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Abstract
Understanding the relative impact of climate change and land cover change on 
changes in avian distribution has implications for the future course of avian distribu‐
tions and appropriate management strategies. Due to the dynamic nature of climate 
change, our goal was to investigate the processes that shape species distributions, 
rather than the current distributional patterns. To this end, we analyzed changes in 
the distribution of Eastern Wood Pewees (Contopus virens) and Red‐eyed Vireos 
(Vireo olivaceus) from 1997 to 2012 using Breeding Bird Survey data and dynamic 
correlated‐detection occupancy models. We estimated the local colonization and ex‐
tinction rates of these species in relation to changes in climate (hours of extreme 
temperature) and changes in land cover (amount of nesting habitat). We fit six nested 
models to partition the deviance explained by spatial and temporal components of 
land cover and climate. We isolated the temporal components of environmental vari‐
ables because this is the essence of global change. For both species, model fit was 
significantly improved when we modeled vital rates as a function of spatial variation 
in climate and land cover. Model fit improved only marginally when we added tempo‐
ral variation in climate and land cover to the model. Temporal variation in climate 
explained more deviance than temporal variation in land cover, although both com‐
bined only explained 20% (Eastern Wood Pewee) and 6% (Red‐eyed Vireo) of tempo‐
ral variation in vital rates. Our results showing a significant correlation between initial 
occupancy and environmental covariates are consistent with biological expectation 
and previous studies. The weak correlation between vital rates and temporal changes 
in covariates indicated that we have yet to identify the most relevant components of 
global change influencing the distributions of these species and, more importantly, 
that spatially significant covariates are not necessarily driving temporal shifts in avian 
distributions.
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1  | INTRODUC TION

In recent decades, the distributions of many bird species have 
changed in Britain (Fuller et al., 1995; Thomas & Lennon, 1999), 
continental Europe (Böhning‐Gaese & Bauer, 1996; Brommer, 
Lehikoinen, & Valkama, 2012), South Africa (Hockey, Sirami, 
Ridley, Midgley, & Babiker, 2011), and North America (Sauer, Link, 
Fallon, Pardieck, & Ziolkowski, 2013). These shifts are of both 
ecological and conservation interest, and they have stimulated 
a great deal of research. While various factors may be contrib‐
uting to distributional shifts, including invasive species (Crowl,  
Crist, Parmenter, Belovsky, & Lugo, 2008), pollution (Trathan et al., 
2015), exploitation (Laursen & Frikke, 2008) and other causes, 
climate change and land cover changes are likely to be two of the 
strongest drivers for many species (Barbet‐Massin, Thuiller, & 
Jiguet, 2012; Lemoine, Bauer, Peintinger, & Böhning‐Gaese, 2007; 
Travis, 2003). Understanding the relative impact of these drivers 
of distributional change has implications for ecological under‐
standing, predictions of future changes, appropriate management 
strategies, and the allocation of conservation resources. However, 
species distribution models focused on the effects of climate are 
far more common than analyses that compare the contributions of 
climate and land cover (Sirami et al., 2017).

Ecologists have long debated the factors that affect species 
ranges (Grinnell, 1917; MacArthur, 1972) because of the relevance 
to ecology, biogeography, and community ecology. In recent de‐
cades, global change has given more urgency to the topic (Urban, 
2015), and the expectation that both the global environment and 
species distributions will continue to change has stimulated much 
research into predicting the future course of change (Huntley et al., 
2006). Questions about the relative impact of climate change and 
land cover change are important because of the implications for 
these predictions (Sirami et al., 2017). For example, climate change 
is expected to occur along a latitudinal gradient, while changes in 
land cover may exhibit less directionality if factors such as urbaniza‐
tion or conversion to or from agricultural use are significant drivers 
of land cover change (Lemoine et al., 2007; Travis, 2003). As a re‐
sult, species distributions that respond primarily to climate are more 
likely to also exhibit directionality (Brommer et al., 2012; Hockey 
et al., 2011; Parmesan & Yohe, 2003). Whether species distributions 
respond to land cover or climate change has implications for appro‐
priate responses, such as the design and location of reserves (Araújo, 
Cabeza, Thuiller, Hannah, & Williams, 2004), habitat restoration, and 
assisted migration (Hoegh‐Guldberg et al., 2008). Accordingly, po‐
litically and economically significant decisions may be influenced by 
these projections. Therefore, there is a need for research into the 
relative effects of climate change and land cover change on changes 
in the distribution of species.

When there is interest in projecting changes in species distri‐
butions, a crucial insight is that environmental factors that cor‐
relate with the current species distribution may not correlate with 
future changes in distribution (Barbet‐Massin et al., 2012). One 
reason is that projections developed from current distribution 

patterns assume that species are in equilibrium with their envi‐
ronment (Elith, Kearney, & Phillips, 2010), which may not be true 
(Zhu, Woodall, & Clark, 2012). A second reason is that dispersal 
limitations may prevent species from occupying their preferred 
habitat in the future (Devictor, Julliard, Couvet, & Jiguet, 2008). 
Therefore, investigating the processes that shape species distri‐
butions, rather than current species distribution patterns, is likely 
to generate greater ecological understanding and better projected 
distributions (Yackulic, Nichols, Reid, & Der, 2015). For example, 
the recent distribution of breeding Louisiana Waterthrush (Parkesia 
motacilla) in North America is best described by mean tempera‐
ture, but changes in that distribution correlate with mean precip‐
itation as well as mean temperature, indicating that the process 
cannot be fully described by the pattern observed at one point in 
time (Clement, Hines, Nichols, Pardieck, & Ziolkowski, 2016). We 
further note that data on environmental variables typically include 
both spatial and temporal components. For example, temperature 
may vary along a north–south gradient, as well as through time. 
When the primary research interest is in temporal changes in dis‐
tributions, it makes sense to isolate the temporal components of 
environmental variables (which are the essence of global change) 
when investigating species response to global change.

Here, we assess the relative importance of changes in climate and 
land cover to changes in distributions for two bird species, the Red‐
eyed Vireo (Vireo olivaceus) and the Eastern Wood Pewee (Contopus 
virens). We selected just two species with similar biology, but differ‐
ing population trends, so that we could develop species‐specific hy‐
potheses about distributional shifts. We partitioned the spatial and 
temporal components of our environmental predictors to improve 
our inferences about the processes affecting species distributions 
and about the likely consequences of future global change. We used 
dynamic occupancy modeling to explicitly estimate the vital rates 
that govern changes in distributions so as to avoid the equilibrium 
assumption implicit in static species distribution models. Finally, we 
used an analysis of deviance approach to assess the relative impor‐
tance of climate and land cover to the changes in distributions for 
these two species.

2  | MATERIAL S AND METHODS

2.1 | Hypotheses

Our goal was to assess the relative importance of climate and land 
cover to changes in the distributions of two bird species, the Red‐
eyed Vireo and the Eastern Wood Pewee. We selected these birds 
because they are migratory, insectivorous, and inhabit similar plant 
communities (Hamel, 1992), but exhibit divergent trends in relative 
abundance reported by the BBS (Sauer et al., 2015). The Red‐eyed 
Vireo breeds in the eastern and northern United States and much of 
southern Canada and winters in South America. It is a common and 
widespread species that uses a wide variety of forest habitats to nest 
and glean insects from foliage. Counts of Red‐eyed Vireos have been 
increasing by 0.8% annually since 1966 and by 1.0% annually since 
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2003, with some localized declines in Florida, Texas, and the Pacific 
Northwest (Sauer et al., 2015). The Eastern Wood Pewee breeds in 
the eastern United States and parts of southeastern Canada. In con‐
trast to Red‐eyed Vireos, counts of the Eastern Wood Pewee have 
been declining by 1.5% since 1966 and by 1.2% since 2003 (Sauer 
et al., 2015). Despite the generally negative trend, there have been 
localized increases in counts in the Midwest.

