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A review and re-interpretation of a
group-sequential approach to sample size
re-estimation in two-stage trials
J. Bowden* and A. Mander

In this paper, we review the adaptive design methodology of Li et al. (Biostatistics 3:277–287) for two-stage trials with mid-trial
sample size adjustment. We argue that it is closer in principle to a group sequential design, in spite of its obvious adaptive
element. Several extensions are proposed that aim to make it even more attractive and transparent alternative to a standard
(fixed sample size) trial for funding bodies to consider. These enable a cap to be put on the maximum sample size and for
the trial data to be analysed using standard methods at its conclusion. The regulatory view of trials incorporating unblinded
sample size re-estimation is also discussed. © 2014 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.
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1. INTRODUCTION

When designing a randomised controlled trial (RCT) to test the
efficacy of a treatment in a chosen patient population, assump-
tions need to be made about the mean and spread of patient
responses to treatment in order to derive an appropriate sample
size. However, these assumptions may be subject to consider-
able uncertainty and, if their validity is not subsequently checked,
could lead to a hopelessly underpowered or overpowered study.
Adaptive designs incorporating sample size re-estimation offer a
potential solution to this problem, by enabling interim patient
data to be used to decide whether the initial assumptions were
sensible and, if necessary, to alter the size and scope of the trial.
Methods to update a trial’s required sample size using the current
estimate of the pooled response’s standard deviation are well
used and accepted by the regulatory authorities [1], because this
does not require unblinding of the treatment and control groups.
See for example Gould and Shih [2] and Kieser and Friede [3].
Conversely, there has been a poor uptake of methods that allow
unblinding to explicitly estimate the difference in response lev-
els across groups, that is, the treatment effect. This is due in
part to fundamental concerns over the trial’s perceived valid-
ity or scientific rigour after unblinding has occurred. However,
objections of a more theoretical nature have also been raised.
For example, common methods proposed in this context such as
p-value combination or variance spending approaches [4,5] can
assign unequal weight to patients before and after the sample
size re-estimation (SSR). This violates the sufficiency principle and
is criticised for being inefficient, compared with more established
group-sequential methods [6,7]. Moreover, the statistical com-
plexity of many methods, and their use of abstract conditional
error functions [8] with non-standard critical thresholds, may also
serve to discourage their application in real clinical settings.

In this paper, we review a two-stage adaptive design incorpo-
rating SSR proposed by Li et al. [9]. Following the convention of
Wang et al. [10], we refer to this as the ‘LSW’ (for Li, Shih and

Wang) approach. We feel that the LSW approach strikes a nice
balance between the flexibility of an adaptive design and the
rigour of group-sequential design, as well as being comparatively
simple to implement. In Section 2, we introduce our notation
and describe the motivation for an adaptive SSR design over a
fixed sample size design. In Section 3, we introduce the LSW
method, show how it can be modified to accommodate capping
of the maximum sample size and evaluate the operating charac-
teristics of these two approaches compared with a fixed sample
size design. In Section 4, an alternative method for choosing the
design parameters of the LSW method is introduced. We con-
clude with a wide-ranging discussion of the adaptive approach
and point to further research in Section 5.

Before proceeding any further, we firstly describe our motiva-
tion for this review.

1.1. Motivation

Current treatment options for knee osteoarthritis (OA) are not
suitable or ineffective for large numbers of patients [11], and
surgery is often the only remaining option. A grant application
sought funding to conduct an RCT into the effectiveness of a stan-
dard rheumatoid arthritis oral therapy (with acceptable toxicity
profile) to relieve pain in OA patients. An initial open-label pilot
study in patients with knee OA had shown promising results, so
the case for an RCT appeared to be strong. However, the fund-
ing council decided that the trial’s design should be substantially
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revised. They were concerned in particular about the lack of evi-
dence on the effect size likely to be seen in the RCT context.
The funder offered the opportunity to re-submit the applica-
tion under the proviso that the new trial incorporated an interim
analysis, with clear criteria to stop the study or to proceed with
the full-scale recruitment (and new sample-size calculation). The
authors were contacted through an advisory service to aid in the
trial’s re-design in light of the funder’s response. We were looking
for a simple, transparent method that

(1) can be fully specified before any recruitment begins;
(2) can be understood and easily implemented by an indepen-

dent data monitoring committee (DMC);
(3) is not motivated via a complex conditional error function;
(4) is implemented through a clear decision framework that links

the interim effect size estimate with future sample size via a
simple, familiar formula;

(5) allows the trial data to be analysed at the end using standard
methods;

(6) is a practical and understandable alternative to a specific fixed
design for funding bodies and trialists to consider.

