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Abstract

Background: Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface.
Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to
the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle
performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on
characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse
effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary.

Methodology: Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers
and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., ex-
vivo). The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays
(in-vitro). We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old
sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both
young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell
level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous
locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in both
satellite numbers and myogenic properties may improve myofiber maintenance in aging.
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Introduction

The ability of skeletal muscles to regenerate is owed to a

population of myogenic stem cells called satellite cells [1,2,3].

These adult stem cells are situated under the basal lamina of

myofibers and contribute 2–4% of the nuclei in adult skeletal

muscles [2]. Satellite cells are typically quiescent in adult muscles,

but can be activated in response to muscle injury and disease.

Depending on the magnitude of tissue trauma, these cells may

divide minimally to repair subtle damage within individual

myofibers or produce a larger progeny pool that forms new

myofibers in cases of overt muscle trauma [4,5]. Satellite cells meet

the functional definition of what stem cells are, as they have the

ability to self-renew, in addition to producing differentiating

progeny. Clonal analyses of satellite cells suggested that satellite

cells are heterogeneous with regard to their self-renew capacity

and to the extent of progeny they can produce [6,7].

The common marker used to identify satellite cells in their niche

is the paired box transcription factor Pax7. As shown across

different muscle groups and species, Pax7 protein is expressed by

satellite cells, but not by myofiber nuclei or non-myogenic cell

types present in the adult muscle tissue [8,9,10,11]. Proliferating

progeny of satellite cells, myoblasts, maintain Pax7 protein

expression and upregulate the expression of MyoD, a muscle

specific transcription factor. In differentiating myoblasts, Pax7

expression diminishes, whereas the expression of MyoD is

maintained [3,12].

In aging, skeletal muscle mass and performance decline, a

process named sarcopenia [13]. Considering the key role of

satellite cells in myofiber repair, diminution in their numbers and

myogenic properties may impede muscle maintenance and

contribute to sarcopenia. Indeed, age-associated alterations in

satellite cells were reported, including increased adipogenic gene

expression and diversion of at least some of the cells to a

nonmyogenic (fibrogenic) fate [14,15]. Also, satellite cell ability to

contribute to muscle repair was suggested to decrease with age.

This was based on rodent models in which the regenerative

response of muscles was examined after an induced injury.

However, the satellite cells themselves were not analyzed directly

[16,17]. Muscle damage resulting from routine activity may,

however, involve only subtle damages localized to individual

myofibers. In such localized injuries, the repair potential of

individual myofibers may depend on the abundance of the satellite

cells they harbor.

While it remains unclear if the ability of satellite cells to

contribute to muscle repair is indeed impaired in old age [18], an
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age-associated decline in the number of satellite cells was certainly

documented in mice and rats, at least in some limb muscles

[19,20,21,22]. We demonstrated that in mice there was an

increase in myofibers with none or low numbers of satellite cells

with age [6,9]. The decline was more robust in the fast-twitch

extensor digitorum longus (EDL) muscle compared to the slow-

twitch soleus muscle [9], in accordance with the preferential loss

and atrophy of fast twitch fibers in sarcopenia. These findings

prompted us to use approaches that can provide insights about

satellite-cell numbers and properties within the context of

individual myofibers [9]. Taken together, in the present study

we investigated the impact of exercise on the properties and

number of satellite cells situated on Gastrocnemius (Gast)

myofibers of intact male and female rats. Myofibers were isolated

from the superficial region of the Gast muscle which was shown to

contain fast-twitch myofibers (IIx or IIb) almost exclusively

[23,24,25].

To date, the effect of endurance training on satellite cells was

not thoroughly elucidated albeit this type of exercise was shown to

have beneficial effects on skeletal muscle integrity even in sufferers

from myopathies [26,27,28]. Here we chose to use endurance

exercise as it was shown not to inflict apparent damage, different

from resistance exercise [29,30]. Males and females were analyzed

in view of the significant gender differences in both the prevalence

of sarcopenia and the extent of satellite cell decline in aging [6,31].

Our main finding is that running exercise induces a significant

increase in the abundance of myofibers with higher content of

satellite cells. This was accompanied by a reduction in the

abundance of myofibers that contain minimal numbers of satellite

cells. Importantly, we also show that in old rats, exercise inflicted a

greater proportion of myogenic clones, and this may reflect an

improvement of satellite cell myogenic performance. The boost of

satellite-cell numbers and myogenic performance represents a

possible mechanism by which endurance exercise enhances muscle

quality in old age.