To estimate the relative importance of climate and land cover to 
changes in bird distributions, we generated testable hypotheses ex‐
pressing relationships between birds and environmental covariates. 
A common approach is to generate an extensive set of hypotheses 
from a suite of environmental metrics. We can then fit the specified 
models and observe which metrics yield significant results. However, 
testing many statistical hypotheses has a propensity to identify spu‐
rious relationships and such analyses should be considered explor‐
atory (Anderson, Burnham, Gould, & Cherry, 2001; Ioannidis, 2005). 
In this study, we developed two a priori hypotheses from ecological 
principles:

1.	 Changes in the total annual periods of extreme temperature 
drive changes in bird distributions. We focus on extreme tem‐
perature because we expect these are the periods of greatest 
stress due to cold or heat stress, increased metabolic costs, 
reduced resource availability, or other mechanisms (Dawson & 
Whittow, 2000; Root, 1988). We defined “extreme” relative 
to the thermoneutral zone (TNZ), which is the range of ambient 
temperatures under which endotherms can maintain their body 
temperature without deviating from their basal metabolic rate 
(Calder & King, 1974). The TNZ varies among species, but has 
been estimated as 18–38°C for a “generic” bird (Calder & King, 
1974). Several small, temperate‐zone passerines (similar to our 
study species), including the Northern Cardinal, Verdin, House 
Sparrow, and Red‐breasted Nuthatch, have been documented 
to have TNZs similar to that of this “generic” bird (Dawson, 
1958; Goldstein, 1974; Hinds & Calder, 1973; Khaliq, Hof, 
Prinzinger, Böhning‐Gaese, & Pfenninger, 2014). Therefore, we 
expected temperatures below 18°C and above 38°C to be 
associated with changes in bird distributions.

2.	 Changes in the amount of appropriate habitat locally available 
during the breeding season drive changes in bird distributions be‐
cause inappropriate habitat will not provide sufficient food and 
shelter for breeding birds (Friggens & Finch, 2015; Iglecia, Collazo, 
& McKerrow, 2012). For the Eastern Wood Pewee, we defined 
appropriate habitats as deciduous forest, evergreen forest, and 
mixed forest (Hamel, 1992). For the Red‐eyed Vireo, we defined 
appropriate habitats as the same forest types and shrub–scrub 
(Hamel, 1992).

Of course, these hypotheses are not exhaustive, but we selected 
them as logical, general mechanisms that might underlie avian re‐
sponses to climate and land cover change. We expected the paucity 
and specificity of our hypotheses would reduce our chances of ob‐
taining statistically significant results by chance. For example, a null 

hypothesis that bird distributions will not expand at a specific tempera‐
ture is harder to reject than the null hypothesis that bird distributions 
will not expand at any temperature. We view a more specific hypothe‐
sis as a more powerful discriminatory tool (Platt, 1964; Popper, 1959), 
more in keeping with the hypothetico‐deductive method (Chamberlin, 
1890; Romesburg, 1981) and with a Type 1 error rate closer to the 
nominal level (Anderson et al., 2001; Ioannidis, 2005).

We stated our hypothesized effects in terms of changes in bird 
distribution (i.e., birds will increase where habitat is available) rather 
than static patterns of bird distribution (i.e., birds will be located 
where habitat is available). We prefer this formulation because it 
focuses on the ecological processes that underlie species distribu‐
tions and their dynamics. In metapopulation theory, the vital rates 
describing these processes are often the local colonization and ex‐
tinction rates. Models that account for ecological vital rates (i.e., 
dynamic models) are useful because they are relatively mechanistic, 
thereby strengthening the generality of findings and contributing 
more to ecological understanding. In contrast, in order to be useful 
for forecasting and projection, relationships between environmental 
covariates and occurrence require an assumption that the species 
in question is in equilibrium with the environmental factors under 
study (Elith et al., 2010). The more phenomenological orientation 
of models that focus on occurrence can be limiting when projecting 
model results into novel situations, such as future climate and land 
cover conditions (Cuddington et al., 2013; Gustafson, 2013). In con‐
trast, dynamic models avoid the equilibrium assumption, enabling 
more robust predictions of occurrence under future conditions 
(Clement et al., 2016; Yackulic et al., 2015).

Both climate and land cover vary spatially and temporally, and 
each process could impact bird distributions. It is possible for the 
level of correlation with bird vital rates to differ across those two 
dimensions. For example, consider an environmental variable that 
is completely static through a given time period and a species distri‐
bution that shifts during the same time period. In this case, it is not 
possible for change in the static variable to have caused the distri‐
butional shift, because no such change occurred. However, it is still 
possible for colonization and extinction to correlate with the envi‐
ronmental variable because of a spatial correlation between them. 
Here, our goal was to incorporate temporal variation in covariate 
values into our analysis because much research into global change 
is motivated by interest in temporal changes in species distributions. 
Therefore, our hypotheses and models are structured to isolate 
and evaluate the ability of environmental covariates to account for 
spatial and temporal variation in local colonization and extinction 
probabilities.

2.2 | Data

We obtained data on the detection and nondetection of breed‐
ing Red‐eyed Vireos and Eastern Wood Pewees from the North 
American Breeding Bird Survey (Pardieck, Ziolkowski, & Hudson, 
2015; www.pwrc.usgs.gov/BBS/RawData/). The Breeding Bird 
Survey (BBS) is a joint project of the U.S. Geological Survey and 

http://www.pwrc.usgs.gov/BBS/RawData/
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the Canadian Wildlife Service, designed to monitor the status and 
trends of birds breeding in North America (Sauer et al., 2013). Since 
its inception in 1966, the BBS has expanded to include over 5,000 
survey routes across the United States and southern Canada, ap‐
proximately 3,000 of which are surveyed each year. Each route is 
surveyed once per year by a skilled volunteer. The date of the survey 
is timed to occur during peak territorial behavior, typically late May 
to early July, depending on latitude. Surveyors follow a prescribed 
route along secondary roads, stopping at approximately 800‐m in‐
tervals, and performing 3‐min roadside point counts, generating 50 
counts per 39.4 km route. We selected BBS data because their great 
geographic and temporal extent is suitable for investigating distri‐
butional changes.

