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Background Human body microbiotas are influenced by several factors, including the interaction of the host with
the environment and dietary preferences. The role of host genetics in modulating the liver microbiota in the context
of NAFLD remains unknown. To address this gap, we examined the interplay between the liver metataxonomic pro-
file and host genetics.

Methods We obtained 16S rRNA gene sequences from liver biopsies and genotypes by Taqman-assays in 116 indi-
viduals. We compared taxon abundance at the genus level across host genotypes using dominant models of inheri-
tance. We focused the analysis on variants influencing the risk/ protection against NAFLD-histological severity
(PNPLA3-rs738409, TM6SF2-rs58542926, MBOAT7-rs641738, and HSD17B13-rs72613567) and a variant influenc-
ing macronutrient intake (FGF21-rs838133). We also explored the variants' combined effect via a polygenic risk score
(PRS).

Findings We identified at least 18 bacterial taxa associated with variants in the selected loci. Members of the Gam-
maproteobacteria class were significantly enriched in carriers of the rs738409 and rs58542926 risk-alleles, including
Enterobacter (fold change [FC]=6.2) and Pseudoalteromonas (FC=2) genera, respectively. Lawsonella (1.6-FC), Prevo-
tella_9 (FC=1.5), and Staphylococcus (FC=1.3) genera were enriched in rs838133-minor allele carriers, which is linked
to sugar consumption and carbohydrate intake. Tyzzerella abundance (FC=2.64) exhibited the strongest association
(p = 0.0019) with high PRS values (>4 risk alleles). The percentage of genus-level taxa variation explained by the
PRS was »7.4%, independently of liver steatosis score and obesity.

Interpretation We provided evidence that genetic variation may influence the liver microbial DNA composition.
These observations may represent potentially actionable mechanisms of disease.

Copyright � 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Research in context

Evidence before this study

NAFLD is a multifactorial disease that has become the
most prevalent chronic liver disease worldwide. The dis-
ease natural history is variable among individuals.
NAFLD phenotypic complexity is determined by multi-
ple disease-triggering mechanisms, including environ-
mental factors, genetic makeup, gut microbiota, and
lifestyle factors. Pioneering studies on the liver tissue
metataxonomic profile of patients with NAFLD revealed
that the liver contains a diverse repertoire of bacterial
DNA that may be involved in the disease severity. Nev-
ertheless, the potential interaction between the liver
microbial DNA composition and the host genetics is not
entirely understood.

Added value of this study

We explored the interrelationship between the liver
metataxonomic profile in patients with NAFLD across
the entire spectrum of the disease severity and variants
modifying either risk or protection against the disease
and variants involved in carbohydrate intake and mac-
ronutrient preferences. Together, we provide evidence
that the liver microbiota depends in part on the host
genetic background. By combining the effects of trait-
associated risk alleles, we demonstrated that »7.4% of
genus-level taxa variation is explained by a polygenic
risk score. This effect was independent of key covariate
parameters, including obesity and the liver amount of
fat. Furthermore, we explored the functional conse-
quences of taxa linked to genetic variation, and we
detected differentially abundant pathways and pre-
dicted bacteria-derived metabolites that may serve to
understand the mechanism (s) of disease.

Implications of all the available evidence

We present a proof-of-concept study demonstrating
that host genetics plays an essential role in modulating
the liver microbial DNA composition. Our results show,
for instance, that carriers of the PNPLA3-rs738409 risk
allele may present an overabundance of DNA derived
from members of the Gammaproteobacteria class, some
of which are capable of metabolizing alkane-derived
carbons to yield primary alcohols. Collectively, we pro-
vide a novel perspective in understanding disease
biology.
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is the leading
global cause of chronic liver disease1. The disease patho-
genesis involves a complex interrelationship among life-
style (including excessive intake of energy-dense foods
and diet rich in highly refined carbohydrates), systemic
metabolic dysregulation associated with related comor-
bidities such as obesity, type 2 diabetes, and
cardiovascular risk,1,2 genetic predisposition involving
nuclear and mitochondrial genomes,3,4 and epigenetic
mechanisms.5,6

The NAFLD natural history is characterized by not
only high inter-individual variability but also phenotypic
complexity, with histological stages ranging from non-
alcoholic fatty liver (NAFL) to steatohepatitis (NASH),
NASH-fibrosis, cirrhosis, and even hepatocellular carci-
noma1.

Owing to the advances in molecular techniques,
including high-throughput OMIC approaches, it has
been established that a significant proportion of the vari-
ability in NAFLD-histologic traits can be explained by a
highly interconnected and dynamic network of factors7

that includes the gut microbiome.8-12

Seminal studies examining the biogeography of bac-
terial communities of the human body13 revealed that
tissues'microbial composition plays a vital role in main-
taining not only individual organ physiology but also
systemic metabolic homeostasis. We recently found that
the liver metataxonomic signature may explain not only
differences in the NAFLD pathogenic mechanisms and
phenotypic histological complexity but also physiologi-
cal functions of the host.14

Several lines of evidence suggest that the microbial
composition of the body is shaped by diverse factors,
including host genetics.15 Xie and co-workers demon-
strated the heritability of many microbial taxa in the gut
microbiome, including those associated with diseases.16

More importantly, a recent study conducted by Kolde
showed that genetic attributes and single genetic variant
effects on the microbial features are specific to particu-
lar body sites.17

