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Abstract. The emergence of new diseases, such as HIV/AIDS, SARS,
and Ebola, represent serious problems for the public health and med-
ical science research to address. Despite the rapid development of vac-
cines and drugs, one challenge in disease control is the fact that one
pathogen sometimes generates many strains with different spreading fea-
tures. Hence it is of critical importance to investigate multi-strain epi-
demic dynamics and its associated epidemic control strategies. In this
paper, we investigate two controlled multi-strain epidemic models for
heterogeneous populations over a large complex network and obtain the
structure of optimal control policies for both models. Numerical exam-
ples are used to corroborate the analytical results.

Keywords: Bi-virus models · Epidemic process · Optimal control ·
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1 Introduction

Infectious diseases remain a serious medical burden all around the world with
15 million deaths per year estimated to be directly related to infectious diseases.
The emergence of new diseases such as HIV/AIDS, the severe acute respiratory
syndrome (SARS) and, most recently, the rise of Ebola, represent a few examples
of the serious problems that the public health and medical science research need
to address.

While for centuries mankind seemed helpless against these sudden epidemics,
in recent time, our ability to control future epidemic outbreaks has been facili-
tated by the advances in modern science. The cures for a number of dangerous
pathogens are available and can be developed and manufactured faster than
ever before thanks to the genetic revolution new drugs to prevent and reduce
the health consequences of new epidemics. The vaccine against new influenza A
(H1N1) has been developed rapidly to be available only a few months after the
beginning of the epidemic.
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However, one challenge in disease control is the fact that one pathogen
sometimes generates many strains with different spreading features, and hence
a detailed investigation of multi-strain epidemic dynamics has great relevance
[1–3]. For example, the human immunodeficiency virus (HIV) (which causes
acquired immune deficiency syndrome (AIDS)) has many genetic varieties and
can be divided into several distinct strains, such as strain HIV-1 and strain
HIV-2 [4]. On the other hand, one pathogen is always incorporated with other
pathogens [5]. The influenza A (H1N1) virus has the potential to develop into
the first influenza pandemic of the twenty-first century [6], and it is accompanied
by seasonal influenza [7].

In this paper, we establish a control-theoretic model to design disease control
strategies through quarantine and immunization to mitigate the impact of epi-
demics on our society. Disease transmission in epidemics can be represented by
dynamics on a graph where vertices denote individuals and an edge connecting a
pair of vertices indicates an interaction between individuals. Due to a large popula-
tion of people involved in the process of disease transmission, randomgraph models
such as the small-world networks in [8] or scale-free networks in [9] are convenient
to capture the heterogeneous patterns in the large-scale complex network.

We investigate two controlled multi-strain epidemic models for heteroge-
neous populations over a large complex network. One is the Susceptible-Infected-
Recovered (SIR) epidemic process. The control is to quarantine a fraction of the
infected nodes. Another model is the Susceptible-Infected-Susceptible (SIS) epi-
demic process. The control in this model is to provide treatment to the infected
individuals, while treated individuals can become susceptible again to the infec-
tion of the disease.

The paper is organized as follows. Section 2 presents the controlled SIR math-
ematical model. Section 3, using Pontryagin’s minimum principle, defines the
structure optimal control policies. Section 4 presents the optimal control prob-
lem for controlled SIS model. Section 5 focuses on the analysis of the optimal
control of SIS model. Numerical examples will be presented in Sect. 6. Section 7
concludes the paper and presents future research directions.

2 SIR Model for Two-Strain Viruses

Denote by Sk(t), Rk(t) the population densities of the Susceptible and Recovered
nodes with degree k at time t. We consider two strains of viruses co-exist in the
network. I1k(t), I2k(t) are the population densities of the Infected nodes of degree
k at time t. We assume that the total population is constant in the network for
all t, i.e., Sk(t) + I1k(t) + I2k(t) + Rk(t) = 1. We have extended the simple SIR
model introduced by [10] to describe the situation with two virus types over a
complex network.