We selected a subset of the available BBS data for use in our 
analysis. Our modeling approach, described below, makes use of 
stop‐specific survey results, but these detailed results are currently 
available in digital formats only since 1997. Therefore, we used data 
from 1997 to 2012. Because our study species are found in forested 
regions of eastern North America, we delineated the study area by 
aggregating three Omernik Level I classes representing eastern for‐
est ecoregions: Northern Forests, Eastern Temperate Forests, and 
Tropical Wet Forests (Commission for Environmental Cooperation, 
1997; Omernik, 1995, 2004; Omernik & Griffith, 2014). This study 
area includes the United States east of the Great Plains (2.9 million 
km2). This region encompassed the entire breeding range of the 
Eastern Wood Pewee, except some areas in Canada not covered by 
our climate and habitat covariates. We selected BBS routes entirely 
within this study area for analysis. We excluded routes that were not 
classified as “active” by the BBS and routes that differed from the 
recommended length (39.4 km) by more than 25%. We only analyzed 
surveys conducted under acceptable conditions (i.e., acceptable 
weather, date, time of day, stops; reported by BBS as “runtype = 1”). 
On the rare occasions that a route had multiple acceptable surveys 
per year, we used data from the first acceptable survey. This yielded 
1,371 routes for our analysis. Finally, we converted counts of birds 
at each stop along each BBS route to detection/nondetection data 
suitable for presence–absence modeling. This conversion sacrificed 
data richness, but allowed us to account for imperfect detection 
of species. Using the full count data typically requires additional 
assumptions (Illán et al., 2014) or incorporation of additional data 
sources (Hooten, Wikle, Dorazio, & Royle, 2007).

Climate data were obtained from the PRISM project (Daly et al., 
2008). The PRISM output uses locally weighted regression models to 
interpolate long‐term weather station observations to a 4 km resolu‐
tion grid. Daily interpolated climate data are available from 1981 to 
the present. From these data, we calculated two temperature‐based 
indices based on our first hypothesis, described above. The first 
index was calculated as the total annual hours above 38°C, while the 
second index was calculated as the total annual hours below 18°C.

Because the temperature‐based indices were based on hours of 
exposure, it was necessary to interpolate the daily PRISM data to es‐
timate hourly values. We considered a simple linear interpolation to 
impute values between daily maximum and minimum temperatures. 

However, for extreme temperatures, this method would likely re‐
sult in estimated exposure durations that are biased low. Instead, 
we adopted the method described by Cesaraccio, Spano, Duce, and 
Snyder (2001; see Figure 3) and Eccel (2010) using the R software 
package “Interpol.T” (Eccel & Cordano, 2013). In this method, can‐
didate functions are fit to observed hourly temperature data from 
nearby high‐quality ASOS (Automated Station Observing System) 
weather stations in the study region using a combination of sinu‐
soidal and quadratic functions. For each 4 km PRISM grid cell, the 
resulting calibration function from the nearest ASOS station is then 
applied to each day's maximum and minimum temperature to predict 
the intervening hourly values.

Using the interpolated hourly temperature estimates, we calcu‐
lated the total annual hours within the zones of heat stress or cold 
stress for each year from 1981 to 2012. Annual values were cal‐
culated over the period June 1–May 31 to represent the breeding 
cycle. Once the annual residence times were obtained, we applied 
a 15‐year moving average window to the data, resulting in 16 mov‐
ing average periods starting with the 1981/82–1995/96 period and 
ending with the 1996/97–2011/12 period. Applying a moving aver‐
age acts as a high‐pass filter that attenuates interannual variability 
while amplifying any long‐term climate change signals. Other period 
lengths could have been chosen; however, we hypothesized that 
15 years represented a reasonable tradeoff between (a) reducing 
the moving average length so as not to exceed the length of the daily 
PRISM data series, which begins in 1981, (b) increasing the moving 
average length so that climatic changes (as opposed to background 
climatic variation) can be identified, and (c) using a period that is bio‐
logically meaningful in that we can reasonably expect any long‐term 
climatic changes in the moving averages would be outside the his‐
torical range of variability and thus should affect colonization and 
extinction rates of sensitive species.

We obtained land cover data from the National Land Cover 
Database (NLCD) for 2001 (Homer et al., 2007), 2006 (Fry et al., 
2011), and 2011 (Homer et al., 2015). We reclassified the given land 
cover types into habitat or nonhabitat for each bird species, based 
on our second hypothesis, described above. We calculated the per‐
cent of land area that was a suitable habitat within 400 m of each 
route and used this as a covariate in our analysis. We used 400 m 
because this is half the distance between stops on BBS routes. For 
years without land cover data, we used the land cover values of the 
subsequent NLCD survey. Specifically, we used 2001 values for 
1997–2001, 2006 values for 2002–2006, and 2011 values for 2007–
2012. We used a z‐transformation to center and scale all covariates 
prior to analysis.

2.3 | Analysis

Our goal was to assess the relative importance of climate and land 
cover to changes in the distribution of Red‐eyed Vireos and Eastern 
Wood Pewees. While our bird data consisted of detection/nonde‐
tection data from BBS surveys, our parameters of interest were 
the probabilities of local colonization and local extinction, as these 
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processes drive changes in distribution. Our predictor variables 
were our measures of climate and land cover suitability for each 
species, described above. We used dynamic correlated‐detection 
occupancy models with detection heterogeneity to estimate the 
relationship between our predictors and bird distribution dynam‐
ics (Clement et al., 2016; Hines, Nichols, & Collazo, 2014; Hines 
et al., 2010). Occupancy models are a class of models that estimate 
the probability of presence while accounting for imperfect detec‐
tion of species by analyzing replicated (usually temporally) surveys 
(MacKenzie et al., 2002, 2018). Dynamic occupancy models model 
interannual changes in occupancy by positing a Markov process 
in which the probability of occurrence at time t is a function of 
the probability of occurrence at time t−1 (MacKenzie, Nichols, 
Hines, Knutson, & Franklin, 2003). In contrast to static models, this 
Markov process recognizes that the distribution of a species is a 
function of previous environmental conditions and dispersal con‐
straints, as well as current environmental conditions (Dormann et 
al., 2012; Kéry, Guillera‐Arroita, & Lahoz‐Monfort, 2013). Dynamic 
correlated‐detection occupancy models are a model extension in 
which spatially correlated replicated surveys are used to estimate 
detection probabilities (Hines et al., 2014, 2010). We selected an 
occupancy modeling approach because failure to account for im‐
perfect detection can bias estimates of colonization and extinc‐
tion rates (Ruiz‐Gutiérrez & Zipkin, 2011). We selected a dynamic 
approach because dynamic models offer more ecological realism, 
more accurate projections, and greater generalizability than static 
models (Clement et al., 2016; Yackulic et al., 2015). We used cor‐
related‐detection models because the BBS generates spatially 
replicated surveys, and failure to account for spatial correlation of 
replicates can bias occupancy estimates (Hines et al., 2014, 2010). 
Finally, we used a finite mixture model to account for detection 
heterogeneity because of the variation in habitat and focal spe‐
cies abundance across the study area (Clement et al., 2016). A fi‐
nite mixture model approximates the heterogeneity of detection 
probabilities by positing that the population consists of a mixture 
of routes which have either a relatively high detection probability 
or a relatively low detection probability.

As detailed above, BBS data consist of numerous routes, each 
composed of bird observations at 50 stops. A species may be ab‐
sent from individual stops when it is present on a route, but not vice 
versa. Detection of a species is taken as proof of presence, but a 
nondetection may result from a true absence or a false absence. For 
clarity, we use the term “occupied” to indicate a species is present on 
a route and the term “available” to indicate a species is locally pres‐
ent at a specific stop at the time of the survey (Nichols, Thomas, & 
Conn, 2009). By this terminology, the dynamic correlated‐detection 
occupancy model includes the following parameters:

ψ = Pr (route occupied during the first season of surveys);
θ = Pr (species available at stop | route occupied and species unavailable 

at previous stop);
θ′= Pr (species available at stop | route occupied and species available 

at previous stop);

p1 = Pr (detection at a stop for low‐detection routes | route occupied and 
species available at stop);

p2 = Pr (detection at a stop for high‐detection routes | route occupied 
and species available at stop);

π = Pr (probability that a route is a low‐detection route);
εt = Pr (route is not occupied in season t + 1 | occupied in season t); and
γt = Pr (route is occupied in season t + 1 | not occupied in season t).

