EMPA-REG OUTCOME trial.

Given the effects of SGLT-2 inhibition on interstitial/plasma
fluid volume [70] and BP [66, 71], a beneficial effect on cardiac
pre-load and after-load is expected, and a reduction in the inci-
dence of clinical outcomes among those with HF with reduced
or preserved ejection fraction might be anticipated with such
treatments [42]. Hormonal and metabolic effects of SGLT-2 inhi-
bition may also mediate cardiac benefits. Intriguingly, increased
ketone production may have beneficial effects on hypertrophied
or failing hearts [78, 79].

In the EMPA-REG OUTCOME trial, the pre-specified secondary
outcome of hospitalization for HF was reduced by 35% (HR 0.65
(95% CI 0.50–0.85)] [32] while allocation to canagliflozin in the

CANVAS/CANVAS-R also reduced the risk of hospitalization for
HF by about one-third compared with placebo [HR 0.67 (95% CI
0.52–0.87)] [31]. As HF with preserved ejection fraction is common
in people with diabetes (and may even be more common in this
population than HF with reduced ejection fraction [80]), this effect
may have resulted in some reduction in the risk of HF in people
with preserved ejection fraction [25, 81]. This is an important sug-
gestion, as preserved ejection fraction HF, which is common in
CKD, has few proven effective therapies [29]. However, neither of
these trials definitively differentiated the type of HF, so it is not
possible to confirm a reduced risk of preserved ejection fraction
HF. Instead, the Empagliflozin Outcome Trial in Patients with
Chronic Heart Failure with Preserved Ejection Fraction
(EMPEROR-Preserved) and EMPEROR-Reduced trials with empagli-
flozin 10 mg versus placebo are recruiting from these two HF pop-
ulations and including people with and without diabetes. In
addition, the effects of dapagliflozin versus placebo in people
with reduced ejection fraction are being explored in Dapa-HF
(Table 1). The primary endpoints of all three of these dedicated
HF trials include a composite of CV death or hospitalization for
HF [42]. The three large kidney trials of SGLT-2 inhibition have in-
cluded this same composite as a secondary outcome [74, 77, 82,

0.4 0.6 0.8 1 1.5

Empagliflozin
(n=4687)

Placebo
(n=2333) Hazard ratio (95% CI) p value for

interaction

Empagliflozin
better

Placebo
better

(A) CV death
eGFR (mL min 1.73m2)

≥90 28/1050 (2.7%) 19/488 (3.9%) 0.70 (0.39−1.25)
0.28

≥60 to <90 69/2423 (2.8%) 70/1238 (5.7%) 0.49 (0.35−0.68)
≥45 to <60 49/831 (5.9%) 30/418 (7.2%) 0.82 (0.52−1.29)
<45 26/381 (6.8%) 18/189 (9.5%) 0.71 (0.39−1.30)

All participants 172/4687 (3.7%) 137/2333 (5.9%) 0.62 (0.49−0.77)

(B) CV death or hospitalization for HF
eGFR (mL min 1.73m2)

≥90 36/1050 (3.4%) 25/488 (5.1%) 0.67 (0.40−1.12)
0.85

≥60 to <90 117/2423 (4.8%) 96/1238 (7.8%) 0.60 (0.46−0.79)
≥45 to <60 71/831 (8.5%) 48/418 (11.5%) 0.74 (0.51−1.07)
<45 41/381 (10.8%) 29/189 (15.3%) 0.67 (0.41−1.07)

All participants 265/4687 (5.7%) 198/2333 (8.5%) 0.66 (0.55−0.79)

(C) All−cause hospitalization
eGFR (mL min 1.73m2)

≥90 343/1050 (33%) 155/488 (32%) 1.03 (0.85−1.24)
0.34

≥60 to <90 842/2423 (35%) 467/1238 (38%) 0.88 (0.79−0.99)
≥45 to <60 357/831 (43%) 203/418 (49%) 0.82 (0.69−0.97)
<45 183/381 (48%) 100/189 (53%) 0.84 (0.66−1.07)

All participants 1725/4687 (37%) 925/2333 (40%) 0.89 (0.82−0.96)

FIGURE 4: Effect of allocation to empagliflozin versus placebo on (A) CV death, (B) CV death or hospitalization for HF and (C) all-cause hospitalization, by baseline eGFR.
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83]. It should be noted that in post hoc analyses of the EMPA-REG
OUTCOME trial, allocation to empagliflozin reduced the risk of CV
death or hospitalization for HF by 34% [HR 0.66 (95% CI 0.55–0.79)],
a benefit that was similar irrespective of baseline risk of HF [84].

Exploration of the EMPA-REG OUTCOME data has suggested
that the increase in haematocrit caused by empagliflozin, a sur-
rogate for reductions in plasma volume, was the intermediate

clinical parameter with the largest mediating effect on the re-
duction in CV death [85]. This observation may have particular
relevance in CKD populations, where non-atherosclerotic heart
disease and fluid overload/HF are common [80].