dSk

dt = −δ1SkI1kΘ1 − δ2SkI2kΘ2;
dI1

k

dt = (δ1SkΘ1 − σ1 − u1
k)I1k ;

dI2
k

dt = (δ2SkΘ2 − σ2 − u2
k)I2k ;

dRk

dt = (σ1 + u1
k)I1k + (σ2 + u2

k)I2k ,

(1)

where δi are infection rates for virus Vi, i = 1, 2, and σi are recovered rates.
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At the beginning of epidemic process t = 0, most of nodes in the network
belong to the susceptible subgroup, and small subgroup in total population is
infected; and the remaining nodes are in the recovered subgroup. Hence initial
states are 0 < Sk(0) < 1, 0 < I1k(0) < 1, 0 < I2k(0) < 1, Rk(0) = 1 − Sk(0) −
I1k(0) − I2k(0). Θi(t) can be written in general (see [11], [12]) as

Θi(t) =
∑

k′

τ(k′)P (k′|k)Ij
k′

k′ , i = 1, 2, (2)

where τ(k) denotes the infectivity of a node with degree k. P (k′|k) describes
the probability of a node with degree k pointing to a node with degree k′, and
P (k′|k) = k′P (k′)

k′ , where 〈k〉 =
∑
k′

kP (k). For scale-free node distribution P (k) =

C−1k−2−γ , 0 < γ ≤ 1, where C = ζ(2 + γ) is Riemann’s zeta function, which
provides an appropriate normalization constant for sufficiently large networks.

The control parameters which can be used to protect the network from the
propagation of the virus with k links are defined as uk = (u1

k, u2
k). Here, ui

k are
the fractions of the infected nodes which are quarantined in the population. The
rates σi are the coefficients of “self-recovery”, which can be interpreted as the
activity of stationary antivirus software or firewalls.

The objective function: We minimize the overall cost in time interval [0, T ].
At any given t, the following costs f1(I1k(t)), f2(I2k(t)) are treatment costs;
g(Rk(t)) is utility of having Rk(t) fraction of nodes recovered at time t;
h1(u1

k(t)), h2(u2
k(t)) are costs for using antivirus patches or quarantine that help

to reduce epidemic spreading, kI1
k
, kI2

k
, kR represent the cost and benefit for the

infected and the recovered in the end of the epidemic, respectively. Here, func-
tions fi(t) are non-decreasing and twice-differentiable, convex functions, with
fi(0) = 0, fi(Ii

k) > 0 for Ii
k > 0, i = 1, 2; g(Rk(t)) is non-decreasing and differ-

entiable, and g(0) = 0; hi(ui
k(t)) is a twice-differentiable and increasing function

in ui
k(t) such that hi(0) = 0, hi(ui

k) > 0, i = 1, 2 when ui
k > 0.

The aggregated system cost is given by

J =

T∫

0

f1(I1k(t)) + f2(I2k(t)) − g(Rk(t)) + h1(u1
k(t))

+ h2(u2
k(t))dt + kI1

k
I1k(T ) + kI2

k
I2k(T ) − kRk

Rk(T ) (3)

and the optimal control problem is to minimize the cost, i.e., min{u1
k,u2

k} J . To
simplify the analysis, we consider the case where kI1

k
= kI2

k
= kRk

= 0.
Treatment or isolation can be considered as the control parameters that can

reduce the fraction of infected nodes in network. We define uk = (u1
k, u2

k) as
control variables with 0 ≤ u1

k(t) ≤ 1, 0 ≤ u2
k(t) ≤ 1, for all t.

3 Optimal Control of SIR Model

We use Pontryagin’s minimum principle [13] to find the optimal solution uk(t) =
(u1

k(t), u2
k(t)) to the problem described above. Define the associated Hamiltonian
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H and adjoint functions λSk
, λI1

k
, λI2

k
, λRk

as follows:

H = f1(I1k(t)) + f2(I2k(t)) − g(Rk(t)) + h1(u1
k(t))

+h2(u2
k(t)) + (λI1

k
(t) − λSk

(t))δ1Sk(t)I1k(t)Θ1(t)
+ (λI2

k
(t) − λSk

(t))δ2Sk(t)I2k(t)Θ2(t)
+ (λRk

(t) − λI1
k
(t))σ1I

1
k(t) + (λRk

(t) − λI2
k
(t))σ2I

2
k(t)

− (λI1
k
(t) − λRk

(t))I1k(t)u1
k − (λI2

k
(t) − λRk

(t))I2k(t)u2
k(t).

