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Bayesian Models

Multisensory Integration (MSI) is the study of how information coming from different sensory
modalities, such as vision, audition and etc. are being integrated by the nervous system (Stein
et al., 2009) as a complex system. MSI is one of the most important aspects of neuroscience
which has a great influence on our decision making system. It plays a key role in our
understanding of surrounding environment which makes a coherent representation of the world
for us (Lewkowicz and Ghazanfar, 2009). Since signals in our sensory systems are corrupted by
variability or noise, the nervous system combines different kinds of sensory information like
sound, touch etc. to achieve a meaningful and continuous stream of percepts (Kording and
Wolpert, 2006; Lewkowicz and Ghazanfar, 2009). Recently, researchers have shown an increased
interest in MSI modeling, to discover the causes of related disorders such as under-sensitivity or
hyposensitivity (Knill and Pouget, 2004). Moreover individuals with Autism Spectrum Disorder
(ASD) have an impaired ability to integrate multisensory information to make a unified percept
(Stevenson et al., 2014).

Different researches have modeled MSI in a variety of ways. Computational methods, such as
Kalman Filter (KF) and BayesianNetworks (BN) are used widely tomodel probabilistic functions of
the nervous system including MSI (Van Der Kooij et al., 1999; Kording andWolpert, 2004). In KF-
based models there is a basic assumption on accuracy of the sensory input data. This assumption
says that the error’s Probability Density Function (PDF) of each sensor is Gaussian. According
to KF, it is provable that data fusion of two different kinds of data for one variable measurement
leads to more accurate results (Kalman, 1960). A serious weakness with this method, however, is
its basic assumption. Assuming a Gaussian form of the PDF of the sensory systems’ error is in
contradiction with the brain’s internal models and prior knowledge about human sensory system
and environmental models which are not necessarily Gaussian-like. Additionally, as different
formats are used by each sensory modality to encode the same properties of the environment or
body, MSI cannot be as simple as an averaging between sensory inputs (Deneve and Pouget, 2004).
Hence, it is clear that KF-basedmodels are not valid for manyMSI studies and therefore researchers
tried to modify this method (Van der Zijpp and Hamerslag, 1994; Julier and Jeffrey, 2004).

Since BNs have not any assumption on accuracy of the input data, they have attracted
much attention recently. A BN is a graphical model that represents probabilistic relationships
among variables of interest. By using graphical models in conjunction with statistical techniques,
several advantages for data analysis will be obtained: Firstly, because a BN represents conditional
dependencies among all variables, it is able to handle situations where some data entries aremissing.
Secondly, the model can be used to learn causal relationships, so it can be used to understand
a problem domain and to predict the consequences of intervention. Thirdly, because BNs have
both causal and probabilistic semantics, they represent combining prior knowledge and data ideally
(Heckerman, 1998; Wasserman, 2011).
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Generally, there are three main inference tasks for BNs:
inferring unobserved variables, parameter learning, and structure
learning. They are used widely for modeling knowledge in
computational biology, bioinformatics, etc. For example, a BN
could represent the probabilistic relationships between diseases
and symptoms. Given symptoms, the network can be used to
compute the probabilities of the presence of various diseases.

As it mentioned before, the brain needs using different
resources of information altogether to be able to make a sound
decision about a situation. In such cases BNs can be used to
model brain’s function in many studies (Seilheimer et al., 2014).
It is worthmentioning that in BNs, relationship between different
nodes is not as simple as an averaging and we can model
more complex probabilistic problems by using BNs (Bishop and
Nasser, 2006).

However, it is obvious that the reliability of sensory modalities
varies widely according to the context and in a BN the effect
of one node on the other one can vary from one task or
situation to another one. But it is clear that when we assume
a node as a parent node for another one, this relation could
not be changed and new experiences would not cause new links
between separated nodes. The main weakness of the BN based
models is the failure to address the way it uses to reconstruct
the network, based on new observed experiences. Most studies
in MSI modeling have only focused on one task in which
the effective sensory resources are known before, therefore, the
structure of the network is known too, and we only need to train
the network. By contrast, when we want to model MSI, we should
not restrain it only in some certain tasks but the model should
instead be generalizable to other tasks. It means that the model
should be more dynamic and task independent. In addition, it is
clear that time has a great influence in our decision making and
reasoning and unfortunately, BN fails to code the time directly
(Mihajlovic and Petkovic, 2001).

We suggest that, MSI models will be more generalized if we
use Dynamic BayesianNetworks (DBN)which describes a system
that dynamically changes over time. In a BN that models the
interactions between sensory modalities, the nodes are associated
with activated sensory modalities and the edges represent the
interactions among sensory modalities. Sensory modalities of a
neural system including n sensory modalities are indexed in a
set I = {i : i = 1, 2, . . . n}. Consider activation of a sensory
modality measured by fMRI time-series or EEG over the sensory
modality. Let xi be the activation measuring the response of
sensory modality i.

BNs describe the PDF over the activation of sensory

modalities, where the graphical structure provides an easy
way to specify conditional interdependencies for a compact

parameterization of the distribution. A BN defined by a structure
S is a directed acyclic graph (DAG) and a joint distribution over
the set of time-series x = {xi : i ∈ I}. The set of activations
of the parents of sensory modality i is denoted by ai, and a DAG
offers a simple and unique way to decompose the likelihood of
activation in terms of conditional probabilities: where θ = {θi :

i ∈ I} represents the parameters of the conditional probabilities
(Rajapakse and Zhou, 2007).

DBNs extend BNs to incorporate temporal characteristics of
the time-series x. x(t) = {xi(t) : i ∈ I} represents the
activations of n sensory modalities at time t, where the instances
t = 1, 2, . . .T correspond to the times when sensory modality
measures are taken and T denotes the total number of measures.
In order to model the temporal dynamics of brain processes, we
need to model a probability distribution over the set of random

variables
⋃T

t=1 x(t) which is complex and practically hard.
To avoid an explosion of the model complexity, one can

assume that the temporal changes of activations of brain regions
are stationary and first-order Markovian. This assumption
provides a tractable causal model that explicitly takes into
account the temporal dependencies of brain processes. When
facing more complex temporal processes and connectivity
patterns, higher-order and non-stationaryMarkov models can be
used to overcome the complexity.

The connectivity structure between two consecutive data
sampling is represented by the transition network, which renders
the joint distribution of all possible trajectories of temporal
processes. The structure of the DBN is obtained by unrolling the
transition network over consecutive scans for all t = 1, 2, . . . , T
(Rajapakse and Zhou, 2007).

In an overview, we here suggest that DBN may be a more
useful method to model MSI in comparison to prior methods
because of three reasons. Firstly, as DBN changes dynamically,
initial structure of the network does not lead to an unreliable
result and we can use the network in various kinds of studies
(because this method is task-independent). Secondly, in cases
which we are not sure about the relation and interaction
between different sensory modalities, DBN output can help us
to achieve a more accurate understanding about MSI processes.
Moreover, there exist cyclic functional networks in the brain,
such as cortico-subcortical loops which BNs are not capable
to model. Unlike BN, DBN has the capability of modeling
recurrent networks while still satisfying the acyclic constraint of
the transition network (Rajapakse and Zhou, 2007). This is an
important advantage of modeling neural system with DBN as
these key features of DBN help us to obtain a proper viewpoint
about MSI in different tasks and it makes the study of related
disorders easier and closer to reality.
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