Notably, in subgroup analyses from the EMPA-REG
OUTCOME trial, the proportional effects of empagliflozin on CV
death and on the composite of CV death or hospitalization for

0.2 0.4 1 2 4 8

Empagliflozin
(n=4687)

Placebo
(n=2333)

Incidence rate ratio
(95% CI)

p value
trend†

Empagliflozin better Placebo better

Hypoglycaemia requiring assistance
eGFR ≥60 40/3473 (1.2%) 18/1726 (1.0%) 1.06 (0.61−1.85)
eGFR ≥45 to <60 11/831 (1.3%) 10/418 (2.4%) 0.51 (0.22−1.21)
eGFR <45 12/381 (3.1%) 8/189 (4.2%) 0.78 (0.32−1.92)

0.40

All participants 63/4687 (1.3%) 36/2333 (1.5%) 0.84 (0.56−1.26)
Urinary tract infection*
eGFR ≥60 564/3473 (16.2%) 291/1726 (16.9%) 0.92 (0.80−1.07)
eGFR ≥45 to <60 186/831 (22.4%) 83/418 (19.9%) 1.08 (0.83−1.40)
eGFR <45 92/381 (24.1%) 49/189 (25.9%) 1.03 (0.73−1.46)

0.35

All participants 842/4687 (18.0%) 423/2333 (18.1%) 0.96 (0.85−1.08)
Mycotic genital infection
eGFR ≥60 237/3473 (6.8%) 32/1726 (1.9%) 3.68 (2.54−5.32)
eGFR ≥45 to <60 48/831 (5.8%) 8/418 (1.9%) 2.87 (1.36−6.07)
eGFR <45 16/381 (4.2%) 2/189 (1.1%) 4.26 (0.98−18.55)

0.82

All participants 301/4687 (6.4%) 42/2333 (1.8%) 3.55 (2.57−4.91)
Volume depletion
eGFR ≥60 158/3473 (4.5%) 66/1726 (3.8%) 1.16 (0.87−1.54)
eGFR ≥45 to <60 59/831 (7.1%) 33/418 (7.9%) 0.83 (0.54−1.27)
eGFR <45 22/381 (5.8%) 16/189 (8.5%) 0.70 (0.37−1.33)

0.09

All participants 239/4687 (5.1%) 115/2333 (4.9%) 1.00 (0.80−1.25)
Acute kidney injury
eGFR ≥60 110/3473 (3.2%) 68/1726 (3.9%) 0.77 (0.57−1.04)
eGFR ≥45 to <60 79/831 (9.5%) 53/418 (12.7%) 0.69 (0.49−0.98)
eGFR <45 57/381 (15.0%) 34/189 (18.0%) 0.87 (0.57−1.32)

0.77

All participants 246/4687 (5.2%) 155/2333 (6.6%) 0.76 (0.62−0.93)
Hyperkalemia
eGFR ≥60 46/3473 (1.3%) 36/1726 (2.1%) 0.61 (0.39−0.94)
eGFR ≥45 to <60 33/831 (4.0%) 29/418 (6.9%) 0.53 (0.32−0.86)
eGFR <45 14/381 (3.7%) 13/189 (6.9%) 0.55 (0.26−1.17)

0.72

All participants 93/4687 (2.0%) 78/2333 (3.3%) 0.57 (0.42−0.77)
Bone fracture
eGFR ≥60 122/3473 (3.5%) 59/1726 (3.4%) 0.99 (0.72−1.35)
eGFR ≥45 to <60 39/831 (4.7%) 25/418 (6.0%) 0.73 (0.44−1.20)
eGFR <45 18/381 (4.7%) 7/189 (3.7%) 1.35 (0.57−3.24)

0.97

All participants 179/4687 (3.8%) 91/2333 (3.9%) 0.94 (0.73−1.21)
Lower limb amputation
eGFR ≥60 52/3473 (1.5%) 24/1726 (1.4%) 1.07 (0.66−1.73)
eGFR ≥45 to <60 24/831 (2.9%) 13/418 (3.1%) 0.91 (0.46−1.78)
eGFR <45 12/381 (3.1%) 6/189 (3.2%) 0.97 (0.36−2.58)

0.77

All participants 88/4687 (1.9%) 43/2333 (1.8%) 1.01 (0.70−1.45)

†Test for trend in incidence rate ratio across eGFR categories.
*Pyelonephritis, urosepsis or serious adverse event consistent with urinary tract infection.
Empagliflozin 4/4687 vs placebo 1/2333 participants reported diabetic ketoacidosis.
Empagliflozin 0/4687 vs placebo 0/2333 participants reported Fournier's gangrene (perineal necrotizing fasciitis).