While it is widely accepted that genetic susceptibility
plays a significant role in the biology of NAFLD,4,7 the
role of genetics in modulating the liver microbiota com-
position associated with the disease remains unknown.
To explore whether the liver microbiota is shaped by
host genetics, we conducted candidate gene association
analyses using as a proxy of NAFLD histological severity
common variants in loci that impose either risk or pro-
tection against the disease (PNPLA3-rs738409,18,19

TM6SF2-rs58542926,20-22 MBOAT7-rs641738,23 and
HSD17B13-rs7261356724-26). In addition, as a proxy of
major dietary modifiers, we used a variant in a locus
that has been reproducibly linked to high carbohydrate
intake and macronutrient preferences (FGF21-
rs838133).27,28
Methods

Studied population
This study involves a secondary analysis of microbial
16S rRNA reads from the liver of 116 individuals, cate-
gorized as non-NAFLD patients (n = 19) and patients
with NAFL (n = 44) and NASH (n = 53), as explained
www.thelancet.com Vol 76 Month February, 2022
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elsewhere.14 The cohort of patients with NAFLD
included moderately obese or obese subjects (BMI < 40
kg/m2, n = 47) and severely/ morbidly obese patients
(BMI > 40 kg/m2) elected for bariatric surgery (n = 50).
By adopting a matched cohort study design, we ensured
that the non-NAFLD liver samples in each group
matched patients' features.14

As non-NAFLD liver tissue we included samples
from patients without either NAFLD or features of the
metabolic syndrome who were selected from patients
attending the Liver Unit, whose age and sex matched
the NAFLD patients. These patients presented near-nor-
mal liver histology in the liver specimens obtained by
percutaneous liver biopsy, and the reason for perform-
ing a liver biopsy in these subjects was based on the
presence of persistently mildly elevated serum liver
enzymes activity. In all the non-NAFLD subjects, all
causes of common liver disease were ruled out, and
they were included in the study if they did not have his-
tological evidence of fatty change; the histological diag-
nosis of non-NAFLD livers was minimal changes. In
the population of morbid obese patients, non-NAFLD
subjects were obese patients who also underwent bariat-
ric surgery and had not features of NAFLD demon-
strated in the liver biopsy.

Patients were recruited prospectively and were con-
sidered for inclusion if they had histopathologic evi-
dence of fatty liver disease, either NAFL or NASH, on
liver biopsy performed within the study period. Selec-
tion of biological samples included in the present study
was based on sufficient amounts of high-quality nucleic
acids (DNA) for performing metagenomic explorations.
Exclusion criteria: Secondary causes of steatosis, includ-
ing alcohol abuse (� 30 g for men and � 20 g for
women, of alcohol daily), total parenteral nutrition, hep-
atitis B and hepatitis C virus infection, and the use of
drugs known to precipitate steatosis were excluded. In
addition, patients with any of the following diseases
were excluded: autoimmune liver disease, metabolic
liver disease, Wilson's disease, and a-1-antitrypsin defi-
ciency. Patients under treatment with antibiotics,
immunosuppressive medication or proton-pump bomb
inhibitors were also excluded.

Biological specimens from NAFLD-participants and
non-NAFLD subjects were consecutively selected during
the same study period from the same population of
patients attending the participating institutions located in
Argentina, ensuring that all shared the same demographic
characteristics (occupation, educational level, place of resi-
dence, and ethnicity) as the matched patients.

Arterial hypertension was defined as systolic blood
pressure �140 mm Hg and/or diastolic blood pressure
�90 mm Hg following repeated examination and con-
sidering the average of 2 or more blood pressure meas-
urements on at least 2 subsequent visits.29

All liver specimens were obtained by liver biopsy that
was performed before any intervention (if required)
www.thelancet.com Vol 76 Month February, 2022
with ultrasound guidance using a modified 1.4-mm-
diameter Menghini needle (Hepafix, Braun, Germany)
under local anaesthesia on an outpatient basis, or dur-
ing bariatric surgery (surgically excised samples from
the left lobe were immediately collected after the abdo-
men was opened and before organs were manipulated).
A portion of each liver biopsy specimen was routinely
fixed in 40 g/l formaldehyde (pH 7.4), embedded in par-
affin, and stained with haematoxylin and eosin, Masson
trichrome, and silver impregnation for reticular fibres.
All biopsies were at least 3 cm in length and contained a
minimum of eight portal tracts.14
Ethics
Biological specimens, including blood samples and liver
biopsies from all subjects included in this study, were
obtained with written, informed consent under the
Institutional Review Board-approved protocols (protocol
numbers: 104/HGAZ/09, 89/100, 1204/2012, and
updated DI-2019-376-GCABA-HGAZ). Protocol # DI-
2019-376-GCABA-HGAZ (“Genetics of steatohepatitis
and its association with the liver tissue microbiome”) was
approved under the Argentinean Law No. 3301 on Pro-
tection of the Rights of Subjects in Health Research,
regulated by Decree No. 58/2011, which establishes the
regime for health research activity with human beings.
All data were de-identified prior to use. All investiga-
tions performed as a part of the present study were con-
ducted under the guidelines of the 1975 Declaration of
Helsinki, as revised in 1993.
Host genetics: selection of variants and genotyping
strategy
We selected variants in genes that serve as valid instru-
ments for assessing the interrelationship with the liver
microbial DNA composition. We focused the variant
selection on two axes, including variants influencing
the risk and /or protection against severe NAFLD-histo-
logical phenotypes and key external factors involved in
the disease pathogenesis, such as dietary preferences.
Hence, variant selection involved: (i) major genetic
modifiers of NAFLD and NASH natural history that
have been consistently replicated across ethnicities4,
including coding single nucleotide polymorphisms in
PNPLA3 (rs738409), TM6SF2 (rs58542926), MBOAT7
(rs641738), and the splice donor variant in HSD17B13
(rs72613567), and (ii) the synonymous rs838133 variant
in the first exon of FGF21, which is linked to food intake
regulation, macronutrient preference (high carbohy-
drate intake), and central reward pathways.27,28