Hines et al. (2014, 2010) developed a model likelihood that allows 
these parameters to be modeled as functions of route‐ and year‐spe‐
cific covariates, while detection parameters can also be influenced by 
stop‐specific covariates. Parameters can then be estimated using max‐
imum‐likelihood estimation in program PRESENCE (Hines, 2006).

We developed six specific models of γ and ε for each bird species. 
We partitioned spatial and temporal variation in covariates by parti‐
tioning covariates into the average value over time, and the annual 
deviation from that average. In this way, the averaged covariate, xi, 
included spatial variation only, while the deviation component, Δxiy, 
included temporal variation only. Using these covariates, our models 
included (a) a null model in which γ and ε are constant through time 
and space and (b) a global (most general) model in which γ and ε vary 
through space according to mean climate and land cover suitability, 
and through time using a dummy covariate for each year. We also 
considered intermediate models to assess the explanatory power of 
our covariates: (c) γ and ε vary spatially with mean climate and land 
cover suitability, but not with time, (d) γ and ε vary spatially with 
mean climate and land cover suitability, and temporally with annual 
changes in climate only, (e) γ and ε vary spatially with mean climate 
and land cover suitability, and temporally with annual changes in 
land cover only, and (f) γ and ε vary spatially with mean climate and 
land cover suitability, and temporally with annual changes in climate 
and land cover.

Prior to comparing these models, we worked to achieve ade‐
quate fit for the other model parameters. Because of the number of 
model parameters, we considered them sequentially. Initially, we fit 
the global model for γ and ε, and we modeled θ, θ′, and ψ as functions 
of climate and land cover covariates. In this initial model, we used a 
finite mixture model on p to account for heterogeneity, presumably 
caused by differences among routes in habitat, observers, bird abun‐
dance, and other features that were not explicitly modeled (Clement 
et al., 2016). We also modeled p as a function of climate and land 
cover covariates and year. Because bird activity often varies with 
time of day, we also modeled detection as a quadratic function of 
stop number, which we consider to be a proxy for time of day. From 
this highly parameterized model, we fit a reduced model by elim‐
inating the covariate with the smallest estimate‐to‐standard error 
ratio. We continued to eliminate covariates in this way until AIC in‐
creased and then selected the model with the lowest AIC. We used 
this parameter reduction protocol with ψ, θ, θ′, and p in turn, main‐
taining the model structure on γ and ε. After identifying parsimoni‐
ous models for ψ, θ, θ′, and p, we fit the set of six models for γ and 
ε described above. The sequential approach may not yield identical 
results as a single analysis, but it is a pragmatic approach for dealing 
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with complex models (MacKenzie et al., 2018). By beginning with 
highly parameterized models and progressing toward reduced mod‐
els, we reduced the risk of confounding the occupancy and detection 
processes (MacKenzie et al., 2018). We also checked for potential 
multi‐collinearity issues by calculating Pearson's correlation coeffi‐
cient for the different covariates used in the models. We treated an 
R2 < 0.5 as indicative of a lack of multi‐collinearity.

We also evaluated the goodness of fit of the global model for each 
species using the naïve colonization and extinction rates to calculate 
the test statistic of a Hosmer–Lemeshow test (Hosmer & Lemeshow, 
2000). In this context, the naïve colonization rate is the number of 
sites that changed from nondetection sites in year t to detection sites 
in year t + 1, while the naïve extinction rate is the number of sites 
that changed from detection sites in year t to nondetection sites in 
year t + 1. We divided the routes into deciles based on the expected 
colonization and extinction rates, and compared the predicted rates 
to the observed rates with chi‐square tests (α = 0.05). If necessary, 
we combined deciles to ensure that the predicted number of detec‐
tions in a decile was >4. Although the Hosmer–Lemeshow test statis‐
tic is often calculated from predicted presence, vital rates seemed to 
be more appropriate measures in this case because dynamic models 
estimate changes in presence, rather than presence (Clement et al., 
2016). We note that this use of naïve rates focuses on products of 
model parameters (i.e., γ, ε, p, ψ, ϑ), and therefore, we do not test the 
fit of the fully parameterized model. We focused on naïve rates be‐
cause the true vital rates (i.e., γ and ε) cannot be directly observed 
when detection is imperfect, while the naïve rates can be observed.

We used an analysis of deviance approach (ANODEV; e.g., 
Skalski, 1996) to evaluate the relative importance of climate and 
land cover to changes in bird distributions. In this procedure, we 
compared the deviance explained by our parameter of interest to 
the deviance explained by the most fully parameterized model in the 
model set:

Dev(Mnull) is the deviance of Model 3, which accounts for spatial, 
but not temporal, variation in colonization and extinction probabili‐
ties. Dev(Mfull) is the deviance of Model 2, the global model, with both 
spatial and temporal variation in γ and ε. We then evaluated the devi‐
ance explained by climate and/or land cover by using models 4, 5, and 
6 for Dev(Mcov). Higher values of R

2

Dev
 indicate greater explanatory 

power, with 0 indicating no power, and 1 indicating power equal to 
that of the fully parameterized model, although R2

Dev
 could potentially 

exceed 1 because our covariate models are not strictly nested within 
Model 2. Therefore, we calculated and report R2

Dev
 for both climate 

and land cover. This is not the only possible approach to assessing 
relative importance of explanatory variables, but it is sound and has 
been used and recommended by others (Grosbois et al., 2008).

The general ANODEV approach to partitioning variation led 
us to focus on hypothesis testing as a means of assessing the need 
for extra model parameters (sources of variation). The small set of 

specific a priori hypotheses also sets this work apart from explor‐
atory studies investigating the adequacy of many different models. 
For these reasons, we used likelihood ratio tests as a means of com‐
paring different models, although we note that use of model selec‐
tion criteria (e.g., AICc) yielded similar inferences.

3  | RESULTS

Our covariates indicated a small loss of habitat and increased tem‐
peratures during the study period, despite the relatively short time 
scale. For Eastern Wood Pewee, habitat change was >1% on 38% 
of routes, with the mean share of suitable habitat near routes de‐
clining from 41.6% to 40.9%. For Red‐eyed Vireo, habitat change 
was >1% on 23% of routes, with mean suitable habitat declining 
from 48.0% to 47.6%. Route temperatures were rarely above the 
heat stress threshold, but the average time above this threshold 
per route increased from 0.5 hr per year from 1982 to 1997 to 
1.7 hr per year from 1997 to 2012. We also observed a decline in 
periods of cold stress, from 5,450 to 5,291 hr per route per year. 
The Pearson's correlation coefficient did not indicate any multi‐
collinearity problems among our covariates (R2<0.2 in all cases).

