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-throughput virtual screening
through molecular pool-based active learning†

David E. Graff, a Eugene I. Shakhnovicha and Connor W. Coley *b

Structure-based virtual screening is an important tool in early stage drug discovery that scores the

interactions between a target protein and candidate ligands. As virtual libraries continue to grow (in

excess of 108 molecules), so too do the resources necessary to conduct exhaustive virtual screening

campaigns on these libraries. However, Bayesian optimization techniques, previously employed in other

scientific discovery problems, can aid in their exploration: a surrogate structure–property relationship

model trained on the predicted affinities of a subset of the library can be applied to the remaining library

members, allowing the least promising compounds to be excluded from evaluation. In this study, we

explore the application of these techniques to computational docking datasets and assess the impact of

surrogate model architecture, acquisition function, and acquisition batch size on optimization

performance. We observe significant reductions in computational costs; for example, using a directed-

message passing neural network we can identify 94.8% or 89.3% of the top-50 000 ligands in a 100M

member library after testing only 2.4% of candidate ligands using an upper confidence bound or greedy

acquisition strategy, respectively. Such model-guided searches mitigate the increasing computational

costs of screening increasingly large virtual libraries and can accelerate high-throughput virtual

screening campaigns with applications beyond docking.
Introduction

Computer-aided drug design techniques are widely used in
early stage discovery to identify small molecule ligands with
affinity to a protein of interest.1,2 Broadly speaking, these tech-
niques fall into one of two domains: ligand-based or structure-
based. Ligand-based techniques oen rely on either a quanti-
tative structure–activity relationship (QSAR) or similarity model
to screen possible ligands. Both of these ligand-based
approaches require one or more previously labeled active/
inactive compounds that are typically acquired through phys-
ical experimentation. In contrast to ligand-based techniques,
structure-based techniques, such as computational docking
and molecular dynamics, try to model the protein–ligand
interaction and assign a quantitative score intended to correlate
with the free energy of binding.3 These techniques require
a three-dimensional structure of the target protein but do not
require target-specic bioactivity data. Scoring functions used
in structure-based techniques are typically parameterized
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functions describing the intra- and intermolecular interactions
at play in protein–ligand binding.3 As a result, structure-based
methods are in principle more able to generalize to unseen
protein and ligand structures compared to ligand-based
methods. This advantage has been leveraged to discover novel
ligand scaffolds in a number of recent virtual screening
campaigns.4

A typical virtual screening workow will exhaustively predict
the performance of ligands in a virtual chemical library.
However, over the past decade, these libraries have grown so
large that the computational cost of screening cannot be
ignored. For example, ZINC, a popular database of commer-
cially available compounds for virtual screening, grew from
700k to 120M structures between 2005 and 2015 and, at the time
of writing, now contains roughly 1 billion molecules.5,6 ZINC is
not unique in its gargantuan size; other enumerated virtual
libraries exist that number well over one billion compounds.7,8

Non-enumerated libraries contain an implicit denition of
accessible molecules and can be much larger, containing
anywhere from 1010 to 1020 possible compounds.9–11 Despite
some debate around whether “bigger is better” in virtual
screening,12 such large virtual libraries are now being used for
screening in structure-based drug design workows.13–16 These
studies required computational resources that are inaccessible
to many academic researchers (e.g., 475 CPU-years in the case of
Gorgulla et al.13). Moreover, this high computational cost makes
such a strategy impractical to apply to many distinct protein
© 2021 The Author(s). Published by the Royal Society of Chemistry
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targets. As virtual libraries grow ever larger, new strategies must
be developed to mitigate the computational cost of these
exhaustive screening campaigns.

The goal in any virtual screening approach is to nd a set of
high-performing compounds—herein, computational “hits”
with the most negative docking scores—within a signicantly
larger search space. To restate this formally, we are attempting
to solve for the set of top-k molecules fxigi¼1

k* from a virtual
library X that maximizes some black-box function of molecular
identity f : x˛X/ℝ; i.e.,

fxigi¼1
k* ¼ argmax

fxigki¼13X

Xk

i¼1

f ðxiÞ: (1)

In this study, the black-box function f(x) is the negative
docking score of a candidate ligand, but other possibilities
include the HOMO–LUMO gap of a candidate organic semi-
conductor, extinction coefficient of a candidate dye, turnover
number of a candidate catalyst, etc. Brute force searching—
screening every molecule in a library indiscriminately—is
a straightforward and common strategy employed to solve this
type of problem, but it necessarily spends a signicant fraction
of its time evaluating relatively low-performing compounds
(Fig. 1A). However, algorithmic frameworks exist that aim to
solve eqn (1) with the fewest number of required evaluations.
Bayesian optimization is one such framework that uses
a surrogate model trained on previously acquired data to guide
the selection of subsequent experiments. We describe Bayesian
optimization in more detail in the Methods section below, but
we refer a reader to ref. 17 for an in-depth review on the subject.

The application of Bayesian optimization and active learning
to physical problems is well-precedented, e.g., with applications
Fig. 1 Overview of a computational docking screen using (A) brute for
learning (MolPAL), which uses model-guided selection to prioritize the
represent molecules that have not been evaluated.

© 2021 The Author(s). Published by the Royal Society of Chemistry
to materials design,18–21 bioactivity screening,22–24 andmolecular
simulations.25–27 These examples showcase the signicant effi-
ciency gains made possible through use of model-guided
experimentation. However, examples of active learning for
structure-based virtual screening are more limited. Compared
to the previous examples, structure-based drug design involves
search spaces of millions to billions of organic small molecules
with simulations that are signicantly cheaper than the elec-
tronic structure or molecular dynamics simulations from the
above examples. The large, discrete, and not explicitly combi-
natorial nature of the design space coupled with the comparably
cheap objective function makes this a relatively unexplored
setting for Bayesian optimization.