Results

The experimental model and subsequent assays
This study was designed to investigate the effect of long-term

treadmill running on satellite cell performance in young and old

male and female rats. Animals’ age at the beginning of the 13 week

No-Run/Run experiment were: young male/female groups, 3.5

months; old male groups, 15–17 months; old female groups, 15

months (see Table 1). For 13 weeks, animals exercised 20 minutes

on a treadmill, 6 days/week followed by a day off (see a video of

exercising rats, Video S1). Control groups remained sedentary for

that period. At the 13-week exercise period, single myofibers were

isolated from the Gast muscle and analyzed for their number of

residing satellite cells (Figure 1, and Tables 1, 2). Clones were

prepared from these isolated myofibers for cell phenotype studies

(Figures 2, 3, 4 and Table 3). We also measured total body weight,

in-vivo mass and fat content of the Gast muscle, and levels of

spontaneous locomotion of all the animals in order to assess the

effects of exercise at the levels of gross muscle anatomy (see Figure

S1 and Figure S2).

Quantification of satellite cells on freshly isolated
myofibers

Satellite-cell numbers in individual fast-twitch myofibers from

the superficial region of the Gast muscle were determined based

on Pax7 immune-detection (Figure 1A). Satellite cell score was

compared for all eight groups by means of descriptive and

inferential statistics (Figure 1 and Tables 1, 2).

Descriptive statistics on the number of satellite cells in the eight

experimental groups is depicted in Table 1. A two-way ANOVA

revealed that the number of satellite cells per myofiber signi-

ficantly differed among groups (between-group factor; F1,203 =

23.4, p = 0.00001). Regardless of exercise, the number of satellite

cells per myofiber was significantly higher in young compared to

old groups (within-group factor; F3,482 = 68.6, p,0.0001 and

Table 1. Descriptive statistics of the number of satellite cells in individual myofibers in young sedentary and exercised males and
females.1

Number of: Satellite-cell numbers per myofiber:

Rats Myofibers Minimum Maximum Mean±SEM2

Male Young No Run 3 49 4 48 2462b,c,d,e,f,g,h

Run 5 17 14 44 3062a,c,d,e,f,g,h

Old No Run 4 35 2 21 861a,b,d,f

Run 6 16 7 35 1562a,b,c,e,g,h

Female Young No Run 4 17 3 22 961a,b,d,f

Run 5 35 5 31 1461a,b,c,g,h

Old No Run 3 21 0 14 661a,b,d,f

Run 3 21 2 27 961a,b,d,f,g

1The age of animals in the different groups at the beginning of the 13 week No-Run/Run experiment were: young male/female groups, 3.5 months; old male groups,
15–17 months; old female groups, 15 months.

2a,b,c,d,e,f,g,h denote significant differences, based on Post-hoc comparisons (Fisher LSD), between the eight experimental groups as follows:
adifference from the male young sedentary group,
bdifference from the male young exercised group,
cdifference from the male sedentary old group,
ddifference from the male exercised old group,
edifference indicates difference from the female young sedentary group,
fdifference from the female young exercised group,
gdifference from the female sedentary old group,
hdifference from the female exercised old group.
doi:10.1371/journal.pone.0013307.t001
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p,0.005) and the number of satellite cells per myofiber was

significantly lower in young and old females compared to young

and old males (F1,203 = 77, p,0.0001). Nevertheless, young males

manifested the most robust increase in satellite cells per myofiber.

Specifically, their minimum number of satellite cells per myofiber

was tripled after exercise, and the number of myofibers with more

than 41 satellite cells was doubled (Table 1). In both genders and

ages, exercise induced a significant increase in the number of

satellite cells per myofiber (within-group factor; F1,203 = 23.4,

p,0.0001).

The exercise-induced increase in number of satellite cells per

myofiber is also illustrated in cumulative curves of each

experimental group (Figure 1B). Each data point shows myofiber

percent (out of the total analyzed myofibers) that contained up to

and including the number of satellite cells that is specified on the x-

axis. These data show that in old male and female rats, exercise

increased the abundance of myofibers that contained higher

numbers of satellite cells (above median value, which is indicated

by gray broken line at the 50% value). This increase was

concomitant with decreased abundance of myofibers containing

Figure 1. Satellite cell localization and quantification. (A) A Gast myofiber from a young exercised male rat depicting two Pax7+ (red) satellite
cells (A9); satellite cell nuclei (arrowhead) and myofiber nuclei counterstained with DAPI (blue; A). (B) Quantification of Pax7+ satellite cells situated in
Gast myofibers isolated from male female young old sedentary (black broken line) and exercised (gray line) rats. The number of myofibers, the
minimum and maximum values of satellite cells per myofiber as well as the average number of satellite cells per myofiber for each group are detailed
in Table 1. Per each experimental group, myofibers were ranked according to the number of satellite cells they contained from low to high. The y-axis
represents the cumulative percentile of the analyzed myofibers. Each data point (black triangle or gray square) displays the accumulating percent of
myofibers (Y axis) that contain the specific range of Pax7+ cells that is presented in the X axis plus all the myofibers with a lower number of satellite
cells. Gray broken line depicts the median value of satellite cells per myofiber.
doi:10.1371/journal.pone.0013307.g001
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fewer satellite cells (below median value; x2
3, p,0.005). Addition-

ally, these curves show that the age-associated decline in the

abundance of myofibers with fewer satellite cells was moderate in

females compared to males.