The genetic analyses were performed on genomic
DNA extracted from white blood cells by a standard
method.30 For rs738409 genotyping, a high-throughput
genotyping method involving PCR amplification of
genomic DNA with two-tailed allele-specific primers
3
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was implemented as previously described.31 Genotyping
of rs58542926, rs641738, rs72613567, and rs838133 was
performed using TaqMan genotyping assays (dbSNP
rs58542926 assay C__89463510_10, #4351379, dbSNP
rs641738 assay C___8716820_10, # 4351379,
rs72613567 custom assay #4332072, and dbSNP
rs838133 assay C___8832415_10 Cat. # 4351379, respec-
tively, Applied Biosystems, Foster City, CA) according
to the manufacturer's instructions, as explained in our
previous publications.22,26,32

To ensure genotyping quality, we included DNA
samples as internal controls, hidden samples of known
genotype, and negative controls (water). The overall
genotype completion rate was 100%. To account for
possible population stratification, we used a collection
of 13 SNPs at different loci (located in chromosomes 4,
15, 17, 13, 1, and 3) and then analysed the data with the
Structure program Version 233 as we explained
elsewhere.22,26,32 We found no evidence of stratification
in our sample because the cases and the non-NAFLD
subjects showed similar Q values and the Structure pro-
gram assigned a similar distance to clusters, with no
further improvement in the fitting model by adding up
to four clusters (the greatest ln of likelihood was
obtained for K = 1).

In addition, we explored the combined effect/s of
variants by examining a polygenic risk score (PRS) cal-
culated as the sum of trait-associated risk alleles across
the selected loci. In the case of the HSD17B13
(rs72613567) variant, we considered the deletion allele
(-) as the risk allele.
Microbial DNA data collection
Using high-throughput 16S rRNA gene sequencing, we
obtained pertinent liver metataxonomic information
from the tissue samples of the 116 individuals as
explained earlier.14 In brief, microbial DNA was isolated
from fresh liver specimens by a manual protocol, after
which extracted bulk DNA samples were amplified with
barcoded primers, DNA libraries were constructed and
high-throughput sequencing was performed on an Illu-
minaMiSeq platform by Macrogen Inc. (NGS Division)
Seoul, South Korea. A negative (blank) control was used
to test the potential presence of contaminant DNA and/
or cross-contamination; the sample showed no product
and did not pass the quality control analysis.14 The 16S
rRNA gene hypervariable region 3 (V3) and V4 ampli-
cons were generated via PCR amplification using pri-
mers as reported elsewhere.14 The 16S rRNA gene
sequencing data were filtered, denoised, and processed
on the QIIME2 (version 2018.11) platform (http://
qiime2.org/index.html). To account for the generally
non-normal distribution of microbial community com-
position data, 16S rRNA abundances underwent nor-
malization by total sum combined with squared root
transformation. High-quality sequences were assigned
to operational taxonomic units (OTUs) using the QIIME
pipeline34 whereby default parameters were used in the
selection of OTUs for constructing the OTU table.
High-quality amplicon sequence variants were classified
using the vsearch algorithm with default parameters and
SILVA 16S-only 99% identity database (release 137) to
build our BIOM feature table of OTUs. Assessment of
differences in the liver bacterial DNA composition
across the entire disease severity spectrum was further
confirmed by an independent molecular approach as
explained earlier.14
Functional profiling of liver microbial DNA
To predict metagenome functional content from the
OTU table, we utilized the bioinformatics software
package PICRUSt2: Phylogenetic Investigation of Com-
munities by Reconstruction of Unobserved States
(https://github.com/picrust/picrust2/). To additionally
detect differentially abundant KEGG ortholog pathways,
we used the Piphillin metagenomics inference tool.35

The normalized sequence abundance table and the
weighted nearest-sequenced taxon index values per-
sample were used to predict pathways. The resulting
output was a list of MetaCyc pathway abundances
according to the MetaCyc database (https://metacyc.
org/). The STAMP software package (version 2.1.3),
which relies on the concept of biological relevance in
the form of confidence intervals, was employed to deter-
mine differentially enriched metabolic pathways (p <

0.05) and their effect sizes (h2) (http://kiwi.cs.dal.ca/
Software/STAMP).36 In addition, we reported p-values
corrected through the Benjamini-Hochberg procedure
for multiple testing corrections.
Statistical analysis
We compared taxon abundances at the genus level
across genotypes assuming a dominant model of inheri-
tance and comparing YY with XY + XX, in which X is
the risk allele. The use of a dominant model for all
tested variants is justified as we performed pairwise
comparisons of the relative abundance of each taxon.
Differences between genotype groups were assessed
using a pairwise Wilcoxon rank-sum test implemented
in the R-base function and the default method for p-
value correction using the web-application Calypso
(FDR < 0.05).37