Active learning applied to computational docking, “itera-
tive docking,” has previously been explored in the context of
a binary classication formulation during the QSAR modelling
step using ngerprint-based surrogate models.28–30 While the
specics of each approach varied, these studies shared similar
acquisition strategies via the docking of new molecules clas-
sied as “hits” by their trained QSAR model. Our work seeks to
expand upon these initial studies, particularly by examining
the effects of surrogate model architecture, acquisition
strategy, and batch size have on optimization performance.
Moreover, our work treats docking score as a continuous
variable, so our surrogate model follows a regression formu-
lation, as opposed to the binary classication formulation of
the previous studies. Lyu et al. observed correlations between
the success rates of experimental validation and computed
docking scores,14 suggesting that preserving this information
during model training may improve the surrogate model's
ability to prioritize molecules that are more likely to be vali-
dated as active. Recent work by Pyzer-Knapp31 also looked at
such an approach using a Gaussian process (GP) surrogate
ce (exhaustive) virtual screening and (B) molecular pool-based active
docking of molecules more likely to be scored favorably. Grey circles
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model along with a parallel and distributed Thompson
sampling acquisition strategy;32 this strategy is well-suited to
small design spaces (e.g., thousands of compounds) but does
not scale well to millions of acquired data points due to the
cost of GP training.33 Contemporary studies published in the
months following the release of this manuscript's preprint
have also looked at the use of active learning to accelerate
docking-based virtual screening.34–36

In this work, we leverage Bayesian optimization algorithms
for docking-based virtual screening in a manner that decreases
the computational cost of using docking to identify the majority
of top-scoring compounds in virtual libraries by over an order of
magnitude (Fig. 1B). We demonstrate that surrogate machine
learning models can prioritize the screening of molecules that
are associated with better docking scores, which are presumed
to be more likely to validate experimentally.14 We analyze
a variety of different model architectures and acquisition
functions that one can use to accelerate high-throughput virtual
screening using Bayesian optimization. Specically, we test
random forest (RF), feedforward neural network (NN), and
directed-message passing neural network (MPN) surrogate
models along with greedy, upper condence bound (UCB),
Thompson sampling (TS), expectation of improvement (EI), and
probability of improvement (PI) acquisition strategies in addi-
tion to various acquisition batch sizes. We study these optimi-
zation parameters on multiple datasets of protein–ligand
docking scores for compound libraries containing roughly ten
thousand, y thousand, two million, and one hundred million
molecules. We perform these studies using MolPAL, an open
source soware which we have developed and made freely
available.
Fig. 2 Bayesian optimization performance on Enamine 10k screening da
of the number of ligands evaluated. Each trace represents the performanc
corresponding the chart label. Each experiment began with random 1% ac
iterations. Error bars reflect � one standard deviation across five runs.
passing neural network; UCB, upper confidence bound; TS, Thompson
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Results
Small virtual libraries

As an initial evaluation of the experimental efficiency Bayesian
optimization can provide, we generated a dataset containing
docking scores from 10 560 compounds (Enamine's smaller
Discovery Diversity Collection, “Enamine 10k”) docked against
thymidylate kinase (PDB ID: 4UNN37) using AutoDock Vina.38

Data acquisition was simulated as the iterative selection of 1%
of the library (ca. 100 molecules) repeated ve times aer
initialization with a random 1% subset for a total acquisition of
6% of the library. We rst looked at a random forest (RF)
operating on molecular ngerprints as our surrogate model
along with a greedy acquisition strategy. This combination
yields clear improvement over the random baseline, represen-
tative of a brute-force search, when looking at the percentage of
top-100 (ca. top-1%) scores in the full dataset found by MolPAL
(Fig. 2, le panel). The greedy strategy nds, on average, 51.6%
(�5.9) of the top-100 scores in the full dataset when exploring
only 6% of the pool.

We dene the enrichment factor (EF) as the ratio of the
percentage of top-k scores found by the model-guided search to
the percentage of top-k scores found by a random search for the
same number of objective function calculations. The random
baseline nds only 5.6% of the top-100 scores in the Enamine
10k dataset, thus constituting an EF of 9.2 for the greedy
random forest combination. A UCB acquisition metric, yields
similar, albeit slightly lower, performance with an EF of 7.7.
Surprisingly, the other optimistic acquisition metric we tested,
Thompson sampling (TS), does show an improvement over the
random baseline but is considerably lower than all other
ta as measured by the percentage of top-100 scores found as function
e of the given acquisitionmetric with the surrogatemodel architecture
quisition (ca. 100 samples) and acquired 1%more each iteration for five
RF, random forest; NN, feedforward neural network; MPN, message
sampling; EI, expected improvement; PI, probability of improvement.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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metrics (EF ¼ 4.9). We attribute this lower performance to the
large uncertainties in the RF model, which cause the distribu-
tions of predicted scores to overlap between molecules and
make the Thompson sampling strategy behave similarly to
random sampling.

We next assessed the effect of architecture for the surrogate
model. Using a fully connected feedforward neural network
(NN) operating on molecular ngerprints, we observed an
increase in performance for all acquisition metrics (Fig. 2,
middle panel). With the NN model, the least performant
acquisition strategy (56.0% with EI) was more powerful than the
best performing strategy with the RF model (51.6% with greedy
acquisition). The greedy acquisition metric remains the best
performing for the NN model, achieving 66.8% of top-100
scores found for an EF of 11.9. The third and nal architec-
ture examined is a message passing neural network model
(MPN), using the D-MPNN implementation by Yang et al.39 The
MPN model resulted in comparable performance to the NN
model (Fig. 2, right panel), with slight improvement for some
metrics. However, the highest performance observed, 66.2% (EF
¼ 11.8) with greedy acquisition, is statistically identical to the
best NN result.