We further analyzed the quartile ranges of satellite-cell number

in myofibers. For this, we pooled together the scores of all groups

and ranked them from low to high according to the number of

satellite cells per individual myofibers. This range was then divided

into four equal quartiles. The percent of myofibers of each group

in each quartile was extracted (Table 2). As shown, in both ages

and in both genders, the 3rd and 4th quartiles contained more

myofibers in exercised than in sedentary groups. Specifically, 88%

of the myofibers in young exercised males were in the 4th quartile

with 21–48 satellite-cells/fiber, compared to only 55% in young

Figure 2. Cell morphology and expression of the skeletal muscle specific marker MyoD in myogenic and nonmyogenic clones. The
myogenic clones (A, A’, B) are composed of round cells and myotubes (A), both of which express MyoD (red, A’), or just myotubes (B). The
nonmyogenic clone depicted in panel C is composed of fibroblast-like cells that do not express MyoD (C’).
doi:10.1371/journal.pone.0013307.g002

Table 2. Distribution of myofibers into quartiles according to ranges of satellite-cell numbers per myofiber; quartiles are
determined based on all myofibers from all experimental groups.

Quartile number2 1st 2nd 3rd 4th Total no.of myofibers

The range of satellite cell no. per
myofiber in each quartile 0–6 7–11 12–20 21–48 (100%)

Male Young No Run 6% 10% 29% 55% 49

Run 0% 0% 12% 88% 17

Old No Run 31% 40% 26% 3% 35

Run 0% 38% 50% 13% 16

Female Young No Run 53% 23% 18% 6% 17

Run 23% 26% 28% 23% 35

Old No Run 71% 24% 5% 0% 21

Run 33% 43% 24% 0% 21

1Data presented in this table were collected from the same animals detailed in Table 1.
2Myofibers from all 8 groups were pooled together and ranked from low to high according to the number of satellite cells per each myofiber. The obtained rank was
then divided to four equal quartiles (each containing one quarter of the ranked data). The ranges of satellite-cell numbers contained within each quartile are: 0–6, 1st

quartile; 7–11, 2nd quartile; 12–20, 3rd quartile; 21–40, 4th quartile. These ranges are depicted at the top the Table. The total number of myofibers per each group is
depicted at the right-hand column (these are same fibers as in Table 1).

doi:10.1371/journal.pone.0013307.t002
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sedentary males. Myofibers of old male rats were mostly in the 2nd

and 3rd quartiles with 7–20 satellite-cells/myofiber. Notably, while

40% of the myofibers in old sedentary males were in the 2nd

quartile, 50% of the myofibers isolated from exercised old males

were in the 3rd quartile.

In female rats, the number of satellite cells per myofiber was low

compared to males, ranked mainly in the 1st and 2nd quartiles with

0–20 satellite cells (Table 2). About half of the myofibers of young

sedentary females contained only 0–6 satellite cells (1st quartile),

about 20% in the 2nd and 3rd, and just 6% in the 4th quartile. After

exercise, however, there was an even distribution of myofibers/

quartile (about 25% per quartile) with a conspicuous increase from

6 to 23% in the 4th quartile. About 70% of the myofibers from old

sedentary females contained just 0–6 satellite cells (1st quartile),

whereas after exercise, 67% of the myofibers were in the 3rd and

4th quartiles, reflecting the exercise-induced increase in the

number of satellite-cells/myofiber. Moreover, the number of

myofibers with 0–1 satellite cells dropped from 20% in old

sedentary females to 0% after exercise. Altogether, these analyses

demonstrated that after exercise, the abundance of myofibers with

high number of satellite cells increased, along with a decreased

abundance of myofibers with fewer satellite cells.

Figure 4. Quantification of clones (total and myogenic only) recovered from individual Gast myofibers from male, female, young,
old sedentary and exercised rats. (A) Myofibers were ranked from low to high according to the total number of clones (myogenic and
nonmyogenic) they gave rise-to. The y-axis represents the cumulative percentile of the analyzed myofibers. Each data point (triangle or square)
represents the accumulating percent of myofibers (y axis) that contain the number of clones that is presented in the X axis in addition to all the
myofibers that gave rise to lower numbers of clones. Gray broken line depicts the median (50%) value of clones per myofiber. (B) Each bar represents
the percent of myofibers that gave rise to the number of myogenic clones, indicated in the X axis. Percent values for male and female rats are
depicted as follows: open bard for young sedentary, black bars for young exercised, striped bars for old sedentary and gray bars for old exercised.
doi:10.1371/journal.pone.0013307.g004

Figure 3. Average values of the percent of myogenic clones
that developed from single cells extracted from Gast myofi-
bers. Each bar depicts the average values of young/old, male/female
exercised (open bars) and sedentary (gray bars) rats. Error bars indicate
standard error of the mean.
doi:10.1371/journal.pone.0013307.g003
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Clonal analysis of myofiber-associated cells: clone
numbers and myogenic vs. nonmyogenic identity

Clonal analyses were performed to determine the impact of

aging, of gender and of exercise on stem cells that are tightly

associated with Gast myofibers. Clones were defined as myogenic

when contained myofibers or when they were positive for Pax7

and MyoD. Clones were either positive or negative for the two

markers, which allowed their classification as myogenic or

nonmyogenic, respectively, even when myotubes were not

apparent.