To identify the potential discriminatory power of
individual bacterial DNA taxa over PRS, we used the
area under the receiver operating characteristic (ROC)
curve (AUC) and fold change. To adjust for relevant
covariates (sex, obesity degree, and liver disease sever-
ity), we used non-parametric ROC estimation using
bootstrap to obtain standard errors and confidence inter-
vals along with linear regression to model the covari-
ates.
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We calculated the fold change in the abundance of
taxon of interest as the ratio of the mean of sequencing
reads assigned to the taxon normalized by the total
number of sequencing reads combining with square
root transformation in each group. Measurements
across genotype groups were compared by non-paramet-
ric statistical tests (Wilcoxon rank test), with p < 0.05
indicating statistical significance. As indicated in some
cases, pair-wise comparisons between genotype groups
were performed through Student's t-test, and relative
abundance was calculated as the square root of each fea-
ture read count divided by the total number of features
reads in each sample, and the standard error (SE) is
indicated by error bars.

The R-squared in ANOVA estimated the genetic con-
tribution to the variance in the abundance of different
genera.

We used ordinary linear regression to study the cor-
relation between bacterial DNA abundance as depen-
dent variable and independent variables, in particular,
PRS as a continuous or dichotomic variable and relevant
covariates such as sex (0=female, 1=male), steatosis
score (0, 1, 2, and 3 grades), obesity degree (obese/ over-
weight vs. severe obesity) and liver disease severity
(non-NAFLD, NAFL, and NASH). After fit the model,
margins subroutine was used to estimate predicted
media at fixed values of some covariates as imple-
mented in the STATA v16.0 package (StataCorp LLC,
College Station, Texas, USA).

For the assessment of the association between blood
octane levels and liver fibrosis in a population-based
study, we used the svyset (survey design for dataset)
command (STATA 16.0). To avoid skewed distributions,
continuous variables were log-transformed (Log10). Sta-
tistical analyses were performed by linear regression
among blood octane concentration as the dependent
variable and quantiles of the median stiffness as the
independent variable. Age (years), gender (women= 0,
men= 1), body mass index (kg/m2), diabetes (no = 0,
yes = 1), and alcohol consumption (g per day) were also
included as covariates.

For the comparison of clinical, biochemical, and his-
tological characteristics we used Mann-Whitney U test,
except for female/male proportion between studied
groups that was assessed by a Chi-square test.

Sample size and power calculations indicate that a
sample with »50 participants per genotype group has a
power of »0.80 to detect media differences represent-
ing »2.0 fold-changes with a probability of <0.05 for
type I error.
Role of funders
The funders had no role in the conceptualization, study
design, data collection, analysis, interpretation of data,
in writing the paper, or in the decision to submit the
paper for publication.
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Results

Host genetics and hepatic microbial DNA associations
Detailed clinical, biochemical, and histological charac-
teristics of the study participants is shown in Table 1.
Briefly, the sample comprised of 55.17% women, with a
mean age of 46 § 2.3 years. Genotype frequencies were
in Hardy-Weinberg equilibrium (Table 2). Visualization
of the hierarchical relationship of liver microbial DNA
profile in the whole population for the 950 most abun-
dant taxa is depicted in Figure 1.

We next tested for the association between the rela-
tive abundance of bacterial DNA taxa and minor alleles
of the selected variants. We found that two genera were
significantly enriched in carriers of the PNPLA3-
rs738409 G-risk allele, including Enterobacter and Mari-
vita.

Gemella, Fusobacterium, Methylobacterium, Prevo-
tella_9, Pseudoalteromonas, and Megamonas populations
were significantly enriched in carriers of the TM6SF2-
rs58542926 T-risk allele.

Genera Butyricicoccus and Streptococcus were signifi-
cantly depleted, and Tyzzerella was increased in carriers
of the MBOAT7-rs641738 T-risk allele. Among carriers
of the protective A-INS allele of the HSD17B13-
rs72613567 variant, the abundance of genera Fusobacte-
rium and Parasutterella was significantly decreased
while that of theMethylotenera genus was enriched.

Regarding the variant influencing dietary preferen-
ces, we found that the abundance of genera Lawsonella,
Prevotella_9, and Staphylococcus was higher, and Lacto-
bacillus quantity was diminished in carriers of the
FGF21-rs838133 minor A-allele.

The direction of effects, including fold changes
across all variants, is shown in Figure 2.
Combined effect of risk alleles on the liver microbial
DNA composition: Taxon abundance and variance
explained by the host genetics
We further explored the effect of the combined effect of
NAFLD-risk/protection alleles on the composition of
the liver microbiota by a PRS. We first investigated
whether the genetic risk of NAFLD was associated with
alpha (within sample) diversity, and we found no detect-
able association between PRS for NAFLD and Shannon
index (p = 0. 93) or Simpson index (p = 0.8).