(4)

Here, we have used the condition R = 1 − Sk − I1k − I2k . We construct the
associated adjoint system as follows:

λ̇S(t) = −∂H
∂S = −(λI1

k
− λSk

)δ1I1kΘ1 − (λI2
k

− λSk
)δ2I2kΘ2;

λ̇I1
k
(t) = − ∂H

∂I1
k

= −f ′
1(I

1
k) + (λSk

− λI1
k
)δ1SkΘ1

− (λRk
− λI1

k
)σ1 + (λI1

k
− λRk

)u1
k;

λ̇I2
k
(t) = − ∂H

∂I2
k

= −f ′
2(I

2
k) + (λSk

− λI2
k
)δ2SkΘ2

− (λRk
− λI2

k
)σ1 + (λI2

k
− λRk

)u2
k;

λ̇Rk
(t) = − ∂H

∂Rk
= g′(Rk);

(5)

with the transversality conditions given by

λI1
k
(T ) = 0, λI2

k
(T ) = 0, λSk

(T ) = 0, λRk
(T ) = 0. (6)

According to Pontryagin’s minimum principle [13], there exist continuous and
piecewise continuously differentiable co-state functions λi that at every point
t ∈ [0, T ] where u1

k and u2
k is continuous, satisfying (5) and (6). In addition, we

have
(u1

k, u2
k) ∈ arg min

u1
k,u2

k∈[0,1]
H(λ, (Sk, I1k , I2k , Rk), (u1

k, u2
k)), (7)

where λ = (λSk
, λI1

k
, λI2

k
, λRk

).

4 Structure of Optimal Control

Based on previous research, e.g., [13–15], in this section, we show that an optimal
control uk(t) = (u1

k(t), u2
k(t)) has the structure summarized in Proposition 1.

Proposition 1. The following statements hold for the optimal control problem
described in Sect. 2:

– If hi(·) are concave, then there exist time moment t1 (0 < t1 < T ) such that:

ui
k(t) =

{
1, for φi

k < hi(1), 0 < t < t1;
0, for φi

k > hi(1), t1 < t < T.

– If hi(·) are strictly convex, then exists t0, t1 (0 < t0 < t1 < T ):

ui
k(t) =

⎧
⎨

⎩

0, φi
k ≤ h′

i(0), i = 1, 2, t ∈ (t1;T ];
h′−1(φi

k), h′
i(0) < φi

k ≤ h′
i(1), i = 1, 2, t ∈ (t0; t1];

1, h′
i(1) < φi

k, i = 1, 2, t ∈ [0; t1].
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Lemma 1. Functions φi
k, i = 1, 2 are decreasing functions of t, for all t ∈ [0, T ].

Lemma 2. For all 0 ≤ t ≤ T , we have (λI1
k

− λSk
) > 0, (λI2

k
− λSk

) > 0,
(λRk

− λI1
k
) > 0.

The construction of optimal controls for the structured population follows the
Pontryagin’s minimum principle [13] and similar approaches used in [14], [15].

5 SIS Model with Two Virus Strains

A set of nodes N is divided into two subgroups: the Susceptible (S), the Infected
(I). We suppose that two different viruses with different strains circulate in the
network at time t. Let Sk(t), I1k(t), I2k(t) be the densities of the susceptible and

infected nodes with degree k at time t. λi =
δi

σi
, where δi is infection rate and

infected nodes are cured and become again susceptible with rate σi, i = 1, 2.

dSk

dt
= −λ1kSk(t)Θ1 − λ2kSk(t)Θ2

+u1
kI1k(t) + u2

kI2k(t) + I1k(t) + I2k(t);
dI1k
dt

= λ1kSk(t)Θ1 − I1k(t) − u1
k(t)I1k(t);

dI2k
dt

= λ2kSk(t)Θ2 − I2k(t) − u2
k(t)I2k(t).

(8)

Objective function. We will minimize the overall cost in time interval [0, T ]. At
any given t, the following costs exist in the system: fi(Ii

k(t)) are infected costs;
hi(ui

k(t)) are costs for medical measures (i.e. quarantining) that help reduce
the epidemic spreading. Here, the functions fi(Ii

k(t)) are non-decreasing, twice-
differentiable, and convex with fi(0) = 0, fi(Ii

k(t)) > 0 for Ii
k > 0, g(Sk(t)) non-

decreasing and differentiable function, describing the benefits of using control,
where Sk(t) = 1 − I1k(t) − I1k(t) and g(0) = 0; hi(ui

k(t)) are twice-differentiable
and increasing function in ui

k(t) such that hi(0) = 0, hi(ui
k) > 0 when ui

k > 0
with feasible controls ui

k ∈ [0, 1].
The aggregated system cost is given by

J =

T∫

0

f1(I1k(t)) + f2(I2k(t)) + h1(u1
k(t))

+ h2(u2
k(t)) − g(Sk(t))dt. (9)

and the optimal control problem is to minimize the cost, i.e., minu1
k,u2

k∈[0,1] J .
System (8) describes the propagation of two different strains of viruses in the
network. The propagation of the viruses is controlled by parameters ui

k, i = 1, 2.
Here, ui

k are antivirus policies.