These analyses were repeated for Enamine's larger Discovery
Diversity Collection of 50 240 molecules (“Enamine 50k”) also
against 4UNN with the same docking parameters (Fig. 3). We
again took 1% of the library as our initialization with ve
subsequent exploration batches of 1% each. All of the trends
remained largely the same across acquisition metrics and
model architectures; we observed comparable quantitative
performance for every surrogate model/acquisition metric
combination as compared to the smaller library. For example,
the RF model with a greedy acquisition strategy now nds
Fig. 3 Bayesian optimization performance on Enamine 50k screening da
of the number of ligands evaluated. Each trace represents the performanc
corresponding the chart label. Each experiment began with random 1% ac
iterations. Error bars reflect � one standard deviation across five runs.

© 2021 The Author(s). Published by the Royal Society of Chemistry
59.1% (�2.9) of the top-500 scores (ca. top-1%) using the
Enamine 50k library vs. the 51.6% of the top-100 scores (ca. top-
1%) when using the Enamine 10k library. There was little
difference between the results of the NN and MPN models on
the Enamine 50k results, which nd 74.8% and 74.2% of the
top-500 scores aer exploring just 6% of the library, respec-
tively. These values represent enrichment factors of 12.5 and
12.4, respectively, over the random baseline.

Enamine HTS collection

Encouraged by the signicant enrichment observed with the
Enamine 10k and 50k datasets, we next tested Enamine's 2.1
million member HTS Collection (“Enamine HTS”) – a size more
typical of a high-throughput virtual screen. We again use 4UNN
and Autodock Vina to dene the objective function values. With
this larger design space, acquisitions of 1% represent a signi-
cant number of molecules (ca. 21 000); therefore, we also sought
to reduce exploration size. Given the strong performance of the
greedy acquisition metric and its simplicity (i.e., lack of
a requirement of predicted variances), we focus our analysis on
this metric alone.

We tested three different batch sizes for initialization and
exploration, with ve exploration batches, as in our above
experiments. Using a batch size of 0.4% for a total of 2.4% of the
pool, we observed strong improvement over random explora-
tion for all three models using the greedy metric in terms of the
fraction of the top-1000 (top-0.05%) scores found (Fig. 4, le
panel). With a 0.4% batch size, the random baseline nds only
2.6% of the top-1000 scores, whereas the RF, NN, and MPN
models nd 84.3% (EF ¼ 32.4), 95.7% (EF ¼ 36.8), and 97.6%
(EF ¼ 40.7) of the top-1000 scores, respectively. Lowering the
total exploration size by half so that 0.2% of the library is
ta as measured by the percentage of top-500 scores found as function
e of the given acquisitionmetric with the surrogatemodel architecture
quisition (ca. 500 samples) and acquired 1%more each iteration for five
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Fig. 4 Bayesian optimization performance on Enamine HTS docking data as measured by the percentage of top-1000 scores found as function
of the number of ligands evaluated. Each trace represents the performance of the given model with a greedy acquisition strategy. Chart labels
represent the fraction of the library acquired in the random initial batch and the five subsequent exploration batches. Error bars reflect � one
standard deviation across five runs.
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acquired at each iteration (a total of 1.2% of the library) reduces
the overall performance of each model, but the drop in
performance is not commensurate with the decrease in
performance of the random baseline (Fig. 4, middle panel). The
MPN model is shown to be the most robust to the decrease in
batch size, identifying 93.3% of the top-1000 scores aer
exploring just 1.2% of the design space for an enrichment factor
of 77.8. Similarly, reducing the batch size further to 0.1% affects
the random baseline to a greater extent than any active learning
strategy (Fig. 4, right panel). Here, the random baseline nds
only 0.6% of the top-1000 scores but the MPN model with
greedy acquisition nds 78.4% of the top-1000 scores, repre-
senting an enrichment factor of 131. This growth in enrichment
factor as exploration fraction decreases holds for other, non-
greedy acquisition metrics (Tables S3–S5†).

Ultra-large libraries

One goal of the Bayesian optimization framework in our so-
ware, MolPAL, is to scale to even larger chemical spaces. A two
million member library is indeed a large collection of mole-
cules, but screens of this size are compatible with standard
high-performance computing clusters. Our nal evaluation
sought to demonstrate that MolPAL can make virtual screens of
$108-member libraries accessible to researchers using modest,
shared clusters. We turned to a recent study by Lyu et al. that
screened over 99 million and over 138 million readily accessible
molecules against AmpC b-lactamase (PDB ID: 1L2S) and the D4

dopamine receptor (PDB ID: 5WIU), respectively, using
DOCK3.7.14 The full datasets containing all of the molecules
that were successfully docked against 1L2S and 5WIU (“AmpC”
and “D4”, respectively) are used as the ground truth for the
appropriate experiments.40,41 We rst measure our algorithm's
7870 | Chem. Sci., 2021, 12, 7866–7881
performance as a function of the top-50 000 (top-0.05%) scores
found in the AmpC dataset for all three models using acquisi-
tion sizes of 0.4%, 0.2%, or 0.1%.

We see a similar qualitative trend for the AmpC dataset as for
all previous experiments: namely, that the use of Bayesian
optimization enables us to identify many of the top-performing
compounds aer exploring a small fraction of the virtual
library, even when using a greedy acquisition metric (Fig. 5). For
the 0.4% batch size experiments, the MPNmodel nds 89.3% of
the top-50 000 (ca. top-0.05%) scores aer exploring 2.4% of the
total pool (EF ¼ 37.2). Decreasing the batch size to 0.2% led to
a recovery of 66.2% (EF ¼ 55.2), and further decreasing the
batch size to 0.1% resulted in 47.1 recovery (EF ¼ 78.5). The NN
and RF surrogate models were not as effective as the MPN, but
still led to signicant enrichment above the baseline. Results
for additional acquisition functions can be found in Tables S6–
S8.† The UCB acquisition metric led to notable increases in the
performance of the MPN model for all batch sizes, nding
94.8% (EF ¼ 39.5), 77.5% (EF ¼ 64.6), and 48.7% (EF ¼ 81.2) of
the top-50 000 scores for the 0.4%, 0.2%, and 0.1% batch sizes,
respectively. The UCB metric similarly outperformed the greedy
metric on the D4 dataset with the MPN model, nding 84.3%
(EF¼ 35.1), 68.6% (EF¼ 57.2), and 52.8% (EF¼ 88.0) of the top-
50 000 scores for batch sizes 0.4%, 0.2%, and 0.1% batch sizes,
respectively (Fig. S2†). However, UCB was not consistently
superior to greedy acquisition for other model architectures.