Then, using univariate analysis, we compared the
taxon abundances across two groups of individuals,
including subjects carrying �4 risk alleles and subjects
carrying >4 risk alleles, respectively. As shown in
Figure 3a, among all the microbial DNA taxa present in
the liver, certain taxa showed significant associations
with the PRS. Specifically, the abundance of the Tyzzer-
ella genus—a member of the Firmicutes phylum and the
Clostridia class—showed the strongest association with
high PRS values (>4 risk alleles), as indicated by 2.64-
5



Non-NAFLD group (near normal liver histology)

Variables non-morbidly obese subjects morbidly obese subjects

Number of subjects 9 10

Female/Male (n) 5/4 6/4

Age, years 43.8§8 44.8§8

BMI, kg/m2 24§3 55§14

Type 2 diabetes (n) 0 4

Fasting plasma glucose, mg/dL 87§10 105§23

Fasting plasma insulin, mU/ml 5§2.5 11§8.4

HOMA-IR index 1.02§0.5 2§1.2

Total cholesterol, mg/dL 188§38 190§36

HDL-cholesterol, mg/dL 60§15 40§10

LDL-cholesterol, mg/dL 110§42 121§36

Triglycerides, mg/dL 101§24 128§65

ALT, U/L 42§26 19.7§8

AST, U/L 32§11 19.6§8

Patients with biopsy-confirmed diagnosis of NAFLD

Variables non-morbidly obese patients morbidly obese patients

NAFL NASH NAFL NASH

Number of subjects 21 26 23 27

Female/Male (n) 10/11 16/10 12/11 15/12

Age, years 49.4§11 46.7§13 43§9 48§10

BMI, kg/m2 30§5 # 34§6 +* 53§13 49§10

Type 2 diabetes (n) 6 15 +* 8 18 *

Fasting plasma glucose, mg/dL 105§26 # 124§39 +* 101§22 138§63 *

Fasting plasma insulin, mU/ml 14§7 # 19.6§12.4 + 13§7 35§45 +*

HOMA-IR index 3.5§1.7 # 6.1§6 + 3.1§1.7 16§40 +*

Total cholesterol, mg/dL 203§39 196§42 180§37 179§49

HDL-cholesterol, mg/dL 58§16 51.2§15 45§10 37§6 *

LDL-cholesterol, mg/dL 124§35 120§36 122§28 126§43

Triglycerides, mg/dL 143§94 148§67 154§57 191§102

ALT, U/L 56§42 52§31 +* 28§27 # 43§20 +

AST, U/L 40§23 87§59 29§20 31§14 +

Histological Features

Degree of steatosis (0-3) 1.5§0.7 # 2.2§0.44 + 1.73§0.81 # 2.19§0.8 +

Lobular inflammation (0-3) 0.7§0.73 # 1.24§0.8 + * 0.35§0.6 # 1.42§0.8 + *

Hepatocellular ballooning (0-2) 0§0 # 0.8§0.6 +* 0.18§0.4 # 1.07§0.62 + *

Fibrosis Stage 0§0 # 1.61§0.6 +* 0.04§0.2 # 1.7§0.6 +*

NAFLD activity score (NAS) 2.5§1.19 # 4.3§1 +* 2.26§1.44 # 4.7§2 +*

Table 1: Baseline clinical, biochemical, and histological characteristics of the studied cohort.
NAFL: non-alcoholic fatty liver, NASH: non-alcoholic steatohepatitis, BMI: body mass index; HOMA: homeostatic model assessment; ALT and AST: Serum

alanine and aspartate aminotransferase. Results are expressed as mean § SD except indicated otherwise.

# p<0.001 indicates NAFL vs. controls

*p<0.001 indicates comparisons between NAFL and NASH, and + p<0.001 denotes comparisons between NASH and control subjects.

P value stands for statistical significance using Mann-Whitney U test, except for female/male proportion that p value stands for statistical significance using

Chi-square test
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fold change differential abundance (p = 0.0019, FDR <

0.05) and shown in Figure 3b. Conversely, the Lactoba-
cillus genus—a member of the Firmicutes phylum and
Bacilli class—exhibited the strongest association with
low PRS values (�4 risk alleles) (0.89-fold change,
p = 0.033, FDR < 0.05, Figure 3b).
ROC analysis was performed to identify the potential
discriminatory power of individual bacterial DNA taxa
over PRS. For the genus Tyzzerella, an AUC of 0.70
(95% CI 0.59�0.80, p = 0.00067) was obtained,
whereas Lactobacillus presented an AUC of 0.63 (95%
CI 0.51�0.75, p = 0.034). Even after adjusting for sex,
www.thelancet.com Vol 76 Month February, 2022



Gene
symbol

Alleles Risk
allele

Variant ID Gene
Consequence

Genotype
counts

Dominant
model (n)

HWE Chi 2

p value

PNPLA3 C>G G rs738409 missense CC: 31

CG:54

GG:31

CC: 31

CG+GG: 85

0.45

TM6SF2 C>T T rs58542926 missense CC:89

CT:25

TT:2

CC: 89

CT+TT: 27

0.87

MBOAT7 C>T T rs641738 TMC4: Missense

Variant/MBOAT7: 500B

Downstream Variant

CC:44

CT:51

TT:21

CC: 44

CT+TT: 72

0.36

HSD17B13 ->A -/ rs72613567 Splicing donor -/-: 83

-/A: 28

A-INS: 3

-/-: 83

-A+AA: 31

*

0.73

FGF21 G>A A rs838133 synonymous variant GG: 61

AG: 43

AA: 12

GG: 61

GA+AA: 55

0.29

Table 2: Genotype distribution, variants features and genotype counts.
HWE: Hardy-Weinberg equilibrium; n=number of participants; PNPLA3: patatin-like phospholipase domain containing 3; TM6SF2: transmembrane 6 super-

family member 2; MBOAT7, Membrane Bound O-Acyltransferase Domain Containing 7; TMC4: Transmembrane Channel-Like Protein 4; HSD17B13: hydrox-

ysteroid 17-beta dehydrogenase 13* two missing genotypes; FGF21: Fibroblast Growth Factor 21.