Despite feeling that the LSW approach satisfied points 1–4 in
our checklist, the aim of this paper is to suggest further changes
that address points 5 and 6.

2. NOTATION AND THE STANDARD SAMPLE
SIZE CALCULATION

Assume that observations in the (experimental) treatment group
X and (standard therapy) control group Y are normally distributed
with means �x and �y , respectively, and have a common known
variance of �2. The standardised mean difference, ı, is defined as
�x��y

� and is the measure of treatment effect we are interested

in estimating. An estimate for ı, Oı, could be obtained from a trial
with n patients per arm by plugging in estimates for �x and �y ,
as below:

Oı D
Nx � Ny

�
where Nx � N

�
�x ,

�2

n

�
, Ny � N

�
�y ,

�2

n

�
.

The test statistic, z D Oı
p

n=2, which follows a N.ı
p

n=2, 1/ dis-
tribution, can be used to test the null hypothesis H0 : ı 6 0. Under
H0, z follows a standard normal distribution, so that H0 is rejected
if z > Z˛ , where Zu D ˆ

�1.1 � u/ and ˛ is the type I error rate. In
a fixed sample size two-arm trial, the number of participants per
arm, n, can be determined from the formula:

n D
2

ı2

�
Z˛ C Zˇ

�2
,

where 1�ˇ is the power reject H0 at ı. For example, to obtain 80%
power to detect a difference of ı D ıH1 D 0.35 with a one-sided
type I error rate of 2.5% (˛ D 0.025 and ˇ D 0.2), n D 129
patients per arm are needed.

There may, however, be a considerable uncertainty and/or lack
of information on the parameter ı with which to base this calcu-
lation. If ı is truly less than 0.35, then substantially more than 129
people would be needed. Equally, if ı is truly much larger than
0.35, then the trial may be needlessly large.

2.1. A two-stage alternative

Suppose instead that n1 .< n/ subjects are initially recruited per
arm into the trial, and an interim analysis is conducted after their
responses are observed. This would enable a Oı1 and z1 to be
obtained as

Nx � N

�
�x ,

�2

n1

�
, Ny � N

�
�y ,

�2

n1

�
,

Oı1 D
Nx � Ny

�
, z1 D

Oı1p
2=n1

� N

 
ıp

2=n1
, 1

!
. (1)

A decision could then be made on the number of additional
subjects per arm needed, n2 say, in the remainder of the trial,
given the magnitude of Oı1 (or equivalently z1). It is fairly intuitive
to see that if one wanted to maintain the same a priori power of
1� ˇ conditional on the value of z1 (assuming that z1 is positive),
then n2 would be a decreasing function of z1—this will be shown
explicitly in the next section. However, if z1 were sufficiently small,
then it may be decided to stop the trial altogether; on the grounds
that the treatment effect was well short of the clinically relevant
difference and, furthermore, the trial would need to be so large to
detect this effect that it would be extremely unlikely to attract the
necessary funding. Alternatively, the interim data could suggest
stopping the trial for positive reasons if Oı1 and z1 were so large as
to provide overwhelming evidence against H0.

However, care must be taken when interim data is used to
make decisions about the trial’s eventual size and is then subse-
quently used in the final analysis. Such practices, if unaccounted
for, can inflate the type I error rate above the nominal level [8,12].
In the next section, we describe the LSW method [9,13] that
was proposed for this two-stage design framework. Given an ini-
tial sample of patient data, it provides a rationale for deciding
whether to stop the trial or continue, and if continuing how many
additional patients to recruit. Crucially, it does this whilst control-
ling the overall type I error rate and also setting the minimum
power to reject the null hypothesis conditional on reaching the
second stage.