Multi-strain Epidemic Processes 113

We use Pontryagin’s minimum principle to find the optimal control uk(t) =
(u1

k(t), u2
k(t)) which yields the minimum solution to the functional (9) for the

problem described above. Consider the Hamiltonian:

H = −l0(f1(I1k(t)) + f2(I2k(t)) + h1(u1
k(t)) + h2(u2

k(t))
−g(Sk(t))) + l1(t)(−λ1(t)kSk(t)Θ1(t)
−λ2(t)kSk(t)Θ2(t) + u1

k(t)I1k(t) + u2
k(t)I2k(t) + I1k(t)

+I2k(t)) + l2(t)(λ1kS(t)Θ1(t) − I1k(t) − u1
k(t)I1k(t))

+l3(t)(λ2(t)kSk(t)Θ2(t) − I2k(t) − u2
k(t)I2k(t)).

(10)

where l0 = 1. The adjoint systems are

l̇1(t) = − ∂H
∂Sk

= −g′(Sk) − l1(−λ1Θ1I
1
k − l2λ2Θ2I

2
k) − l2λ1Θ1I

1
k − l3λ2Θ2I

2
k ;

l̇2(t) = − ∂H
∂I1

k
= f ′

1(I
1
k) − l1(−λ1Θ1Sk + u1

k + 1) − l2(λ1SkΘ1 − 1 − u1
k);

l̇3(t) = − ∂H
∂I2

k
= f ′

2(I
2
k) − l1(−λ2SkΘ2 + u2

k + 1) − l3(λ2SkΘ2 − 1 − u2
k),

(11)
with the transversality condition:

li(T ) = 0. (12)

Consider next derivatives:

∂H

∂u1
k

= h′
1(u

1
k) + (l1 − l2)I1k ;

∂H

∂u2
k

= h′
2(u

2
k) + (l1 − l3)I2k . (13)

According to Pontryagin’s minimum principle, there exist continuous and piece-
wise continuously differentiable co-state functions li that at every point t ∈ [0, T ]
where uk is continuous, satisfy (11) and (12). In addition, we have l(t) =
(l0(t), l1(t), l2(t), l3(t))

ui
k ∈ arg max

ui
k∈[0,1]

H(l, (Sk, I1k , I2k), ui
k). (14)

Since hi(ui
k) is non-increasing function, then h′

i(u
i
k) ≥ 0, Ii

k ≥ 0 as a fraction
of infected nodes, then condition (13) is satisfied only if ψi

k > 0, where

ψ1
k = (l1 − l2)I1k ; ψ2

k = (l1 − l3)I2k . (15)

is defined as the switching function.
Then, to establish the optimal vaccination policy, we formulate the next

proposition.

Proposition 2. The optimal vaccination policy has following structure: If h(·)
are concave, then exists time moment 0 < t1 < T such that:

ui
k(t) =

{
0, if ψi

k < hi(1), t ∈ (t1;T ];
1, if ψi

k > hi(1), t ∈ [0; t1].
(16)
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If h(·) is strictly convex, then exists t0, t1 (0 < t0 < t1 < T ) such that:

ui
k(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 , if ψi
k ≤ ∂hi(0)

∂ui
k

, t ∈ (t1;T ];

h′−1(ψi
k) , if ∂hi(0)

∂ui
k

< ψi
k ≤ ∂hi(1)

∂ui
k

, t ∈ (t0; t1];

1 , if ψi
k > ∂hi(1)

∂ui
k

, t ∈ [0; t0].

(17)

Lemma 3. Functions ψ̇i ≤ 0 are decreasing over the time interval [0, T ).

Lemma 4. Function (l1 − l2) ≤ 0 and (l1 − l3) ≤ 0 over the time interval [0, T ).