The mean number of myogenic and nonmyogenic clones per

total myofibers is detailed in Table 3, and the mean percent of

myogenic clones (out of total clones) is depicted in Figure 3. In the

sedentary groups, there was an age-associated decline in

abundance of myogenic clones, which was marginal in males

and significant in females (Fisher LSD test, MS = 0.15, df = 247,

p = 0.058 and p,0.0005, respectively; Figure 3). These data

accord with the age-associated decline in the mean number of

satellite cells (Table 1). In old rats (males and females) exercise

induced a significant increase in the percent of myogenic clones

(two way ANOVA, F 1 247 = 10.3, p,0.005 and p,0.0001, males

and females, respectively). This effect of exercise on percent of

myogenic clones accords with the effect on the mean number of

satellite cells (Table 1).

Cumulative curves of the total number of clones (myogenic and

nonmyogenic) are depicted in Figure 4A. Each data point shows

the percent of myofibers (out of total myofibers) that gave rise to-

up to and including the number of clones that is specified on the x-

axis. In young and old males and young female rats after exercise,

there was a shift toward a greater number of myofibers that give

rise to more clones (compared to respective sedentary groups).

This conforms the data on the abundance of myogenic clones

(Figure 3) and accumulation of more satellite cells per myofiber

(Figure 1B) after exercise. Exercising and sedentary females did

not differ in the mean number of total clones/myofiber.

Nevertheless, the percent of myogenic clones was significantly

higher in exercised females. The increased abundance of myogenic

clones in the old exercised groups agrees with our finding on

exercise-induced increase in Gast mass (Figure S1). Similarly, the

decreased post-exercise abundance of nonmyogenic clones (which

include cells that differentiate into adipocytes) accords with the

decreased percent of fat inside the Gast muscle in the old exercised

groups (Figure S1).

The distribution of myogenic clones derived from individual

myofibers is presented in Figure 4B. Each data point represents

the percent of myofibers (y-axis) that gave rise to a specific number

of myogenic clones (x-axis). In males and females, exercise induced

a shift toward more myogenic clones. In old rats, at least half the

myofibers did not give rise to myogenic clones, while after running

15% and 40% of the myofibers from male and females,

respectively, gave rise to 2 or more myogenic clones. The most

impressive difference between genders was that regardless of age,

myofibers from males gave rise to more clones compared to

females. This latter finding is in agreement with the above result

that myofibers from males harbor more satellite cells than

myofibers from females (Figure 1 and Table 1).

Body weight, muscle mass and animal locomotion
As detailed above, augmentation of satellite-cell numbers was

noted in all the exercised groups. In order to link the

characterization of satellite cells to the effect of age and exercise

at the ‘‘whole muscle’’ level, we also analyzed changes in total

body weight and in mass and fat content of the Gast muscle

(Figure S1). Additionally, at the organism level we measured the

effect of exercise on spontaneous locomotion in the open-field

(Figure S2). {See Material S1 for data, methods and experimental

approach}. Our main findings are:

a) Exercise had no significant effect on total body weight (Figure

S1, panel A). Regardless of exercise or sedentary conditions,

young males and females weighed significantly more at the

end of the 13-week experiment, indicating that they

continued to grow during the experiment. Body weight in

the old groups did not change in response to exercise or to the

elapsing time of the experiment.

b) Exercise did induce significant changes in lean muscle mass in

the old groups. Specifically, the ratio between Gast muscle

weight and total body weight was significantly higher after

exercise in old males and females (Figure S1, panels A,B). In

contrast, in the old sedentary rats, this ratio either did not

change (males) or significantly declined (females) during the

13-week experiment. Concomitant with the increased Gast

weight/total-body-weight ratio in old exercised rats, the

percent of intermuscular fat significantly declined (Figure S1,

panel C). Taken together, our data suggest that exercise

induced a significant increase in lean muscle-mass of old

males and females.

Table 3. A comparison of the mean number of myogenic and nonmyogenic clones per individual myofiber between the eight
experimental groups.1

No. of myofibers analyzed Mean number of clones per total myofiber analyzed

Myogenic Nonmyogenic

Male Young No Run 37 2.0 3.6

Run 37 3.2 3.1

Old No Run 32 1.0 4.3

Run 58 4.4 2.1

Female Young No Run 31 1.7 2.8

Run 39 2.5 5.0

Old No Run 22 0.8 4.6

Run 15 1.5 2.0

1Data presented in this table were collected from the same animals detailed in Table 1.
doi:10.1371/journal.pone.0013307.t003
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c) Importantly, the levels of spontaneous locomotion were

significantly higher in the exercised vs. sedentary old males

(Figure S2). Old exercised females also locomoted more than

their sedentary controls, but this difference was not

statistically significant (p = 0.06).