Figure 1. Genus-level analyses of liver 16S rDNA in the entire population.
Dendrogram visualizes hierarchical structures in microbial communities, whereby the edges depict the relative abundance of the

corresponding taxon.
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Figure 2. Taxa abundance profiles according to host genetics.
Bars depict fold changes of liver bacterial DNA taxa abundance (whereby >1 indicates enrichment and <1 depletion) in carriers

of variants in target loci, including NAFLD/NASH-risk loci (PNPLA3 rs738409 CC n=31, CG+GG n=85), TM6SF2 rs58542926 CC n=89,
CT+TT n=27, MBOAT7 rs641738 CC n=44, CT+TT n=72, and HSD17B13 rs72613567 -/- n=83, -A+AA n=31), and a locus influencing
dietary macronutrient intake (FGF21 rs838133 GG n=61, GA+AA n=55). Measurements across sample groups are compared by non-
parametric statistical tests [Wilcoxon rank test], with p < 0.05 indicating statistical significance.

According to the NCBI taxonomy database, taxa are shown at the genus level (p_ stands for phyla and c_ for class). We calculated
the relative abundance (fold change) of the taxon as the ratio of the media per group of sequencing reads assigned to the taxon
normalized by the total number of sequencing reads combining with square root transformation.37
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obesity degree, and liver disease severity, similar non-
parametric AUCs were obtained for Tyzzerella (AUC:
0.71, bootstrap 95% CI: 0.60-0.83) and Lactobacillus
(AUC: 0.62, bootstrap 95% CI: 0.50-0.75); both are sig-
nificant (p<0.05) as the bootstrap 95% CIs did not
include 0.

Next, we calculated the percentage of the liver micro-
bial taxa variance that could be explained by the PRS,
which was built with proxy-based variants of NAFLD
histological severity and macronutrient intake. The pro-
portion of genus-level taxa variance explained by the
host genetics (PRS) was »7.4% (adjusted R2 = 0.0738, p
< 0.005). This effect was independent of the presence
of fatty liver and the obesity status of the studied popula-
tion.

Figure 3c shows the predicted marginal means of
Tyzzerella abundance by PRS according to subjects' liver
steatosis scores in obese/overweight and severely obese
groups and across the two main stages of the disease
severity, namely NAFL and NASH. The Margins algo-
rithm performed the estimation after linear regression
with Tyzzerella abundance and PRS as dependent and
independent continuous variables, respectively, and sex,
steatosis score, and BMI-classified groups as covariates.
We found that correlation between Tyzzerella abun-
dance and the number of risk alleles (PRS) was only
significant in NASH (Coefficient: 5.42, 95% CI: 0.92 -
9.93, p value = 0.02) as opposed to in NAFL (Coeffi-
cient: 2.89, 95% CI: -2.97 - 8.76, p value = 0.32)
patients.

Because of previous observations in well-character-
ized cohorts addressing the relationship between the
gut microbiota composition and cardiovascular disease
(CVD) risk demonstrated a potential link between Tyz-
zerella and Tyzzerella 4 abundance and high CVD risk
profile,38 we explored the possible association between
Tyzzerella enrichment and the presence of arterial
hypertension. We found a trend toward a relative
increased abundance of Tyzzerella in the liver of sub-
jects with arterial hypertension (mean: 13.85 § SE: 2.85,
n = 53) compared to non-hypertensive individuals
(mean: 10.03 § SE: 2.80, n = 60) (p value = 0.056
[Mann-Whitney test]). However, the association was not
significant after adjustment for the relevant covariates.
Functional annotation enrichment shows distinctive
predicted functional signatures
After demonstrating the host genetic impact on liver
microbial taxa, we examined genetic contributions to
liver microbial functions. We found significantly
enriched specialized pathways in carriers of the
www.thelancet.com Vol 76 Month February, 2022



Figure 3. Combined effect of risk alleles on the liver microbial DNA composition.
a. Volcano plot shows differentially-abundant taxa at the genus level across two groups of individuals, respectively comprising of

subjects carrying �4 risk alleles and subjects carrying >4 risk alleles. Log2-trasnformed Genus's abundance-fold changes are shown
on the X-axis (vertical lines situated at -1 and 1 indicate a 2-fold change in both directions) and the negative logarithm (base 10) of
the FDR is depicted on the Y-axis (the horizontal line indicates FDR = 0.05). Black or orange dots represent genus fold changes
exceeding 2 in both directions.

b. Bar chart shows significantly different taxa according to the polygenic risk score (PRS) (p< 0.05, [ANOVA]). Relative abundance
is calculated as the square root of each feature read count divided by the total number of features reads in each sample. The stan-
dard error is indicated by error bars. Pair-wise comparisons are performed through t-test and are annotated as *: p < 0.05, **: p <

0.01, and ***: p < 0.001.
c. Plots show the effects of host genetics (PRS, the number of risk allele carried) on Tyzzerella DNA abundance [predicted by lin-

ear regression and Margins subroutine] in NAFLD patients with steatosis scores in the 1�3 range, comparing those who are over-
weight/moderately obese vs. severely obese patients and after adjusting for confounding factors (age and gender, in addition to
steatosis score and obesity degree); the analysis was performed in patients stratified by liver disease severity, separately (NAFL in
the left panels vs. NASH in the right panels).