It is worth commenting on the differences in quantitative
enrichment factors reported for the AmpC data and Enamine
HTS data. There are at least two differences that preclude
a direct comparison: (1) the top-k docking scores in the AmpC
data were generated by DOCK and span a range of �118.83 to
�73.99. This is compared to docking scores from the Enamine
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Bayesian optimization performance on AmpC docking data (99.5M) as measured by the percentage of top-50 000 scores found as
function of the number of ligands evaluated. Each trace represents the performance of the given model with a greedy acquisition strategy. Chart
labels represent the fraction of the library taken in both the initialization batch and the five exploration batches. Error bars reflect � one standard
deviation across three runs.
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HTS collection dataset calculated with AutoDock Vina, where
the top-k docking scores range from �12.7 to �11.0. The lower
precision of AutoDock Vina scores makes the top-k score metric
more forgiving (discussed later in the Limitations of evaluation
metrics subsection). (2) The chemical spaces canvassed by both
libraries are different. This will necessarily impact model
performance and, by extension, optimization performance.

Single-iteration active learning

A critical question with these experiments is the importance
of the active learning strategy. From the Enamine HTS data
(Fig. 4), we observe a sharp increase in the percentage of top-
1000 scores found aer the rst exploration batch (e.g., from
0.4% to 67.4% for the MPN 0.4% acquisition), suggesting
that the randomly selected initial batch is quite informative.
We look at “single-iteration” experiments, where the rst
batch is selected randomly and the second (and nal) batch
is selected according to our acquisition function (Fig. 6).
Selecting all 42 000 molecules at once aer training on the
initial 8400 molecules results in nding 92.7% (�1.5) of the
top-1000 scores with an MPN model aer exploring 2.4% of
the library (EF ¼ 38.6). This is slightly (but signicantly)
lower than the active learning case with an MPN model,
which nds 97.6% of the top-1000 scores (EF ¼ 40.7). Using
an NN or an RF model, the differences in active learning
versus the single-iteration case are more pronounced. We
also test the setting where the initial batch consists of 42 000
molecules and the single active learning iteration only
selects 8400. The smaller acquisition size for the second
batch results in considerably lower MPN performance,
nding only 76.2% of the top-1000 scores (EF ¼ 31.8). This is
worse than any model we tested with an active learning-
© 2021 The Author(s). Published by the Royal Society of Chemistry
based strategy at the same number of function evaluations.
The less exible NN and RF models suffer even more
pronounced drops in performance with a large initial batch
and small exploration batch.
Dynamic convergence criterion

Our evaluations so far have demonstrated reliable performance
of MolPAL using a xed exploration strategy (i.e., number of
iterations). However, we will typically not know a priori what an
appropriate total exploration size is. We therefore dene
a convergence criterion for the Enamine HTS dataset that is
satised when the fractional difference between the current
average of the top-1000 scores and the rolling average of the top-
1000 scores from the previous three iterations, corresponding to
the top 0.05% of compounds, is less than a xed threshold, here
0.01. Fig. 7 illustrates the use of this convergence criterion using
a 0.1% batch size (ca. 2100 molecules) with a greedy acquisition
metric. We nd that not only do the higher capacity models
converge sooner (MPN > NN > RF) but they also converge to
a higher percentage of top-1000 scores found (86.4%, 85.4%,
and 75.8%, respectively).
Chemical space visualization

To visualize the set of molecules acquired during the Bayesian
optimization routine, we projected the 2048-bit atom-pair nger-
prints of the Enamine HTS library into two dimensions using
UMAP42 (Fig. 8 and S23†). The embedding of the library was trained
on a random 10% subset of the full library and then applied to the
full library. Comparing the location of the top-1000 molecules
(Fig. 8A) to the density of molecules in the entire 2M library
(Fig. 8B) reveals several regions of high-performing compounds
Chem. Sci., 2021, 12, 7866–7881 | 7871



Fig. 6 Single-iteration results on Enamine HTS docking data (2.1M)
with greedy acquisition. Solid traces: initialization batch size of 0.4% of
pool and exploration batch size of 2% of pool. Dashed traces: initiali-
zation batch size of 2% of pool and exploration batch size of 0.4% of
pool. Error bars reflect � one standard deviation across three runs.
Faded traces: reproduced active learning data from 0.4% experiments
(error bars omitted).

Fig. 7 Optimization performance on Enamine HTS docking data
(2.1M) using a greedy acquisition function when convergence is
defined based on the degree of improvement of top-1000 scores
between two consecutive iterations not exceeding 0.01. A 0.1% batch
size was used for both initialization and exploration.

Chemical Science Edge Article
located in sparse regions of library chemical space, of which we
focus on three (black ellipses). We plot the embedded ngerprints
of the molecules acquired in the zeroth (random), rst, third, and
h iterations of a 0.1% batch size greedy search with the three
surrogate models (Fig. 8C) to observe how each model guides
exploration of the same chemical space. This analysis is qualitative
in nature because UMAP projections are highly dependent on the
set of hyperparameters used to train the embedding. However,
these plots are helpful in illustrating how the three surrogate
models differ in which regions they choose to sample from. In
addition, this visualization allows us to observe how each search
evolves throughout the optimization. For example, the MPNmodel
begins to sample more heavily from the dense region of chemical
space around (0, 2.5) (Fig. 8B) as the optimization proceeds.
Discussion
Application to other optimization objectives