3.1 | Eastern Wood Pewee

For Eastern Wood Pewee, the best‐supported model included both 
climate and habitat measures as covariates of ψ, θ, and θ′. We ex‐
cluded climate and habitat covariates from the detection probability 
model because some of those models did not converge. Therefore, 
the detection model for each species included year and stop num‐
ber as covariates. As a result, the global model included 85 pa‐
rameters (Table 1). The Hosmer–Lemeshow test indicated that the 
global model fit the data adequately, with no evidence of discrep‐
ancies between estimated and observed naïve colonization rates 
(χ2 = 4.41, df = 8, p = 0.82) and naïve extinction rates (χ2 = 11.17, 
df = 8, p = 0.19).

Eastern Wood Pewee were widespread in the study area, with 
an average probability of occupancy on BBS routes in 1997 of 0.90 
in the global model (Figure 1). Occupancy declined slightly to 0.88 
by 2012, mirroring the decline in counts reported by the BBS. Initial 
occupancy was positively related to available habitat and hours of 
cold stress (Table 1). Probability of detection at the first individual 
stop during 1997 was low, at 0.13, while probability of detection 
at the route level was much higher at 0.95 because birds were 
typically available at many stops within a route. Model 3, which 
included spatial variation in climate and habitat in the colonization 
and extinction models, significantly improved model fit, relative to 
Model 1 (likelihood ratio χ2 = 44.19, df = 6, p < 0.001). Under this 
model, estimated colonization rates in 1998 ranged among routes 
from 0.08 to 0.28 (with a mean of 0.18), while extinction rates 
varied from 0.01 to 0.04 (with a mean of 0.02; Figure 2). Model 2 
differed from Model 3 in that it allowed colonization and extinc‐
tion rates to vary each year. Model 2 improved model fit relative 

R
2

Dev
=
Dev(Mnull)−Dev(Mcov)

Dev(Mnull)−Dev(Mfull)
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TA B L E  1  Estimated parameters for correlated‐detection dynamic occupancy Model 2 relating habitat and climate covariates to 
occupancy dynamics of breeding Eastern Wood Pewee and Red‐eyed Vireo, 1997–2012. Parameter estimates indicate change in log odds of 
parameters in response to z‐transformed covariates. Parameters ψ, ϑ, ϑ′, γ, ε, p1, p2, and π defined in text