It is noteworthy that due to the advanced age and heavier

weight the relative intensity of exercise was higher in the old

compared to young rats [32,33]. Yet, our results show that,

regardless of the differences in the relative intensity, exercise had a

beneficial effect on the number of satellite cells and the number of

myogenic clones per myofiber both in the young and in the old

rats (see Tables 1 and 3). Nevertheless, in the physiological

parameters there was a differential effect of exercise intensity on

young compared to old rats. Specifically, exercise induced

significant effects in male and female old rats that were manifested

in increased Gast muscle-weight/body-weight, reduced muscle

adiposity, and increased locomotion. Exercise probably was not

stimulatory enough to induce such changes in the young groups.

In summary, exercise running had a persistent beneficial effect

on male and female old rats, manifested in increased satellite-cell

numbers, abundance of myogenic clones, increased Gast muscle-

weight/body-weight, reduced muscle adiposity, and increased

locomotion.

Discussion

We investigated the effects of gender, aging, and moderate-

intensity endurance training, on the number and myogenic

capacity of satellite cells. Our data demonstrated that in sedentary

rats, the number of satellite cells per myofiber declined with age.

There was also a reduction in the total number of myofiber-

derived clones and in the percent of myogenic clones in old

compared to young rats. Exercise, however, ameliorated the aging

effects by increasing the number of satellite cells/myofiber in

young and old rats. This was accompanied with increased

abundance of myogenic clones in old males and females. Changes

at the satellite cell level in old rats were accompanied by positive

effects on the lean-to-fat content of the Gast muscle and on the

levels of spontaneous locomotion. We postulate here that the

satellite cell pool size is important for muscle maintenance and

therefore, the positive impact of exercise on satellite-cell numbers

and properties may have an ameliorating effect in aging.

Gender and aging effects on satellite cells
Prevalence and severity of sarcopenia differ between genders,

starting earlier in females but progressing faster in males

[31,34,35]. Accordingly, we found an age-associated decline in

Gast mass of sedentary rats, which was significant in males and

marginal in females. In parallel to the slower rate of muscle loss in

females, we show that the reduced satellite-cell numbers in

sedentary old rats was more moderate in females. On average,

myofibers from old males exhibited a 64% decline in their resident

satellite cells, compared to a 34% decline in myofibers from old

females. In a recent study we found that female mice displayed a

more accelerated age-linked reduction in satellite cells compared

to male mice [6]. Such a difference between female rats and mice

may be explained by the fact that, at very old age, muscles from

females deteriorate more than muscles of old males [36]. Indeed,

in our previous experiment [6], female mice were older compared

to the present group of old rats. Furthermore, the initial difference

in satellite-cell numbers between young male and female mice was

lesser than in rats. Hence, an input about satellite-cell numbers

from an early time-point in rats may have led to similar

conclusions as in mice. Another gender-associated difference was

that regardless of age, Gast myofibers from females contained

significantly less satellite cells than Gast myofibers from males in

both exercise and sedentary conditions. The lower satellite-cell

numbers in females accord with our study with mice [6] and may

relate to the fact that males have greater muscle-mass than

females. These gender-associated differences in satellite cell

numbers in rats and mice may be attributed, at least partially,

by the differential influences of male and female sex hormones.

Both testosterone and estrogen were shown to positively affect

satellite cell numbers: testosterone was shown to induce a dose

dependent increase in satellite cell numbers, myofiber cross-

sectional area, and myofiber nuclei in both young and older men

[37,38,39] and estrogen supplementation to ovariectomized

female rats prior to exercise led to enhanced satellite cell numbers

and performance [40,41]. The age associated decline in estrogen is

more prominent in females, where a 90% fall in serum oestradiol

occurs across menopause [42], compared to a fairly constant

decline in testosterone of 1.6% per year in men that begins in the

late third or early fourth decade [43,44]. Therefore, the

differential effects of sex hormones and the different pattern of

their decline in aging may contribute to the differences in satellite

cell numbers between young and old males and females.

In both mice and rats, an age-associated decline in satellite-cell

numbers was noted in fast-twitch (e.g., EDL, Gast) and slow-twitch

(Soleus) muscles. In the soleus, the decline was moderate

compared to that of the EDL muscle [6,9,20,45]. In humans,

results about satellite-cell numbers in aging were less consistent

than in rodents: some reported no change [46,47], others reported

a reduction in satellite-cell numbers [48,49,50]. It remains

debatable whether the age-associated decline in satellite-cell

numbers is characteristic to all muscles [14,51]. Nevertheless,

depletion of the satellite cell pool in aging humans was persistently

reported [48,49,50] when (i) satellite cells were identified based on

immunolabeling with markers such as NCAM that allowed

inspecting a large sample size of myofibers; and (ii) the group

comprised humans at the age of 70 or more, when age-related

changes are apparent [52]. Considering the consistency in the

reduction of satellite-cell numbers in aging humans and rodents,

and in a variety of muscles (legs, arms, mastication)

[6,9,20,45,48,49,50], we suggest that this reduction is a general

process, not species- or muscle-type- specific.