All of the above datasets involve docking scores obtained either
through AutoDock Vina or DOCK3.7. We performed similar
retrospective studies using a dataset from Yang et al.34 that
contains the same 100Mmolecules docked against AmpC using
Glide SP rather than DOCK3.7 (“AmpC Glide”). For this new
7872 | Chem. Sci., 2021, 12, 7866–7881
dataset, we still observe signicant performance gains over the
random baseline, identifying 77.1% of the top-50 000 scores
aer sampling only 2.4% of the total library (EF¼ 32.1) using an
MPN surrogate model and UCB acquisition metric (Fig. S3†).
We also examined the application of MolPAL to the Harvard
Clean Energy Project dataset (“HCEP”) of 2.4M organic photo-
voltaic materials and their predicted power conversion effi-
ciencies (PCE)43 as an example of a non-docking objective
function. With an MPN model and a UCB acquisition metric,
MolPAL identies 91.1% of the top-1000 PCEs aer acquiring
only 4.4% of the overall library (EF ¼ 20.7) (Fig. S5†).
Effect of acquisition strategy on performance

An interesting result from these experiments was the consis-
tently strong performance of the greedy acquisition metric. This
is surprising given the fact that the greedy metric is, in prin-
ciple, purely exploitative and vulnerable to limiting its search to
a single area of the given library's chemical space. Prior work in
batched Bayesian optimization has focused on developing
strategies to prevent batches from being homogeneous,
including use of an inner optimization loop to construct
batches one candidate at a time.44,45 Despite this potential
limitation of the greedy acquisition metric, it still leads to
adequate exploration of these libraries and superior
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 8 Visualization of the chemical space in the Enamine HTS library (2.1M molecules) using UMAP embeddings of 2048-bit atom-pair
fingerprints trained on a random 10% subset of the full library. (A) Embedded fingerprints of the top-1000 scoring molecules. (B) 2-D density plot
of the embedded fingerprints of the full library. (C) Embedded fingerprints of the molecules acquired in the given iteration using a greedy
acquisition metric, 0.1% batch size, and specified surrogate model architecture z-ordered by docking score. Circled regions indicate clusters of
high-scoring compounds in sparse regions of chemical space. Color scale corresponds to the negative docking score (higher is better). x- and y-
axes are the first and second components of the 2D UMAP embedding and range from �7.5 to 17.5.
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performance to metrics that combine some notion of explora-
tion along with exploitation (i.e., TS, EI, PI). One confounding
factor in this analysis is that methods used for uncertainty
quantication in regression models are oen unreliable,46

which may explain the poorer empirical results when
© 2021 The Author(s). Published by the Royal Society of Chemistry
acquisition depends on their predictions. While the experi-
ments using the AmpC, AmpC Glide, D4, and HCEP datasets
demonstrated optimal performance with an MPN model and
UCB metric, the greedy metric still performed well in each of
these experiments and outperformed the TS metric.
Chem. Sci., 2021, 12, 7866–7881 | 7873
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To investigate whether the UCB metric's performance on the
ultra-large docking datasets was a function of the size of the
dataset, we performed subsampling experiments. Five random
subsets of 2M SMILES strings and their associated docking
scores were taken from the full AmpC dataset. MolPAL was
applied to each library using an MPNmodel with a greedy, UCB,
or TS metric and 0.4%, 0.2%, or 0.1% acquisition batch size.
The trend among greedy, UCB, and TS acquisition metrics
remains largely the same (Fig. S4†) as that of the full dataset
(Fig. 5), suggesting that library size may not be as important as
the objective function itself in determining the optimal acqui-
sition function.
Effect of library size

The principal takeaway from our results on different library sizes is
that Bayesian optimization is not simply a viable technique but an
effective one in all of these cases. Though it is difficult to quanti-
tatively compare algorithm performance on each dataset due to
their differing chemical spaces, the impact of library size on the
optimization is still worth commenting on. We observe the general
trend in our data that, as library size increases, so too does top-k
performance given a constant fractional value for k, even when
decreasing relative exploration size. We anticipate that this is due
in part to the greater amount of training data that the surrogate
model is exposed to over the course of the optimization. Despite
the relative batch size decreasing, the absolute number of mole-
cules taken in each batch and thus the number data points to train
on increases from roughly 500 to nearly 8400 when moving from
the Enamine 50k dataset (1% batch size) to the Enamine HTS
dataset (0.4% batch size). We analyzed the mean-squared error
(MSE) of MPN model predictions on the entire Enamine 10k,
Enamine 50k, and HTS datasets aer initialization with random
1% batches; the MSE decreased with increasing library size (Table
1). This trend suggests that the overall “diversity” of the chemical
library is not increasing at the same rate as the size, i.e., with a xed
fractional training set size, it is easier to achieve high correlation on
larger libraries. As a result, the surrogate model is better able to
prioritize the acquisition of high-performing molecules.
Consistency across repeated trials

Bayesian optimization can be prone to large deviations across
repeated trials, but our results showed consistent performance
across all datasets and congurations (Tables S1–S8†). To investi-
gate whether the consistency in performance is a result of consis-
tency in the exact molecular species selected, we calculate the total
number of unique SMILES strings acquired across all repeated
experiments as a function of optimization iteration (Fig. 9, S13, and
Table 1 Predictive performance with an MPN model trained on
a random 1% batch of the corresponding library

Library Total size
Training
size MSE (Y)

Spearman's
r ([)

Enamine 10k 10 560 106 0.506 0.454
Enamine 50k 50 240 503 0.258 0.789
Enamine HTS 2 141 514 21 416 0.146 0.919
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S14†). Comparing these results to both the theoretical maximum
(each trial acquiring a completely unique subset of molecules at
each iteration) and the theoretical minimum (each trial acquiring
an identical subset of molecules at each iteration aer the initial-
ization) approximates the degree to which each repeat explores the
same or different regions of chemical space. Traces closer to the
maximum would indicate that each experiment is exploring
a unique subset of highly performing molecules, and traces closer
to the minimum signal the opposite: that each experiment is
converging towards the same regions of chemical space. Our data
are most consistent with the latter, suggesting that each trial is
converging towards the same optimal subset of the library
regardless of its initialization.We hypothesize that this is due to the
relatively smooth structure–property landscapes present in these
datasets and lack of statistical uncertainty. Characterizing the
roughness of the structure-score landscape and whether active
compounds that are found in clusters of inactive compounds are
harder to nd is an area of ongoing research.
Limitations of evaluation metrics