FIGURE 5: Effect of allocation to empagliflozin versus placebo on adverse events, by baseline eGFR.
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HF were similar irrespective of baseline eGFR (Figure 4A and B)
or the level of albuminuria (Supplementary Figure 1) [33, 86].

Safety and tolerability of SGLT-2 inhibition

In the EMPA-REG OUTCOME trial, empagliflozin was generally
well-tolerated during a median follow-up of just over 3 years.
The frequency of adverse events that led to discontinuation of
study treatment and serious adverse events among participants
allocated to empagliflozin was no higher than among those al-
located to placebo [32, 33]. Indeed, there was a significant 11%
reduction in the risk of hospitalization for any cause among
those allocated to empagliflozin compared with placebo [HR
0.89 (95% CI 0.82–0.96); Figure 4C].

Overall in the EMPA-REG OUTCOME trial, there was no sig-
nificant increase in the frequency of hypoglycaemia requiring
assistance among those allocated to empagliflozin as compared
with placebo [HR 0.84 (95% CI 0.56–1.26); Figure 5], but there is a
potential for increased risk of hypoglycaemia with empagliflo-
zin when used in combination with a sulphonylurea or insulin
[87]. Importantly, in studies comprising individuals with normo-
glycaemia, SGLT-2 inhibitors do not alter fasting plasma glucose
levels [55], and so it is not anticipated that SGLT-2 inhibition
will increase hypoglycaemia risk in those without diabetes.

All currently marketed SGLT-2 inhibitors carry a warning
about diabetic ketoacidosis on their US labels. In the EMPA-REG
OUTCOME trial, ketoacidosis was a rare event (see Figure 5 foot-
note) and so the precise size of the risk of ketoacidosis with
SGLT-2 inhibition in different types of people is currently uncer-
tain. Since the most common cause of ketoacidosis is insuffi-
cient endogenous insulin availability, the risk of ketoacidosis is
expected to be considerably lower in people without diabetes.

The EMPA-REG OUTCOME data showed that, as compared
with placebo, empagliflozin increases the frequency of my-
cotic genital infections by �3-fold [HR 3.55 (95% CI 2.57–4.91)]
but did not increase urinary tract infections [HR 0.96 (95% CI
0.85–1.08)]. Unlike dual inhibition of the RAS system, the
combination of RAS blockade and empagliflozin did not cause
serious hyperkalaemia [HR 0.57 (95% CI 0.42–0.77)] or acute
kidney injury [HR 0.76 (95% CI 0.62–0.93)], and all these safety
assessments appeared similar across the range of baseline
eGFRs studied (Figure 5) [13, 33, 86]. Laboratory analyses have
also found that blood concentration of calcium and phos-
phate did not differ in a clinically relevant manner among
those allocated empagliflozin versus placebo [87].

The CANVAS/CANVAS-R showed that canagliflozin was also
generally well-tolerated [31]. Like empagliflozin, canagliflozin
caused an excess of genital mycotic infections, but a possible in-
creased risk of lower-limb amputation and bone fracture was
also identified. Neither of these potential hazards were ob-
served in the EMPA-REG OUTCOME trial (Figure 5) or when the
EMPA-REG OUTCOME trial was combined with other placebo-
controlled empagliflozin trials (including >12 000 participants
with T2DM) [87]. Nevertheless, amputations and bone fractures,
in addition to ketoacidosis, are being carefully monitored in the
ongoing SGLT-2 inhibitor trials.

CONCLUSIONS

There is a high unmet clinical need to reduce further the risks
of kidney disease progression and CV disease in people with
CKD irrespective of whether they have diabetes. Results from
the EMPA-REG OUTCOME trial and the pooled CANVAS/
CANVAS-R programme have raised a strong hypothesis that

SGLT-2 inhibition could reduce the risk of kidney disease progres-
sion in CKD. Mechanistically, the effects of SGLT-2 inhibition on
intraglomerular pressure appear to complement the effects of RAS
inhibition (Figure 1) without causing hyperkalaemia or acute kid-
ney injury, so their combination may have the potential to benefit
those at risk of hyperfiltration (i.e., those with reduced eGFR and/
or albuminuria). Moreover, there is good reason to hypothesize
that SGLT-2 inhibition may reduce HF risk, a common condition
in CKD. As SGLT-2 inhibition does not appear to require preserved
kidney function or overt hyperglycaemia to have important phar-
macological effects, another large, prospective, placebo-controlled
trial called EMPA-KIDNEY (The Study of Heart and Kidney
Protection With Empagliflozin) is now planned in order to test de-
finitively whether SGLT-2 inhibition with empagliflozin can re-
duce the risk of cardio-renal outcomes in a broad range of people
with CKD, including individuals with overt albuminuria and those
with low eGFR, irrespective of their level of albuminuria.

SUPPLEMENTARY DATA

Supplementary data are available at ndt online.
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