Exercise induced an increase in satellite-cell numbers in
male and female rats

In this study we analyzed the number of satellite cells situated in

myofibers that were isolated from the superficial region of the Gast

muscle, a region shown to be composed of fast-twitch fibers,

almost exclusively [23,24,25]. In order to evaluate the effect of

exercise on satellite cell numbers in aging we studied here the most

affected myofibers, i.e., the fast-twitch. This was based on a large

body of literature showing that in aging there is a preferential loss

of fast motor units (especially in non-postural muscles) resulting in

a preferentially loss of fast-twitch myofibers [53,54]. These

changes were shown, by others and us, to coincide with a decline

in the number of satellite cells which is steeper in fast-twitch than

in slow-twitch myofibers [6,9,19,45].

An unequivocal elevation in satellite-cell numbers in old and

young rats was achieved after 13-week moderate-intensity

running. We show that exercise induced an increase in satellite-

cell number-per-myofiber in young and old rats of both genders.

This was in concomitance with an exercise induced reduction in

the number of myofibers with a few satellite cells at old age. The

increase in satellite-cell number-per-myofiber was most remark-
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able in young male rats. This may be explained, at least partially,

by the differential effect of exercise on satellite cells via sex

hormones. Specifically, testosterone is a renowned anabolic agent

of skeletal muscles, shown to induce muscle hypertrophy in

association with increased satellite-cell numbers [55,56]. More-

over, moderate-intensity endurance training increases testosterone

concentrations, probably by its enhanced production [57,58,59].

Differently, moderate-intensity endurance exercise does not alter

estrogen metabolism [60,61]. Thus, exercise effect on testosterone

may have contributed to the increase in myofibers with greater

satellite-cell numbers in young males. It is worthy to note that

estrogen was suggested to exert positive effects on satellite cell

numbers in the case of straining exercise, such as downhill

running, via estrogen receptors mediated mechanisms [40,41].

Considering the practical implications of satellite-cell pool

depletion with age, we identify two cases in which the depleted

pool may be significant: (i) when satellite cells are heterogeneous in

their ability to produce myogenic progeny and to self-renew; (ii)

when each myofiber depends on its own satellite cells. Examina-

tion at the single cell level showed that satellite cells are

heterogeneous and that there is an age-associated decline in the

subpopulation of cells that retains good potency of self-renewal

and producing myogenic progeny [6]. To inspect whether a

myofiber depends on its own satellite cells, we applied a genetic

approach combined with mathematical methods in order to

reconstruct lineage trees [62]. This allowed us to reveal that

myofibers from intact young and older mice indeed depend on

their own satellite cells for maintenance [63]. Altogether, our data

imply that the exercise-induced increase in satellite cells numbers/

myofiber may support better muscle maintenance upon daily

wear.

Exercise induces augmentation of myogenic clones
The aging environment affects directly or indirectly satellite-cell

properties and muscle deterioration [14,64,65,66]. Does the

intrinsic potential of satellite cells also change with age? A set of

in-vivo and in-vitro experiments showed that muscle regeneration,

which is mediated by satellite-cells, depends on environmental

influence and on the intrinsic potential of satellite cells [21].

In order to assess the intrinsic properties of individual satellite

cells in aging, we calculated the percent of myogenic clones. Our

data show the percent of myogenic clones decreased with age, but

increased after exercise in old males and females. This exercise-

induced increase in myogenic clones implies that the intrinsic

satellite-cell properties do not deteriorate with age. This is also in

agreement with our finding on the increased Gast mass, in

exercised old males and females (Figure S1).

The higher percent of nonmyogenic clones in the old sedentary

groups may relate to another age-associated de-regulation, the

diversion of some satellite cells to a nonmyogenic fate [14]. Based

on in-vitro experiments with cell-lines, freshly isolated myofibers

and primary cells, it was suggested that satellite cells can acquire

alternative fates such as adipogenic or fibroblastic [14,67,

68,69,70]. Age-associated diversion from a myogenic fate was

shown by detecting the expression of Pax7-cre driven reporter in

fibroblast-like cells and in myogenic cells that developed in

myofiber cultures [14]. Additional studies suggested mesenchymal

plasticity of satellite cells based on detecting nonmyogenic cells,

including adipocytes, in cultures emanating from single myofibers

[69,71]. Similar to results presented here, nonmyogenic cells were

also detected in clonal assays of myofiber-associated cells

[11,71,72,73]. It is possible, however, that some or most

nonmyogenic cells that develop in myofiber cultures are derived

from cells that are in close association with myofibers but not

necessarily from Pax7+ satellite cells [70,74,75,76].