In this study, three separate evaluation criteria were used to
assess performance: the average top-k docking score identied,
Fig. 9 The total number of unique SMILES strings acquired across 5
repeated greedy optimizations with a 0.4% batch size on the Enamine
HTS docking dataset (2.1M). The top black line is the theoretical
maximum (i.e., repeated trials select distinct subsets of molecules to
evaluate), and the bottom black line is the theoretical minimum (i.e.,
repeated trials select identical subsets of molecules to evaluate).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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the fraction of top-k SMILES identied, and the fraction of top-k
scores identied throughout the optimization campaign
(calculation details are provided in the Methods section below).
The average metric is sensitive to the scale and distribution of
scores, making direct comparison between datasets chal-
lenging. The top-k SMILES metric asks whether a specic set of
molecules is selected by the algorithm, which can be overly
strict if multiple molecules have identical performance (i.e., the
same score) but are not within the top-k due to arbitrary data
sorting (Fig. S6–S8†). The top-k score metric overcomes this
limitation by assigning equal weight to each molecule with the
same score regardless of its specic position in the sorted
dataset. As a result, this makes the scores metric more forgiving
for datasets with smaller ranges and lower precision (e.g., those
calculated using AutoDock Vina with a precision of 0.1) than
those with larger ranges and higher precision (e.g., those
calculated using DOCK with a precision of 0.01). In contrast to
the average top-k score, however, this metric does not reward
“near-misses”, for example, identifying the k + 1 ranked mole-
cule with a nearly identical score to the k-th molecule.
Optimal batch size for active learning

The number of molecules selected at each iteration represents
an additional hyperparameter for Bayesian optimization. In one
limit, Bayesian optimization can be conducted in a purely
sequential fashion, acquiring the performance of a single
molecule each iteration. Fully sequential learning would offer
the most up-to-date surrogate model for the acquisition of each
new point but it would also be extremely costly to continually
retrain the model and perform inference on the entire candi-
date pool. While some studies look at the prospect of “warm
starting” to accelerate neural network training,47 and while we
also examined using online retraining only on the newly
acquired batch (Fig. S15–S22†), the cost of repeated inference
cannot be lowered. In the other limit, molecules would be
selected in a single iteration, which can lead to suboptimal
performance depending on the acquisition size (Fig. 6). Finding
a principled balance between these two without resorting to
empirical hyperparameter optimization is an ongoing chal-
lenge.48,49 In each of our experiments, the relative batch size was
held constant at one sixth of the total exploration size. Future
performance engineering work will seek to examine the effects
of dynamic batch sizes in batched optimization. Note that
overall batch diversity is another consideration in batched
Bayesian optimization. While selected batches in this study did
not appear to suffer from homogeneity, previous approaches to
improve batch diversity could be explored as well.32,45,50
Cost of surrogate model (re)training

The question of optimal batch size cannot be decoupled from
the computational cost of model retraining and inference.
Throughout these studies, we have focused only on the number
of objective function calculations necessary to achieve a given
level of performance. While objective function calculation is
signicantly more expensive than the cost of model training
© 2021 The Author(s). Published by the Royal Society of Chemistry
and inference, inference costs scale linearly with the size of the
dataset and contribute to the overall cost of our algorithm.

The MPN model was shown to be superior in the largest
datasets, but its costs are markedly higher than those of the
ngerprint-based NN model. The tradeoff between sample
efficiency (number of objective function calculations) and
surrogate model costs (training and inference) should be
balanced when selecting a model architecture. In our evalua-
tion, the costs of the MPN and NN cannot be directly compared
due to differences in their implementation and extent of both
parallelization and precalculation. For more details, see the
soware design subsection in the ESI.† An additional choice
when seeking to limit surrogate model costs is whether to train
the model online with newly acquired data or fully retrain the
model at each iteration with all acquired data. We examined
this possibility, but online learning lead to consistently lower
performance in our experiments (Tables S1–S8†).
Conclusion

In this work, we have demonstrated the application of
Bayesian optimization to the prioritization of compounds for
structure-based virtual screening using chemical libraries
ranging in size from 10k to 138M ligands. A thorough eval-
uation of different acquisition metrics and surrogate model
architectures illustrates (1) that active learning is able to
identify the vast majority of top-scoring compounds with
signicantly reduced cost, (2) that a greedy acquisition
metric still results in strong performance, though UCB is
better in certain cases, and (3) that the message passing
neural network model outperforms ngerprint-based feed-
forward neural network or random forest models. In the
AmpC dataset, where a 100M member library was docked
against 1L2S by Lyu et al., we identify 89.3% of the top-50 000
scoring ligands with a 40-fold reduction in the number of
docking calculations using a greedy acquisition metric and
94.8% using a UCB acquisition metric.

We believe that this model-guided approach to compound
prioritization should become standard practice as a drop-in
replacement for exhaustive high-throughput virtual
screening when the exact set of top-k compounds is not
needed. Moreover, this approach is also relevant to experi-
mental high-throughput screening, an expensive and
important tool for challenging drug discovery problems.51

Future work will seek to extend the open source MolPAL
soware package and leverage it in a prospective manner to
greatly accelerate a structure-based virtual screen of the
Enamine REAL database. We also hope to expand MolPAL
beyond the initial soware detailed in this report with the
addition of new surrogate model architectures, the inclusion
of improved uncertainty estimation techniques, and the
expansion to other forms of virtual discovery, i.e., other
objective functions. Finally, we envision that, in addition to
accelerating the practice of virtual screening, MolPAL will
increase its accessibility through the pipelining of the entire
virtual screening process behind a common interface.
Chem. Sci., 2021, 12, 7866–7881 | 7875
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Methods
Batched Bayesian optimization