To prove the proposition 2, we follow the same techniques as in [13], [14],
[15].

6 Numerical Simulation

In this section, we present numerical simulations which are used to corroborate
the results of main propositions. We depict optimal policies for SIR and SIS
models for different cases if cost functions hi(ui

k) are strictly convex and concave.

Fig. 1. The example of scale-free network for N = 20. Group S = 5 (blue dots), group
I = 3, (yellow dots), group R = 12, (red dots). (Color figure online)

Here we take a piecewise linear infectivity,

τ(k) = min(αk,A), (18)

where α and A are positive constants, 0 < α ≤ 1. We set the infectivity para-
meter α = 0.02, then for k ∈ [1, 10] the infectivity rises and from k > 10 the
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individuals have the same infectivity equals to A = 0.2. To generate a net-
work with scale-free exponent 3 we use the preferential attachment algorithm
of Barabási and Albert (parameter γ = 1) [11,16]. The example of scale-free
network for γ = 1, N = 20, 〈k〉 = 13.9, maximum degree k = 19 is presented in
Fig. 1 [17] (Figs. 2 and 3).

Fig. 2. Experiment I. SIR model with-
out applying of control (degree k = 10).
Initial states are I1k(0) = 0.2, I2k(0) =
0.3, the maximum values are I1max =
0.26, I2max = 0.67. Epidemic peaks are
reached at T = 20. Average connectiv-
ity 〈k〉 = 13.9.

Fig. 3. Experiment I. SIR multi-strain
controlled model (degree k = 10).
Cost functions hi(·) are strictly convex.
Average connectivity 〈k〉 = 13.9.

Experiment I. We use the following values for SIR model:initial fractions of
susceptible, infected and recovered nodes are S(0) = 0.5, I1(0) = 0.2, I2(0) = 0.3
and R(0) = 0; infection rates are δ1 = 0.3 and δ2 = 0.4; recovered rates are σ1 =
0.003 and σ2 = 0.001; epidemic duration is T = 20 and costs function fI1

k
= 8I1k ,

fI2
k

= 10I2k , g(Rk) = 0.1Rk; hi(ui
k) are convex functions h1(u1

k) = 0.4(u1
k)2 and

h2(u2
k) = 0.5(u2

k)2. The optimal control policy is shown in Fig. 4.

Experiment II. Numerical simulations for SIS multi-strain model use the fol-
lowing values: initial fractions of susceptible and infected nodes are S(0) = 0.7,
I1(0) = 0.1, I2(0) = 0.2; infection rates are δ1 = 0.3 and δ2 = 0.4; recovered
rates are σ1 = 0.003 and σ2 = 0.001; epidemic duration is T = 20 and costs func-
tion fI1

k
= 8I1k , fI2

k
= 10I2k , g(Rk) = 0.1Rk; hi(ui

k) are strictly convex functions
h1(u1

k) = 0.4(u1
k)2 and h2(u2

k) = 0.5(u2
k)2 (Figs. 5, 6 and 7).

For both experiments, we have that the shape of control curves is the same for
each k and we have used the same class of functionals for SIR and SIS dynamic
systems.
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Fig. 4. Experiment I: Optimal control
in SIR model, costs functions hi(u

i
k)

are strictly convex. Switching points
are t1 = 1.4 and t2 = 1.8.

Fig. 5. Experiment I: Comparison of
the aggregated costs of SIR model: the
cost of controlled case is J = 36.39, the
cost of uncontrolled case is J = 701.3.

Fig. 6. Experiment II: SIS multi-strain
model without control (degree k = 10).
Initial states are I1k(0) = 0.1, I2k(0) =
0.2, the maximum values are I1max =
0.12, I2max = 0.73. Epidemic peaks are
reached at T = 20. Average connectiv-
ity 〈k〉 = 13.9.

Fig. 7. Experiment II: SIS multi-strain
controlled model (degree k = 10). Cost
functions hi(·) are strictly convex. The
average connectivity is 〈k〉 = 13.9.

7 Conclusion

This paper has investigated the optimal control of two epidemic models of two
co-existing virus strains for heterogeneous populations over a large complex net-
work. We have obtained the structure of the optimal controller in the form of a
threshold policy for a specific class of cost functions. Numerical examples have
been used to corroborate the results. We would further explore the stability
properties of the epidemic process under the optimal control.
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