Enhanced intermuscular adiposity and fibrosis are characteris-

tics of muscle waste as in sarcopenia, myodystrophy or myopathy

[65,77,78]. It may be that under such conditions, the signaling

environment was altered and could no longer support optimal

satellite cell performance [14,79,80,81]. As a consequence, satellite

cells could divert from the traditional myogenic to an adipogenic/

fibrogenic pathway. Alternatively, changes in the signaling milieu

may now enhance the proliferation of cells that are in tight

association with myofibers and give rise to nonmyogenic progeny

[58].

In any event, the exercise-mediated reduced-abundance of

nonmyogenic clones is important, since regardless of their origin,

accumulation of nonmyogenic instead of myogenic cells that form

the contractile units may hinder muscle functioning, maintenance

and repair.

The effect of forced locomotion on spontaneous
locomotion

Typically, aging and exercise inversely affect almost all body

systems [82,83,84]. To achieve a global view on the effect of

exercise, the studied rats were tested in the open-field apparatus

where they could freely locomote or remain sedentary. Sponta-

neous locomotion was quantified as an index of their behavior

[85,86], revealing that: (i) The traveled distance significantly

decreased in old compared to young sedentary rats (males and

females). This result accords with the age-related reduction in

locomotor activity that was documented across the animal

kingdom [87]. (ii) In old rats, exercise mediated a significant

increase of spontaneous locomotion in males. The age-related

drop and the exercise-induced increase in locomotion are not

necessarily a mere reflection of muscle capacity, but may also

reflect changes in the central and peripheral nervous systems [88].

Interestingly, the levels of locomotion significantly correlated with

the abundance of myogenic clones, indicating that locomotion

level can be used as a predictor for the myogenic properties of

satellite cells. Thus, employing a relative simple in-vivo test (the

open field) can provide insight into the properties of satellite cells,

so that the higher the level of locomotion, the higher the chance

that satellite cells produce high percents of myogenic clones.

Conclusions: In this study we demonstrated that exercise

induced a considerable reduction in the abundance of myofibers

with lower numbers of satellite cells, with a concomitant increase

in the abundance of myofibers with a high content of satellite cells.

Exercise also induced an increase in the abundance of myogenic

clones, suggesting enhanced myogenic performance of the

myofiber-associated cells. In old rats, these effects were further

associated with enhanced muscle quality (lean-to-muscle compo-

sition) and spontaneous activity. We suggest that the boost of

satellite-cell numbers and their myogenic performance may

represent a possible mechanism by which endurance exercise

enhances muscle quality in old age.

Materials and Methods

Animals
Male and female Wistar rats of the following age groups were

used: Young – 3.5 months, n = 10 per each gender; old males –

15–17 months, n = 9; old females – 15 months, n = 8. Animal age

listed throughout this manuscript is based on the age at the

beginning of the experiment. Animals were kept under ad-lib

nutritional conditions standard rodent chow (Kossoak, 19510),

constant temperatures of 2262uC) and a 14/10 hr light/dark
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cycle. All animal experiments were reviewed and approved by the

Animal Experimental Committee Tel Aviv University Institutional

Animal Care and Use Committee, permit number M-06-095.

Running procedure
Male and female rats were randomly assigned for the running

exercise or sedentary group used. We used a motorized low-noise

treadmill (running area = 416114 cm, Horizon ID 100) adjusted

to a speed of 0.5 km/h to achieve moderate intensity running [89].

Rats ran 20 minutes a day, 6 days a week, for 13 weeks. A custom-

designed Plexiglas mount (treadmill enclosure) divided the belt

surface into six compartments, allowing six rats to run simulta-

neously at the same belt speed [11]. A short video clip of exercise

running is available at the supplemented material (Video S1).

Following the 13-week running period, exercised and sedentary

rats were sacrificed and their hind-limb Gast muscles were excised

for further satellite cell analyzes. Additionally, body weight, Gast

muscle mass and levels of spontaneous locomotion were assessed

in-vivo for all animals, as described in Material S1.

Myofiber isolation
Freshly isolated myofibers were used for quantification of their

satellite cell content by Pax7 immunostaining and for clonal assays

of myofiber associated cells. Intact myofibers were released from

the superficial region of the Gast muscle which is enriched with

fast-twitch fibers [23,24,25]. Myofibers were released after

digestion with 0.2% collagenase type I (Sigma-Aldrich) diluted in

DMEM (Invitrogen) fortified with antibiotics as previously

described [9,90]. Muscles from young and old rats were digested

for 90 or 120 minutes, respectively, for optimal recovery of intact

myofibers. Released myofibers were rinsed extensively to eliminate

interstitial cells released during the procedure. Myofibers were

then dispensed individually into wells pre-coated with Matrigel

(BD Biosciences, diluted with DMEM to 1 mg/ml, according to

our published procedures [71,90]). Myofibers were supplemented

with growth medium that consisted of DMEM (high glucose, with

l-glutamine, 110 mg/L sodium pyruvate, and piridoxine hydro-

chloride supplemented with 50 U/ml penicillin and 50 mg/ml

streptomycin; Invitrogen) supplemented with 20% fetal bovine

serum (Biological Industries, Beit Haemek), 10% horse serum

(HyClone) and 1% chicken embryo extract (Biological Industries,

Beit Haemek). Three hours thereafter myofibers were fixed for

subsequent immunostaining analysis to quantify Pax7+ cells.