Bayesian optimization is an active learning strategy that itera-
tively selects experiments to perform according to a surrogate
model's predictions, oen using machine learning (ML)
models. In the context of this work, the Bayesian optimization
was performed on a discrete set of candidate molecules, herein
referred to as a “pool” or virtual library, and points were
acquired in batches rather than one point at a time. Batched
Bayesian optimization begins by rst calculating the objective
function f(x) for a set of n random points {x}i¼1

n within a pool of
points X . The objective function values for these points are
calculated, in this study as docking scores from AutoDock Vina,
and the corresponding tuples {(xi, f(xi))}i¼1

n are stored in the
dataset D. A surrogate model f̂ (x) is then trained on these data
and, along with the current maximum objective function value
f*, is passed to an acquisition function a(x; f̂ , f*), which calcu-
lates the utility of evaluating the objective function at the point
x. Utility may be measured in a number of ways: the predicted
objective function value, the amount of information this new
point will provide the surrogate model, the likelihood this point
will improve upon the current maximum, etc. See ref. 52 for
a detailed discussion of various acquisition functions. The set of
b points with the largest sum of utilities

S ¼ argmax
fxigi¼1

b3X

Xb
i¼1

aðx; f̂ ; f *Þ is then selected, or “acquired”. The

set of objective function values corresponding to these points is
calculated fðx; f ðxÞÞ : x˛Sg and used to update the dataset D.
This process is repeated iteratively until a stopping criterion is
met (e.g., a xed number of iterations or a lack of sufficient
improvement).
7876 | Chem. Sci., 2021, 12, 7866–7881
Acquisition metrics

The following acquisition functions were tested in this study:

Random ðxÞ � Uð0; 1Þ
Greedy ðxÞ ¼ m̂ðxÞ
UCB ðxÞ ¼ m̂ðxÞ þ bŝðxÞ
TS ðxÞ � N ðm̂ðxÞ; ŝ2ðxÞÞ
EI ðxÞ ¼

�
gðxÞFðzÞ þ ŝðxÞfðzÞ; ŝðxÞ. 0

gðxÞ; ŝðxÞ ¼ 0

PI ðxÞ ¼
8<
:

FðzÞ; ŝðxÞ. 0

1; ŝðxÞ ¼ 0 and gðxÞ. 0

0; ŝðxÞ ¼ 0 and gðxÞ# 0

where: g(x): ¼ m̂(x) � f* + x; zðxÞ :¼ gðxÞbsðxÞ; m̂(x) and ŝ2(x) are the

surrogate model predicted mean and uncertainty at point x,
respectively; F and f are the cumulative distribution function
and probability density function of the standard normal
distribution, respectively; and f* is the current maximum
objective function value. For the experiments reported in the
paper, we used b ¼ 2 and x ¼ 0.01.
Surrogate models

In the context of our study, the surrogate modelling step
involved training amachine learning (ML) model and using this
trained model to predict the objective function value of mole-
cules for which the objective function has not yet been calcu-
lated. Three surrogate model architectures were investigated in
these studies: random forest (RF), feedforward neural network
(NN), and directed message passing neural network (MPN)
models.

Random forest models. Random forest (RF) models operate
by ensembling decision tree models each trained on a random
subset of the training data. Broadly, a decision tree is trained on
input data of the form (x, y) where x ¼ [x1, ., xN] is a vector
composed of input features x1, ., xN and y is a “target” output
© 2021 The Author(s). Published by the Royal Society of Chemistry
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value. During training, a decision tree is built by progressively
partitioning the input space at decision nodes into two
subspaces corresponding to the value of a given feature. This
process is repeated recursively on each of the resulting
subspaces until some maximum amount of partitioning is
achieved and a leaf node is constructed that contains all
possible values {yi}i¼1

M that correspond to the partitioning of
the parent decision nodes. A more in-depth discussion on RF
models for QSAR may be found in ref. 53. The RF surrogate
model in our study was implemented using the Random-
ForestRegressor class from Scikit-Learn54 using an n_estimators
value of 100 and a max_trees value of 8.

Feedforward neural networks. Feedforward neural networks
(FFNNs) comprise an input layer, an output layer, and zero or
more hidden layers between the two. At each layer, the input or
hidden vector is linearly transformed by a learned weight matrix
and passed through an elementwise nonlinear activation
function. FFNNs are generally trained through stochastic
gradient descent to minimize a loss function, which for
regression tasks is generally the mean squared error.

The NN models in our study were implemented in Tensor-
Flow55 using two fully connected hidden layers of 100 nodes
each and an output size of one. Each hidden layer utilized
a rectied linear unit (ReLU) activation function. The network
was trained over 50 epochs using early stopping (patience ¼ 5),
an Adam optimizer with an initial learning rate of 0.01, a mean-
squared error loss function with L2 regularization (0.01), and
a batch size of 4096. Prediction uncertainties, as needed for
non-greedy acquisition metrics, were estimated using Monte-
Carlo Dropout via dropout layers (p ¼ 0.2) aer each hidden
layer using 10 forward passes during inference.

Molecular ngerprints. Given that molecules are not natu-
rally represented as feature vectors, inputs to both RF and NN
models were generated by calculating molecular ngerprints.
Fingerprint calculation algorithms vary in their implementation
but can broadly be understood as encoding information about
the presence or absence of substructures of the given molecule
into a vector of xed length. The input to both the RF and NN
models used in this study is a 2048-bit atom-pair ngerprint56

with a minimum radius of one and a maximum radius of three.
A more detailed overview of molecular ngerprints is provided
in ref. 57.