d. Predicted functionality associated with the PRS. The functional inference was explored based on KEGG KO pathways by apply-
ing the Piphillin metagenomics inference tool35. Bars indicate mean proportions (%), confidence intervals, and their associated p-
values for the top-ranked metabolic pathways corresponding to both groups with 4 � PRS > 4. STAMP was used to determine dif-
ferentially enriched metabolic pathways (corrected p< 0.05) and their effect sizes (h2). The Welch's test was performed to assess sta-
tistical significance and corrected p values were calculated using Storey's FDR approach.
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PNPLA3-rs738409 G-risk allele. The most remarkable
ones include octane oxidation and fatty acid salvage,
also known as b-oxidation degradation de novo fatty
acid biosynthesis shunt (Figure 4a). As shown in
Figure 4b, among the pathways associated with the
TM6SF2-rs58542926 T-risk allele, we found L-trypto-
phan degradation to 2-amino-3-carboxymuconate semi-
aldehyde and NAD biosynthesis II from tryptophan
(one of the essential coenzymes in redox reactions in
the cell). In carriers of the HSD17B13-rs72613567 A-INS
allele, we found that phosphatidylglycerol biosynthesis I
and gondoate biosynthesis microbial pathways were
under-represented and the super pathway of adenosyl-
cobalamin salvage from cobinamide I was over-
www.thelancet.com Vol 76 Month February, 2022
represented (Figure 4c). Specialized pathways observed
in carriers of the MBOAT7-rs641738 T-risk allele is
shown in Figure 4d, indicating that the superclass of
nucleoside and nucleotide and purine biosynthesis serv-
ing as generating cellular energy are enriched. Finally,
predicted functionality associated with the PRS showed
a trend toward the association with lipopolysaccharide
biosynthesis (Figure 3d).
Discussion
Our results indicate that host genetic determinants of
the risk/protection for NAFLD/NASH and dietary mac-
ronutrient intake are related to the liver microbial DNA
9



Figure 4. Functional annotation enrichment.
Functional profiling was performed by PICRUSt from the 16S rRNA gene amplicon sequencing. a.PNPLA3-rs738409 (CC n=31, CG

+GG n=85); b. TM6SF2-rs58542926 (CC n=89, CT+TT n=27); c. HSD17B13-rs72613567 (-/- n=83, -A+AA n=31); d. MBOAT7-rs641738
(CC n=44, CT+TT n=72). The top metabolic pathways (MetaCyc) for each genotype (host genetics by assuming a dominant model of
inheritance) are represented by effect sizes, confidence intervals, and their associated p values. Bars indicate mean proportions (%).
STAMP was used to determine differentially enriched metabolic pathways (p < 0.05) and their effect sizes (h2). The Welch's test was
performed to assess statistical significance and corrected p values were calculated using Storey's FDR approach.
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composition. The strongest associations were found
between members of the Gammaproteobacteria class
and NAFLD/NASH risk alleles of the rs738409 and
rs58542926 variants, including Enterobacter and Pseu-
doalteromonas genera, respectively. These findings are
consistent with our previous observation indicating that
DNA derived from Gammaproteobacteria was associated
with more severe forms of liver disease, including high
scores of lobular and portal inflammations.14

It is also known that the body microbiome is sensi-
tive to the host's diet and lifestyle. In this study, we
found that carriers of the FGF21-rs838133-minor allele
presented higher abundances of Lawsonella (a member
of the Actinobacteria class), Prevotella_9, and Staphylo-
coccus genera, and a decreased abundance of Lactobacil-
lus. This finding suggests that dietary sugar
consumption and carbohydrate intake favor certain bac-
terial taxa, such as Prevotella_9 that has been associated
with the risk of major common diseases, including car-
diovascular disease,38 colon cancer,39 and even immu-
nologic diseases such as rheumatoid arthritis.40

Most importantly, a PRS generated to assess the
combined effect of NAFLD/NASH associated variants'
risk alleles and the FGF21-rs838133 minor allele revealed
that the abundance of the Tyzzerella taxa showed the
strongest association with high PRS values (>4 risk
alleles). Findings yielded by the analyses of the gut
microbiome of the participants of the Bogalusa Heart
Study—a long-term epidemiologic study investigating
the natural history of atherosclerosis—indicate that the
genus Tyzzerella is associated with lifetime cardiovascu-
lar risk profile.38 Collectively, our findings might serve
to explain, at least in part, the link between NASH/
NAFLD and CVD.41,42

Although several factors influence the human (and
mammalian) body microbiota composition, it appears
that host genetic factors account for a considerable pro-
portion of variance. For example, seminal studies in
twins showed that microbial gut composition is »40%
heritable.15,16 Recent evidence that leveraged 16,234 gut
microbiome profiles collected over 14 years from 585 wild
baboons suggests that, after controlling for diet, age, and
socioecological variation, 97% of the gut microbiome
phenotypes are significantly heritable.43 Of note, the per-
centage of genus-level taxa variation explained by our
NAFLD/NASH PRS was»7.4%, which was independent
of key covariate parameters that may affect this effect,
including the steatosis score and obesity degree. Even
age and gender were not contributing factors. Consider-
ing that the PRS based on selected variants in few genes
was significant, it is justified to consider that the
observed variance is higher than expected by chance.
www.thelancet.com Vol 76 Month February, 2022
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It should be highlighted that host genetics is also rel-
evant in modelling host�gut microbe interactions in
health and disease44, including NAFLD in obese youth
as reported recently.45