Single cell cloning
Clonal analyses of myofiber associated cells were performed as

we previously described [71]. In brief, well-rinsed myofibers were

triturated individually in a tube containing a small volume of

medium. The resulting myofiber suspension was dispensed to 24

well trays pre-coated with Matrigel. This procedure which was

expected to yield 0–1 satellite cell per well, based on an average

number of satellite cells per Gast myofiber of young male rats [11],

allowed the progeny of individual progenitors to develop clonally.

Wells were tracked from the 2nd day of single cell seeding for 7

days. Half a milliliter of growth medium (0.5 ml) was added after

seeding and changed 4 days thereafter. This growth medium

promotes both proliferation and spontaneous differentiation as we

previously showed [71]. The myogenic identity of each clone was

determined based on morphology and expression of muscle

specific markers. Clones that contained myotubes were classified

as myogenic. Clones that did not develop myotubes within the 7

days of culture were further characterized by double immuno-

staining for the myogenic markers Pax7 and MyoD. Clones were

either positive or negative for the two markers, which allowed us to

classify clones as myogenic or nonmyogenic, respectively, even

when myotubes were not apparent [9,11].

Immunofluorescence
Myofibers and clonal cultures were fixed with 2% paraformald-

hyde. Immunostaining and satellite cell quantification were done

as we previously described [9,71]. Primary antibodies were mouse

monoclonal: Anti-Pax7 (IgG1, ascites fluid, Developmental Studies

Hybridoma Bank; 1:1000 dilution); anti-MyoD (IgG1, clone 5.8A,

BD Biosciences; 1:400 dilution). When quantifying satellite cells on

myofibers, wells were reacted with Pax7 antibody alone. When

analyzing clones for myogenic identify, wells were reacted with

both anti-Pax7 and anti-MyoD together as the study aimed to

detect all myogenic cells regardless of their state of differentiation.

The secondary antibody was Cy-3 goat anti-mouse (Jackson

Immunoresearch, 1:500 dilution). Observations were done with an

inverted fluorescent microscope (Zeiss, Axiovert200M), controlled

by Axiovision4.4 Imaging System. Images were acquired with an

AxiocamMRm monochrome CCD camera and composites of

digitized images were assembled using Adobe Photoshop software.

Statistics
All statistical analyses were performed using Statistica 7.

Comparisons were carried out with parametric or non-parametric

testing depending on whether data conformed to a Gaussian

distribution. To describe whether there are significant relation-

ships between several tested variables we employed a correlation

test. Analysis of variance was tested either using the parametric

MANOVA (multiple analyses of variance) or non parametric

Friedman test. When significant differences were found they were

followed by post-hoc Fisher LSD test for comparisons. When

comparing proportion data (ratio, percents), we carried out the

ANOVA on arcsine of square-root-transformed raw data. For

comparisons of the distribution of proportional data chi-square

tests were performed. For all tests, P values less than 0.05 were

considered significant.

Supporting Information

Material S1 Supplemental text.

Found at: doi:10.1371/journal.pone.0013307.s001 (0.04 MB

DOC)

Figure S1 Total body weight (A), Gast mass/total body weight

(B) and fat content of the Gast muscle (C) of young and old male/

female exercised/sedentary rats, before (open bars) and after (gray

bars) 3 months running exercise. Gast mass and its fat content

were measured by DEXA. To assess the fat content of the Gast

muscle, a predetermined constant muscle tissue volume from the

largest diameter of the muscle was measured, in order to reflect

mere changes in the relative density of the muscle and exclude

growth dependent changes in the mass of the whole muscle over

the 3 months of the exercise session. Each bar depicts average

values and error bars indicate SEM values.

Found at: doi:10.1371/journal.pone.0013307.s002 (4.53 MB TIF)

Figure S2 Total distance travelled over 15 minutes in the open-

field arena, by male and female, young and old sedentary (gray

bars) and exercised (open bars) rats. Each bar depicts average

values and the error bars indicate the standard error of the mean

(SEM). Insets at the top of the figure represent the actual travelled

trajectories of an old exercised (gray shaded) and an old sedentary

(without shading) male.

Found at: doi:10.1371/journal.pone.0013307.s003 (4.53 MB TIF)

Video S1 Rats running on a treadmill.
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Found at: doi:10.1371/journal.pone.0013307.s004 (2.02 MB

MP4)
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