Parameters

Eastern Wood Pewee Red‐eyed Vireo

Estimate SE Estimate SE

Ψ intercept 2.367 0.177 4.136 0.404

Ψ habitat 0.556 0.163 2.315 0.300

Ψ heat stress −0.011 0.198 −0.337 0.281

Ψ cold stress 0.598 0.166 1.020 0.258

ϑ intercept −1.821 0.026 −1.385 0.010

ϑ habitat −0.055 0.026 0.516 0.013

ϑ heat stress −0.094 0.030 0.017 0.008

ϑ cold stress 0.172 0.040 0.258 0.013

ϑ′ intercept 2.292 0.045 0.426 0.020

ϑ′ habitat 0.316 0.036 1.210 0.018

ϑ′ heat stress −0.006 0.038 0.054 0.013

ϑ′ cold stress −0.622 0.064 0.876 0.019

γ intercept −0.884 0.353 0.010 0.424

γ 1999 −0.601 0.585 −0.150 0.532

γ 2000 −1.083 0.633 0.516 0.464

γ 2001 −0.300 0.484 0.228 0.483

γ 2002 −1.113 0.577 0.262 0.511

γ 2003 −1.055 0.564 −0.311 0.551

γ 2004 −0.656 0.525 −0.179 0.534

γ 2005 −0.677 0.533 0.468 0.485

γ 2006 −1.014 0.620 −0.217 0.579

γ 2007 −0.162 0.453 −0.093 0.548

γ 2008 −23.545 70,483.373 −0.478 0.607

γ 2009 −0.428 0.455 −0.253 0.566

γ 2010 −0.292 0.478 −0.159 0.517

γ 2011 −1.136 0.607 0.012 0.490

γ 2012 −0.498 0.474 0.141 0.497

γ average habitat 0.095 0.091 0.801 0.112

γ average heat stress −0.024 0.067 0.005 0.062

γ average cold stress 0.227 0.071 0.358 0.120

ε intercept −3.957 0.386 −3.767 0.242

ε 1999 0.365 0.482 −0.189 0.337

ε 2000 0.049 0.512 −0.921 0.399

ε 2001 −0.266 0.548 −0.532 0.362

ε 2002 −0.576 0.660 −1.156 0.398

ε 2003 −0.298 0.595 −0.692 0.355

ε 2004 0.113 0.509 −0.621 0.343

ε 2005 0.173 0.482 −1.096 0.429

ε 2006 −0.145 0.561 −1.173 0.463

ε 2007 0.451 0.458 −0.894 0.366

ε 2008 0.283 0.480 −0.976 0.424

ε 2009 0.218 0.496 −0.898 0.381

(Continues)
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Parameters

Eastern Wood Pewee Red‐eyed Vireo

Estimate SE Estimate SE

ε 2010 −0.397 0.605 −0.348 0.304

ε 2011 0.643 0.455 −0.999 0.406

ε 2012 0.153 0.644 −0.803 0.410

ε average habitat 0.238 0.090 −1.670 0.122

ε average heat stress −0.071 0.092 −0.075 0.074

ε average cold stress −0.307 0.141 −0.904 0.104

p1 intercept −2.172 0.043 1.352 0.038

p1 1998 −0.118 0.048 −0.127 0.058

p1 1999 −0.112 0.049 −0.043 0.058

p1 2000 −0.166 0.050 −0.016 0.059

p1 2001 −0.156 0.049 0.031 0.060

p1 2002 −0.179 0.049 0.076 0.061

p1 2003 −0.216 0.051 0.161 0.064

p1 2004 −0.242 0.051 0.066 0.060

p1 2005 −0.124 0.050 0.149 0.060

p1 2006 −0.182 0.051 0.124 0.059

p1 2007 −0.149 0.050 0.184 0.061

p1 2008 −0.202 0.052 0.192 0.063

p1 2009 −0.221 0.052 0.135 0.061

p1 2010 −0.195 0.051 0.062 0.059

p1 2011 −0.122 0.051 0.203 0.062

p1 2012 −0.227 0.055 0.194 0.062

p1 stop number 0.033 0.009 −0.055 0.011

p1 stop number squared −0.069 0.010 −0.247 0.013

p2 intercept −0.921 0.018 −0.557 0.036

p2 1998 −0.138 0.033 −0.106 0.050

p2 1999 −0.137 0.032 0.000 0.052

p2 2000 −0.164 0.032 −0.027 0.051

p2 2001 −0.077 0.032 −0.053 0.053

p2 2002 −0.101 0.032 −0.019 0.052

p2 2003 −0.199 0.033 0.086 0.053

p2 2004 −0.186 0.032 0.124 0.057

p2 2005 −0.146 0.032 0.076 0.051

p2 2006 −0.155 0.032 0.128 0.054

p2 2007 −0.153 0.032 0.120 0.054

p2 2008 −0.168 0.032 0.072 0.056

p2 2009 −0.077 0.033 0.101 0.055

p2 2010 −0.114 0.033 0.085 0.060

p2 2011 −0.079 0.032 0.124 0.054

p2 2012 −0.186 0.033 0.036 0.061

p2 stop number 0.045 0.007 0.165 0.010

p2 stop number squared −0.105 0.008 −0.183 0.010

π 0.533 0.064 −0.505 0.065

TA B L E  1   (Continued)
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to Model 3, although not significantly due to the number of addi‐
tional parameters (χ2 = 26.79, df = 28, p = 0.53). Under Model 2, 
estimated colonization rates varied from 0.00 in 2008 to 0.30 in 
1998, while extinction rates varied from 0.01 in 2001–2003 and 
2010 to 0.04 in 2011. We used Models 4, 5, and 6 to estimate the 
percent of improved model fit (measured by the change in devi‐
ance) generated by Model 2 that could be accounted for by tempo‐
ral variation in climate and habitat covariates (Table 2). Temporal 
variation in habitat accounted for 0.4% of the change in deviance, 
while temporal variation in climate accounted for 19.6%. Model 
6, which accounted for temporal variation in both habitat and cli‐
mate, indicated that in 1998, colonization in the southwest portion 
of the study area was above the local average while extinction in 
the southwest was below the local average, indicating a relatively 
strong occupancy trend in the southwest in that year (Figure 3). 
By 2012, this pattern had reversed, yielding a relatively weak oc‐
cupancy trend in the southwest (Figure 3). None of these models 
represented a significant improvement over Model 3 (p > 0.26). In 
some cases, the sign of the estimated effect of temporal variation 
in climate and habitat was opposite of the expected effect, but in 
no instances were these estimates significant (Table 3).

3.2 | Red‐eyed Vireo

The best‐supported model for Red‐eyed Vireo included the same 
covariates as for Eastern Wood Pewee, yielding a global model with 
85 parameters (Table 1). The Hosmer–Lemeshow test indicated fit 
was adequate for the Red‐eyed Vireo global model for both naïve 
colonization rates (χ2 = 5.40, df = 4, p = 0.25) and naïve extinction 
rates (χ2 = 1.00, df = 4, p = 0.91).

Red‐eyed Vireo were similarly widespread in the study area, 
with an average probability of occupancy of 0.91 in the global 

model (Figure 1). Occupancy decreased slightly to 0.90 by 2012, 
in contrast to the increase in counts reported by the BBS. Initial 
occupancy was positively related to available habitat and hours 
of cold stress (Table 1). Probability of detection at the first stop 
was relatively high, at 0.38, while probability of detection at the 
route level nearly perfect at 0.98. Model 3, which included spa‐
tial variation in climate and habitat to the colonization and extinc‐
tion models, improved model fit dramatically (χ2 = 418.84, df = 6, 
p < 0.001), relative to the null model. In keeping with the greater 
change in deviance for Red‐eyed Vireo, Model 3 estimated more 
spatial variation in vital rates, compared to Eastern Wood Pewee. 
In 1998, estimated colonization rates varied across BBS routes 
from 0.10 to 0.88 (mean of 0.49), while extinction rates ranged 
from 0.00 to 0.48 (mean of 0.04; Figure 4). Model 2, which allowed 
colonization and extinction rates to vary each year, improved 
model fit relative to Model 3, but not significantly due to the num‐
ber of additional parameters (χ2 = 34.27, df = 28, p = 0.19). Under 
Model 2, estimated colonization rates varied from 0.39 in 2008 to 
0.60 in 2000, while estimated extinction rates varied from 0.03 
in 2006 to 0.07 in 1998. We used Models 4, 5, and 6 to estimate 
the percent of the deviance reduction in Model 2 that could be ac‐
counted for by temporal variation in climate and habitat covariates 
(Table 2). We found that temporal variation in habitat accounted 
for 0.1% of the change in deviance, while climate accounted for 
5.6%. Model 6, which accounted for temporal variation in both 
habitat and climate, indicated that in 1998, both colonization and 
extinction were above average, indicating higher turnover early in 
the study period (Figure 5). By 2012, both colonization and extinc‐
tion rates had declined, indicating greater stability in occupancy 
(Figure 5). None of these models represented a significant im‐
provement over Model 3 (p > 0.74). Some of the estimated effects 

F I G U R E  1  Occupancy probability for (a) Eastern Wood Pewee and (b) Red‐eyed Vireo in the eastern United States, 1997, under Model 2. 
Occupancy varies by the amount of suitable habitat, hours of heat stress, and hours of cold stress in 1997
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of temporal variation in climate and habitat differed from expecta‐
tions, but not significantly (Table 3).

4  | DISCUSSION

We found that for both bird species, initial occupancy, coloniza‐
tion rates, and extinction rates correlated with spatial variation in 
climate and habitat covariates. However, colonization and extinc‐
tion rates were not correlated with temporal variation in climate 
and habitat covariates. Our results correlating initial occupancy 
with environmental covariates are, broadly speaking, consistent 
with biological expectation and a raft of previous studies that have 
indicated a significant relationship between species distributions 
and habitat (Robinson, Wilson, & Crick, 2001; Thogmartin, Sauer, 
& Knutson, 2007), climate (Barbet‐Massin & Jetz, 2014; Bellard, 
Bertelsmeier, Leadley, Thuiller, & Courchamp, 2012), or both 
(Seoane, Bustamante, & Díaz‐Delgado, 2004; Sohl, 2014). 
However, we suggest that estimated relationships between spatial 
variation in environmental covariates and colonization and extinc‐
tion rates are of greater ecological interest than relatively phe‐
nomenological species distribution models or climate envelope 
models (Clement et al., 2016). The estimated vital rates of coloni‐
zation and extinction bring us closer to understanding the dynamic 
process underlying the distribution of these species. Given con‐
stant vital rates, we can also project the equilibrium level of oc‐
cupancy at sites ( �i

�i+�i

, at site i). We can compare these projected 

equilibria to current occupancy to project trends for the species 
under current environmental conditions. We can also use 

projected changes in key environmental variables to develop pre‐
dicted range changes in the future. We argue that these projec‐
tions are more robust than those from static climate envelope 
models, which assume that species are currently in equilibrium 
(Yackulic et al., 2015). In contrast, static models can overestimate 
range changes when the equilibrium does not hold (Morin & 
Thuiller, 2009).

Given the importance of global change, we were motivated to 
investigate factors affecting temporal, as well as spatial, variation 
in vital rates. In this case, spatial variation must be incorporated 
into such analyses in order to accommodate the different dynamics 
expected in different portions of a species range. We view the re‐
lationship between temporal variation in covariate values and vital 
rates as the most relevant to understanding the effect of global 
change on the recent and future distributions of our study species. 
Furthermore, a correlation between vital rates and spatially vary‐
ing covariates may not indicate a similar correlation with temporal 
changes in those same covariates. For example, a species with strong 
dispersal constraints might have a strong spatial relationship with 
a covariate, but a weak temporal relationship due to its immobility 
(Devictor et al., 2008). Similarly, an estimated spatial relationship 
may be purely phenomenological due to the nature of spatial vari‐
ables. When spatial variables follow gradients, it is relatively easy 
to obtain statistically significant correlations, absent any causal re‐
lationship (Grosbois et al., 2008). For example, if colonization rates 
and temperatures both follow north–south gradients, they may be 
spatially correlated even if colonization is governed by some other, 
unidentified factor. In this case, we would expect the weak correla‐
tion between temporal changes in temperature and colonization 

F I G U R E  2  Probability of (a) colonization and (b) extinction for Eastern Wood Pewee in the eastern United States, following 1997, under 
Model 3. Colonization and extinction vary by the amount of suitable habitat, hours of heat stress, hours of cold stress, all averaged over the 
1997–2012 study period



     |  1995CLEMENT et al.

rates to be more indicative of the true relationship than the strong 
correlation with spatial variation in temperature.