3. A REVIEW OF THE LSW METHOD

Suppose that n1 C n2.z1/ people are recruited to each arm of
the trial according to some as yet unspecified ‘rule’, n2.z1/, save
that n2.z1/ is 0 when z1 is less than h or greater than k (the futil-
ity and efficacy boundaries, respectively). Suppose further that if
z1 2 .h, k/, then we desire a constant conditional power of 1� ˇ1

to reject H0 : ı 6 0 at the trial’s conclusion, on the basis of the
sufficient statistic and likelihood ratio test:

z D

p
n1z1 C

p
n2.z1/z2p

n1 C n2.z1/
: reject H0 if z > C, (2)

where z2 is the test statistic based on n2.z1/ people, derived in an
identical fashion to equation (1). Li et al. [9] provide a methodol-
ogy for choosing the critical value C given the design parameters
h, k,ˇ1 and overall type I error rate ˛, that is independent of
the interim test statistic z1. It can be understood as a simple
but clever modification of the general approach of Proschan and
Hunsberger [8], which does not share this independence prop-
erty. The method is now explained in detail using the original1
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notation of Li et al. First, define the conditional power function
CPı .n2, Cjz1, n1/ to be

P.z > Cjz1, n1, ı/ D 1�ˆ

 
C
p

n1 C n2.z1/� z1
p

n1 � n2.z1/ı=
p

2
p

n2.z1/

!
,

(3)

which is the probability of rejecting the null hypothesis at the
trial’s conclusion given a sample of n1 + n2.z1/ per arm. Let
CP0.n2, Cjz1, n1/ be this conditional power when ı is set to 0, so
that the null hypothesis is true. The overall type I error rate for the
design is equal to

P.z1 > kjı D 0/C P.z > Cjı D 0; h < z1 < k/

D ˛1 C

Z k

h
CP0.n2, Cjz1, n1/�.z1/dz1

CP0.n2, Cjz1, n1/must be between 0 and 1 in (h, k). Thus, the prob-
ability of not accepting H0 at stage one, p� say, must be greater
than the type I error rate ˛, so that the difference between the two

p� � ˛ D 1 �ˆ.h/ � .1 �ˆ.k// �

Z k

h
CP0.n2, Cjz1, n1/�.z1/dz1

D

Z k

h
Œ1 � CP0.n2, Cjz1, n1/� �.z1/dz1

D

Z k

h
ˆ

 
C
p

n1 C n2.z1/ � z1
p

n1p
n2.z1/

!
�.z1/dz1 (4)

is the conditional type I error rate in the region .h, k/. From
equation (3), if we desire a conditional power of 1 � ˇ1 to reject
H0 at stage two, then the following must hold: 

C
p

n1 C n2.z1/� z1
p

n1 � n2.z1/ı=
p

2
p

n2.z1/

!
D �ˆ�1.1�ˇ1/ D �Zˇ1 .

(5)

The two unknowns defining the two stage design are n2.z1/

and C. They could be obtained by solving equation (5) for n2

(as a function of C and z1), and then plugging in its value
to (4) to solve for C. Li et al. provide a simpler solution;
make equation (5) an inequality by replacing the left hand
side’s denominator,

p
n2.z1/, with

p
n1 C n2.z1/, thereby guar-

anteeing a conditional power of at least 1 � ˇ1. Further sub-
stituting ı with its stage one maximum likelihood estimate,
Oı1 = z1

p
2=n1, leads to the solution:

n2.z1/ D

 
.C C Zˇ1

/2

z2
1

� 1

!
n1, for z1 2 .h, k/. (6)

Note that the equivalent formula to (6) in Li et al. [9] is incor-
rect. Plugging n2.z1/ into equation (4) and re-arranging yield the
following formula for C:

1 �ˆ.h/ � ˛ D

Z k

h
ˆ

2
64 C.C C Zˇ1

/ � u2q
.C C Zˇ1

/2 � u2

3
75�.u/du. (7)

Equation (7) can thus be solved to yield the critical value C
needed for the stage two test. Because (7) does not depend on
n1, n2 or z1, C can be found before the trial starts and any data is
observed. Furthermore, as long as n2 is chosen via equation (6),
then any n1 can be used, meaning the timing of the interim analy-
sis need not be specified in advance. The constant C and constant
minimal conditional power (set by ˇ1) of the LSW method are in
marked contrast to the original approach proposed by Proschan
and Hunsberger. In their approach, a conditional power function
Zˇ1
.z1/ must be specified, and C can only be calculated once z1

has been observed. Note a technical detail; the upper limit on the
integral is constrained by the fact that the square-rooted term in
the denominator of (7) must be positive, so that k < C C Zˇ1

.
Li et al. set the integral’s upper limit to k1 D min.k, C C Zˇ1

/ to
address this.

The LSW approach’s sequential nature, use of pre-specified
stopping rules based on sufficient test statistics and its strict con-
trol of type I error rate, means that it bears a strong resemblance
to a traditional group-sequential trial (GSD). This, we believe, is
one of its strengths.