Message passing neural networks. The third and nal model
architecture we tested was a directed message passing neural
network (D-MPNN) model,39 a variant of a message passing
neural network (MPNN) model. In contrast to FFNNs, MPNNs
operate directly on the molecular graph rather than a xed
feature vector calculated from the graph. MPNNs function in
two stages, an initial message passing phase followed by
a readout phase. In the message passing phase, “messages” are
passed between atoms and/or bonds and their direct neighbors
and incoming messages are used to update the “hidden state”
of each atom and/or bond. The message passing phase is
repeated over multiple (e.g., 3) iterations, at which point the
hidden states of each atom are aggregated (e.g., summed) to
produce a molecule-level feature vector. By training this model
at the same time as a FFNN operating on the feature vector,
© 2021 The Author(s). Published by the Royal Society of Chemistry
MPNNs are able to learn a task-specic representation of an
input molecular graph. For more details on the D-MPNNmodel,
we refer a reader to ref. 39.

Message passing neural network models were implemented
using PyTorch58 via PyTorchLightning59 with the Molecule-
Model class from the Chemprop library39 using standard
settings: messages passed on directed bonds, messages sub-
jected to ReLU activation, a learned encoded representation of
dimension 300, and the output of the message passing phase
fully connected to an output layer of size 1. The model was
trained using the Adam optimization algorithm, a Noam
learning rate scheduler (initial, maximum, and nal learning
rates of 10�4, 10�3, and 10�4, respectively) and a root mean-
squared error loss function over 50 epochs with a batch size
of 50. For more details on the Noam learning rate scheduler, see
ref. 60. The model was trained with early stopping tracking the
validation score using a patience value of 10. When uncertainty
values were needed for metric function calculation, an MVE
model based off of the work done by Hirschfeld et al.46 was used.
This model featured an output size of two and was trained using
the loss function dened by Nix and Weigend:61

L ðy; ŷ; bs2Þ ¼ log 2p

2
þ log bs2

2
þ ðy� ŷÞ2

2bs2
(2)

All of the surrogate models were used exactly as described
above without additional hyperparameter optimization. The
models were fully retrained from scratch with all acquired data
at the beginning of each iteration.
Datasets

The 10k, 50k, and HTS datasets used for these studies were
generated from docking the compounds contained in both
Discovery Diversity sets and the HTS collection from Enamine
against thymidylate kinase (PDB ID: 4UNN). The docking was
performed using AutoDock Vina with the following command
line arguments:

All other default arguments were le as-is. The docking score
used in the datasets corresponds to the top output docking
score. The ligands were prepared from SDFs available from
Enamine,62,63 parsed into SMILES strings using RDKit,64 and pro-
cessed into PDBQT les using OpenBabel65 with the –gen-3d ag.
The receptor was prepared with PDBFixer66 using the PDB ID
4UNN, selecting only chain A, deleting all heterogens, adding all
suggested missing residues and heavy atoms, and adding hydro-
gens for pH 7.0. Ligands that failed to dock were still included in
the dataset without a corresponding score. MolPAL was still able to
select these molecules during batch acquisition, but no objective
Chem. Sci., 2021, 12, 7866–7881 | 7877
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function values for these points were returned and these points
were not used in surrogate model training. The AmpC and D4

docking datasets are the publicly available datasets published by
Lyu et al. and were used as provided.40,41 The AmpC Glide dataset
was obtained from Yang et al. via email correspondence. We
removed 499 docking scores with placeholder values of
10 000 kcal mol�1 (the remainder of the scores range between
approximately�10 and +30 kcalmol�1). TheHarvard Clean Energy
Project dataset is the publicly available dataset of 2.4M organic
photovoltaic materials and computed electronic properties: power
conversion efficiency, HOMO, LUMO, etc.67 The score distribution
of each dataset may be found in Fig. S6–S12.† The subsampled
AmpC datasets were generated via the random selection of 2M
datapoints from the full the AmpC dataset.

Evaluation metrics

MolPAL performance was judged through three evaluation
metrics: (1) average top-k docking score identied (“Average”),
(2) the fraction of top-k SMILES identied (“SMILES”), and (3)
the fraction of top-k scores identied (“Scores”). For (1), the
average of the top-k scores of molecules explored by MolPAL was
taken and divided by the true top-k molecules' scores based on
the full dataset. (2) Was calculated by taking the intersection of
the set of SMILES strings in the true top-k molecules and the
found top-k molecules and dividing its size by k. (3) Was
calculated as the size of the intersection of the list of true top-k
scores and the list of observed top-k scores divided by k.

Hyperparameter optimization

The experiments shown in this study represent only a small
fraction of the congurations in which MolPAL may be run. A
sample of settings that are supported include: various nger-
print types (e.g., RDKit, Morgan, and MACCS), input pre-
clustering for cluster-based acquisition, different condence
estimation methods for deep learning models, etc. Given the
wealth of options, an exhaustive hyperparameter optimization
was outside the scope of these investigations. We looked at
broad trends in both the Enamine 10k and 50k datasets and
found only minor variations in performance, supporting our
choice not to pursue a rigorous screening of all possible
congurations.

Soware design

MolPAL is built around the Explorer class, which performs the
Bayesian optimization routine shown in Algorithm 1. The
Explorer is designed with abstraction at its core and thus relies
on four helper classes that each handles an isolated element of
Bayesian optimization: MoleculePool, Model, Acquirer, and
Objective. In each iteration of the Explorer's main optimization
loop, a Model is rst retrained on all observed data then applied
to all molecules in the MoleculePool to generate a predicted
mean and, depending on the Model, a predicted uncertainty for
each molecule in the pool. These predictions are then passed to
an Acquirer which calculates the acquisition utility of each
molecule and acquires the top-m untested molecules from the
MoleculePool based on their acquisition utilities. Next, this set
7878 | Chem. Sci., 2021, 12, 7866–7881
of candidate molecules is handed to an Objective and the
objective function value for each of these candidatemolecules is
calculated. Lastly, the stopping condition for the Explorer is
checked and, if satised, the Explorer terminates and outputs
the top-k evaluated molecules. A schematic of both the design
and workow of MolPAL may be seen in Fig. S1.† The experi-
ments performed in this study were all performed retrospec-
tively using the LookupObjective subclass of the Objective with
a fully generated dataset as a lookup table for objective function
calculation.
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