BBS surveys indicate different abundance trajectories for our 
study species, with counts increasing for Red‐eyed Vireos and de‐
creasing for Eastern Wood Pewees (Sauer et al., 2015). Because 
abundance and occupancy tend to be linked (Gaston et al., 2000), we 
expected some divergence in occupancy dynamics. We found that 
estimated occupancy was high and stable for both species, although 
there was greater turnover for Red‐eyed Vireos. For example, under 
Model 3 (spatial variation only in covariates), both average coloni‐
zation rates (0.49) and average extinction rates (0.04) were at least 
twice as high for Red‐eyed Vireos, compared to Eastern Wood Pewee 
(0.18 and 0.02, respectively). Red‐eyed Vireos exhibited greater spa‐
tial variation in colonization and extinction rates (Figure 4), although 
our selected covariates explained little temporal variation for this 
species. Eastern Wood Pewee colonization and extinction rates ex‐
hibited more of a latitudinal gradient, reflecting a spatial correlation 
with extreme temperature (Figure 2). Our results also hinted at a 
greater correlation between temporal changes in temperature and 
occupancy vital rates for Eastern Wood Pewee, which could play a 
role in the decline of this species, although the results were not sig‐
nificant (Table 3). Alternatively, it has been suggested that Eastern 
Wood Pewee may be declining due to a loss of forested wintering 
habitat (Robbins, Sauer, Greenberg, & Droege, 1989) or due to deer‐
mediated changes in forest structure on breeding grounds (deCal‐
esta, 1994), illustrating the complexity of ascertaining cause and 
effect using observational studies in these natural systems.

Although relatively rare (Sirami et al., 2017), other studies have 
investigated both climate and land cover effects on bird distribu‐
tions. In agreement with our finding that temporal variation in cli‐
mate explained much more of the model deviance than temporal 
variation in habitat, climate‐only species distribution models had 
better cross‐validation support than habitat‐only models for 409 
European bird species (Barbet‐Massin et al., 2012). Similarly, models 
estimating the number of newly occupied areas by Hooded Warblers 
(Wilsonia citrina) in Ontario using climate data had better informa‐
tion criterion support than models using forest data (Melles, Fortin, 
Lindsay, & Badzinski, 2011). In contrast, land‐use models outper‐
formed climate models for 18 farmland bird species in the United 
Kingdom (Eglington & Pearce‐Higgins, 2012). Similarly, vegetation‐
based species distribution models had superior performance than 
climate‐based models for 79 Spanish bird species (Seoane et al., 
2004) and for three bird species in New Mexico (Friggens & Finch, 
2015). Two studies focused on colonization and extinction rates 
found mixed results. For Garden Warblers (Sylvia borin) in Britain, 
vegetation explained more variation in colonization, while tempera‐
tures explained more variation in local extinction (Mustin, Amar, & 
Redpath, 2014). For 122 bird species in Ontario, the best‐supported 
covariates (land cover or climate change) varied among species 
(Yalcin & Leroux, 2018).

The divergent results among studies regarding the importance of 
climate and land cover may partly be due to the biology of individual 
species (Yalcin & Leroux, 2018). For example, farmland birds may TA
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be particularly affected by changes in agricultural intensity because 
of their extensive use of farms (Eglington & Pearce‐Higgins, 2012). 
Alternatively, it has been argued that spatial scale may play a role in 
the relative importance of global change factors, with climate more 
important at large scales (Pearson & Dawson, 2003). We note that 
two studies that found a larger role for climate both relied on lower‐
resolution bird surveys (0.5° atlas in Barbet‐Massin et al., 2012; 

10 km2 atlas in Melles et al., 2011). In the BBS data that we analyzed, 
surveys were conducted every 800 m, but we calculated occupancy 
across each 39.4 km transect. In addition, the cited studies used 
different data sources and diverse analysis methods, complicating 
interpretation of the differing results.

While we estimated that climate explained more model de‐
viance than habitat, these estimated relationships were not 

F I G U R E  3  Annual deviation of colonization and extinction rates from average colonization and extinction rates(𝛾̂(t)− 𝛾̄ ,𝜀̂(t)− 𝜀̄), for Eastern 
Wood Pewee in the eastern United States, following 1997 and 2011, under Model 6. Deviations in colonization and extinction rates vary 
with deviations in the amount of suitable habitat, hours of heat stress, hours of cold stress, relative to average levels over the 1997–2012 
study period. (a) Colonization deviation following 1997, (b) extinction deviation following 1997, (c) colonization deviation following 2011, and 
(d) extinction deviation following 2011
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TA B L E  3  Estimated parameters for correlated‐detection dynamic occupancy Model 6 relating habitat and climate covariates to 
occupancy dynamics of breeding Eastern Wood Pewee and Red‐eyed Vireo, 1997–2012. Parameter estimates indicate change in log odds of 
parameters in response to z‐transformed covariates. Parameters ψ, ϑ, ϑ′, γ, ε, p1, p2, and π defined in text. For key parameters (bold text), 
expected signs included