Finally, we aimed to detect differentially abundant
pathways and predicted bacteria-derived metabolites
from the taxa associated with the tested variants. We
reasoned that exploring putative functional consequen-
ces of taxa linked to genetic variation may aid in better
understanding of the disease mechanism(s). We found
multiple altered microbial metabolic pathways associ-
ated with host genetics. For example, in carriers of the
rs738409 G-risk allele, octane oxidation and the novo
fatty acid biosynthesis shunt were over-represented. The
key process in octane oxidation is the alkane hydroxylase
system that introduces molecular oxygen in the C1 atom
of the hydrocarbons at the expense of NADH to yield
primary alcohols.46 Previous studies demonstrated that
several alkane-degrading bacteria can use diverse com-
pounds as a carbon source in addition to alkanes,47

which are further oxidated to fatty acids via bacterial
b-oxidation pathway (BioCyc ID: P221-PWY). While the
alkB domain has been found in many bacterial
genomes, including Proteobacteria, Actinobacteria, and
Bacteroidetes, it appears that the alkane hydroxylase sys-
tem is particularly relevant in the Gammaproteobacteria
class, including those from Pseudomonas aeruginosa.48

Volatile organic compounds, including octane, were
found either in the exhalation or faeces of human sub-
jects with diverse medical conditions associated with
oxidative stress and chronic inflammation, including
lung cancer,49 obstructive sleep apnoea,50 gastrointesti-
nal diseases,51 and NAFLD.52 Notably, data analysis
based on NHANES 2017�2018 population-based survey
of non-occupationally exposed individuals that included
liver fibrosis assessment via transient elastography
(FibroScan) examination shows a significant association
between blood octane concentrations and liver stiffness
(beta 0.0016 § 0.0007, p = 0.031 adjusted by age, gen-
der, diabetes, obesity [BMI], and alcohol consumption)
(Supplementary Figure 1).

Collectively, primary alcohols can be synthesized
either via fatty acid or amino acid pathways in diverse
bacteria. The link between the gut microbiota and alco-
hol (ethanol) production has been described by several
authors.53,54 However, our study provides novel evi-
dence regarding the association between PNPLA3-
rs738409 and taxa capable of metabolizing alkane-
derived carbons to yield primary alcohols.

Likewise, the rs738409 G-risk allele was found to be
associated with a metabolic pathway involved in b-oxida-
tion degradation, also known as de novo fatty acid bio-
synthesis shunt. Fatty acid biosynthesis shunt is
initiated by the b-ketoacyl-[acyl-carrier-protein] synthase
that catalyses the condensation of acetyl-CoA with
malonyl-[acp], producing acetoacetyl-[acp] and that can
be transformed into longer fatty acids via the fatty acid
www.thelancet.com Vol 76 Month February, 2022
elongation cycle. This might be a new mechanism to
explain why carriers of the PNPLA3 variant are exposed
to 3.28-fold higher risk of liver fat accumulation.18,19

The comparison of functional prediction between
carriers and non-carriers of the HSD17B13-72613567
protective A-INS allele yielded results that might expand
our knowledge of the protective function of this variant
against the most detrimental NAFLD-histological
outcomes.24,26 Specifically, we found over-representa-
tion of the super pathway of adenosylcobalamin salvage
from cobinamide I—a pathway involved in vitamin and
cofactor biosynthesis—in A-INS allele carriers, along
with a lower proportion of taxa linked to fatty acid
metabolism, such as phosphatidylglycerol biosynthesis
and components of the gondoate pathway, which is
essential for the production of unsaturated fatty acids,
including arachidonate. Arachidonate production is the
rate-limiting step in the synthesis of prostaglandins and
is associated with NAFLD55 and also participates in the
Land’s cycle.

In addition, the predicted functional consequence/s
of associated taxa with the PRS suggested that carriers
of >4 risk alleles might be exposed to some genera with
high potential for lipopolysaccharide biosynthesis. This
finding is consistent with our earlier observation that
lipopolysaccharides derived from Gram-negative bacte-
ria localize in the portal tract of patients with more
severe disease.14

However, when interpreting these findings, some
study limitations should be considered. In particular,
our results are based on the examination of the bacterial
DNA profile of liver specimens in association with a few
genetic variants. Therefore, much greater (by many
orders of magnitude) sample sizes will be necessary to
fully explore the influence of the whole genome on the
liver microbial DNA composition. Nonetheless, we were
able to overcome several challenges, including explora-
tions of microbiome profiles in liver tissue, which is
very difficult to obtain and analyze for relevant data.

It is also plausible that different results may arise in
other populations, as the inter-relationship between
genetics and the liver microbiome can be modified by
environmental factors not explored in the present study.
These potential differences can be explained by the pres-
ence of population structure across individuals from dif-
ferent parts of the world, as well as by different
biogeography of bacterial taxa in different parts of the
body that are determined not only by host genetics, but
are also modified by factors that impose selective pres-
sure on the body microbiotas, such as antibiotic usage,
travel, diet, microbes in the soil, vertical transmission
from mothers to children, and diverse causes of hori-
zontal transmission between humans and/or animals.56

In conclusion, we studied the intricate link between
host genetics and the liver microbiome composition in
patients with NAFLD. We were able to show the most
significant liver bacterial DNA that may be affected by
11
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host variation in candidate genes relevant to the disease
biology. The most striking result to emerge from our
study is that host genetics may shape the metabolic and
biological environment in which the NAFLD-associated
liver tissue-microbial DNA resides.
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