Parameters

Expected Eastern Wood Pewee Red‐eyed Vireo

Effect Estimate SE Estimate SE

Ψ intercept 2.367 0.177 4.087 0.381

Ψ habitat 0.556 0.163 2.323 0.288

Ψ heat stress −0.011 0.198 −0.322 0.275

Ψ cold stress 0.598 0.166 1.054 0.251

ϑ intercept −1.821 0.026 −1.385 0.010

ϑ habitat −0.055 0.026 0.516 0.013

ϑ heat stress −0.094 0.030 0.017 0.008

ϑ cold stress 0.172 0.040 0.256 0.013

ϑ′ intercept 2.292 0.045 0.426 0.020

ϑ′ habitat 0.316 0.036 1.210 0.018

ϑ′ heat stress −0.006 0.038 0.054 0.013

ϑ′ cold stress −0.622 0.064 0.875 0.019

γ intercept −0.884 0.353 0.023 0.162

γ habitat deviation + −0.292 0.478 −0.240 1.768

γ heat stress deviation − −1.136 0.607 0.064 0.194

γ cold stress deviation − −0.498 0.474 2.398 2.253

γ average habitat 0.095 0.091 0.788 0.111

γ average heat stress −0.024 0.067 0.004 0.062

γ average cold stress 0.227 0.071 0.333 0.119

ε intercept −3.957 0.386 −4.471 0.141

ε habitat deviation − −0.397 0.605 0.121 1.492

ε heat stress deviation + 0.643 0.455 −0.034 0.182

ε cold stress deviation + 0.153 0.644 2.042 2.072

ε average habitat 0.238 0.090 −1.664 0.123

ε average heat stress −0.071 0.092 −0.080 0.074

ε average cold stress −0.307 0.141 −0.939 0.104

p1 intercept −2.172 0.043 1.351 0.039

p1 1998 −0.118 0.048 −0.128 0.058

p1 1999 −0.112 0.049 −0.043 0.058

p1 2000 −0.166 0.050 −0.017 0.059

p1 2001 −0.156 0.049 0.031 0.061

p1 2002 −0.179 0.049 0.076 0.062

p1 2003 −0.216 0.051 0.160 0.064

p1 2004 −0.242 0.051 0.066 0.061

p1 2005 −0.124 0.050 0.149 0.061

p1 2006 −0.182 0.051 0.124 0.060

p1 2007 −0.149 0.050 0.183 0.062

p1 2008 −0.202 0.052 0.191 0.064

p1 2009 −0.221 0.052 0.134 0.062

p1 2010 −0.195 0.051 0.062 0.060

p1 2011 −0.122 0.051 0.202 0.063

(Continues)
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Parameters

Expected Eastern Wood Pewee Red‐eyed Vireo

Effect Estimate SE Estimate SE

p1 2012 −0.227 0.055 0.193 0.063

p1 stop number 0.033 0.009 −0.055 0.011

p1 stop number squared −0.069 0.010 −0.247 0.013

p2 intercept −0.921 0.018 −0.555 0.037

p2 1998 −0.138 0.033 −0.121 0.050

p2 1999 −0.137 0.032 −0.025 0.052

p2 2000 −0.164 0.032 −0.027 0.051

p2 2001 −0.077 0.032 −0.059 0.053

p2 2002 −0.101 0.032 −0.012 0.052

p2 2003 −0.199 0.033 0.085 0.053

p2 2004 −0.186 0.032 0.113 0.059

p2 2005 −0.146 0.032 0.082 0.052

p2 2006 −0.155 0.032 0.135 0.054

p2 2007 −0.153 0.032 0.124 0.055

p2 2008 −0.168 0.032 0.073 0.057

p2 2009 −0.077 0.033 0.100 0.056

p2 2010 −0.114 0.033 0.071 0.062

p2 2011 −0.079 0.032 0.120 0.055

p2 2012 −0.186 0.033 0.030 0.063

p2 stop number 0.045 0.007 0.165 0.010

p2 stop number squared −0.105 0.008 −0.182 0.011

π 0.533 0.064 −0.505 0.065

TA B L E  3   (Continued)

F I G U R E  4  Probability of (a) colonization and (b) extinction for Red‐eyed Vireo in the eastern United States, following 1997, under 
Model 3. Colonization and extinction vary by the amount of suitable habitat, hours of heat stress, hours of cold stress, all averaged over the 
1997–2012 study period
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significant and did not explain a large fraction of variation. There 
are several potential explanations for why we did not find a sub‐
stantial response to changes in habitat and climate. First, our data 
were lacking in dynamic events to inform our models. The covari‐
ates changed relatively little over the time period, making it diffi‐
cult to detect a response. The lack of change was partly because of 
the relatively short (16‐year) time period studied. Also, we used a 
moving average for climate data, which tends to reduce differences 

over short time periods. In addition, the study region has experi‐
enced less warming over the past century than other parts of the 
planet (Walsh et al., 2014). The bird distributions also lacked dy‐
namism. Because extinction rates were low, there were few local 
extinction events to inform the model. Although colonization rates 
were high, the fact that initial occupancy was high and extinction 
rates were low meant there were few opportunities for coloniza‐
tion events.

F I G U R E  5  Annual deviation of colonization and extinction rates from average colonization and extinction rates, for Red‐eyed Vireo in 
the eastern United States, following 1997 and 2011, under Model 6. Deviations in colonization and extinction rates vary with deviations 
in the amount of suitable habitat, hours of heat stress, hours of cold stress, relative to average levels over the 1997–2012 study period. (a) 
Colonization deviation following 1997, (b) extinction deviation following 1997, (c) colonization deviation following 2011, and (d) extinction 
deviation following 2011
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Second, measurement error may have obscured responses to 
global change. The PRISM climate data are estimated by interpola‐
tion, rather than direct measurement across the study area (Daly et 
al., 2008). As such, there may be artifacts or anomalies that impeded 
our estimation and increased uncertainty. Similarly, NLCD data are 
remotely sensed and may include some measurement error, which 
can increase uncertainty in our estimates (Homer et al., 2015). 
Additionally, land cover was only measured in three years, requiring 
us to impute values in 13 years. As a result, all land cover change 
that occurred between 2002 and 2006 was recorded in 2002, while 
changes between 2007 and 2011 were recorded in 2007. This ap‐
proximation is not ideal, but was necessary given the 5‐year reso‐
lution of the data. This lower resolution of the land cover data may 
have reduced the sensitivity of the model.

Third, we may have misspecified our model. We tried to de‐
velop biologically meaningful covariates, but we might not under‐
stand the system as well as we hoped. It is possible that bird vital 
rates respond to climate on a different time scale (i.e., not a 15‐
year moving average), or to climate during different times of the 
year, or to different temperature thresholds, or to different climate 
components (e.g., precipitation; Illán et al., 2014). It is also possi‐
ble that the birds respond to finer habitat features than the land 
cover types we used, or at a different spatial scale (i.e., not 400 m; 
Pearson & Dawson, 2003). Alternatively, there may be important 
regional differences or interactions among covariates that we did 
not capture. Or, it is possible that changes in climate and habitat in 
their breeding areas simply have little effect on vital rates for these 
species relative to other factors, such as competition with other 
bird species, or global change occurring on their wintering grounds 
in South America (Dormann, 2007). Of course, these misspecifica‐
tion issues are inherent to all observational studies, and not unique 
to this study.

It would be possible for us to explore some of the misspec‐
ification issues just mentioned. For example, we could rerun 
the same models using new covariates representing a variety of 
temperature thresholds and habitat buffer sizes to search for a 
stronger correlation. Experience suggests that persistence would 
eventually be rewarded with a p‐value <0.05 or a low model se‐
lection value. However, one reason to avoid such exploration is 
that it tends to lead to Type I errors, overfit models, and biased 
parameter estimates (Fieberg & Johnson, 2015). Furthermore, we 
find the contrast between significant correlations for spatial co‐
variates and nonsignificant correlations for temporal covariates il‐
luminating. In typical climate envelope studies, we would estimate 
the relationship between covariates and the current distribution 
of a species, much like our estimate of initial occupancy (Dormann, 
2007). Because we obtained significant parameter estimates, we 
might conclude that we have identified covariates that determine 
the range of this species. Then, we might use these results to proj‐
ect the future range of the species under various climate scenarios 
based on the (questionable) assumption that the covariate–spe‐
cies relationship will not change as climate and habitat change 
(Cuddington et al., 2013; Elith et al., 2010; Gustafson, 2013). In 

this case, the insignificant correlation with the temporal covari‐
ates suggests that our occupancy covariates merely describe the 
range of these birds, without determining the range. Furthermore, 
our results suggest that, despite significant results in the static 
portion of the model, we have yet to identify the most relevant 
components of climate change shaping the distribution of these 
birds, although it may be difficult to identify these components 
given the lack of observed change during a relatively short time 
period. Finally, our results suggest that projections based on the 
static portion of our model are unlikely to be reliable, despite their 
statistical significance.

If our interpretation is correct, it suggests that some projections 
of future range shifts based on static models rely on unsupported 
assumptions and are not reliable. We have demonstrated a differ‐
ent approach that does not require the strong assumptions of static 
modeling approaches. Our approach would be more apt to identify 
factors that guide species’ response to global change if both the spe‐
cies and the covariates exhibited more dynamism, and if we analyzed 
a longer time period that encompassed greater change.
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