3.1. Example: a standard implementation of the LSW method

Following the funder’s response to the original arthritis trial appli-
cation, the LSW method was investigated as a possible alternative.
It was decided that it would be feasible to recruit an initial sam-
ple of n1 D 50 patients per arm across the seven study centres
within 6 months of the trial commencing. The outcome (change
in knee pain from baseline at 24 weeks) would therefore be avail-
able for all patients 1 year after study initiation. Trial recruitment
would be frozen in this period. If Oı1 6 0.2 (equivalent to h D 1 on
the z1 scale), then the trial would stop for futility and not recruit
any further patients. This would equate to a p-value for the null
hypothesis ı 6 0 of � 0.16. If on the other hand Oı1 > 0.55
(equivalent to k D 2.76 on the z1 scale), then the trial would stop
for efficacy. This would equate to a p-value of 0.003. If however
the estimate was between 0.2 and 0.55, then additional partici-
pants would be recruited to each arm according to equation (6),

Table I. Design parameters of the four adaptive trial proposals discussed.

Approach: Design h k 1 � ˇ1 C ˛ n1 nmax

Standard implementation
LSW: 1 1 2.76 0.8 1.92 0.025 50 333
Modified LSW: 2 1 2.76 0.8 1.93 0.025 50 90

Reverse implementation
LSW: 3 1.14 2.24 0.8 1.96 0.025 70 353
Modified LSW: 4 1.08 2.32 0.8 1.96 0.025 71 121

nmax is the maximum stage 2 sample size.
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Figure 1. Stage one effect estimate versus total sample size using design 1. Dotted

line shows the distribution of the estimate Oı1 when ı D 0.35.

guaranteeing at least 80% conditional power to reject H0, with a
type I error rate of 2.5%. By substituting the implied values of k,
˛, ˇ1 and h into equation (7), C is found (via numerical integra-
tion) to be 1.923. The parameters defining this design are listed in
Table I, and it is referred to as ‘design 1’. The value of k was chosen
to be as large as possible to give the smallest chance of stopping
for efficacy at stage one. It is equal to 2.76 D CCZˇ1

D 1.92C0.84.
Thus, for the chosen values of (h,˛,ˇ1), one is forced by the design
of Li et al. to spend a minimum of 0.003 of the total type I error
rate of 0.025 at stage one. However, the futility threshold h effec-
tively buys back this type I error rate (and more) because the final
threshold C is less than Z˛ D 1.96.

Figure 1 plots the total number of patients needed as a func-
tion of Oı1 under design 1. We see that at the interim, if Oı1 D 0.35,
then only 125 patients per arm are required for the trial in total.
The dotted line in Figure 1 shows the distribution of the estimate
Oı1 when ı D 0.35 to indicate the proportion of times the study
would stop early for efficacy or futility at stage one, or continue to
stage two with the specified sample size.

3.2. Incorporating a maximum sample size constraint

The LSW approach seemed to provide an alternative two-stage
trial design that addressed the funders concerns. Although they
were not prepared to pay for the fixed trial of 129 patients per
arm based on existing evidence, they were potentially prepared
to provide full funding if results from an initial phase were
sufficiently promising. However, in design 1, the total sample size
per arm could be anything from 50 to 383 depending on the
value of z1. Although the research team were keen to define the
promising region for z1 as (1,2.76), it was felt that there would be
a maximum sample size (well below 380) beyond which the trial
would probably not be funded. A total sample size of 140 per arm,
or of n2 D nmax D 90, was thought a plausible upper limit. To
incorporate this constraint into the LSW method and preserve the
property that the final stage test statistic threshold is indepen-
dent of z1, equations (6) and (7) must be modified. Equation (6)
becomes

n2.z1/ D min

"
nmax ,

 
.Cmax C Zˇ1

/2

z2
1

� 1

!
n1

#
, for z1 2 .h, k/

(8)

D

 
.Cmax C Zˇ1

.z1//
2

z2
1

� 1

!
n1, for z1 2 .h, k/. (9)

Although it is convenient to use formula (8) when calculating
n2, we must make use of the equivalent formula (9) in subsequent
calculations. It tells us that the constant minimal conditional
power term Zˇ1

is, in effect, replaced by a simple step function,
Zˇ1
.z1/, where

Zˇ1
.z1/

D

8̂̂<
ˆ̂:

Zˇ1
if .Cmax C Zˇ1

/
q

n1
n1Cnmax

< z1 < k

z1

q
nmaxCn1

n1
� Cmax if h < z1 <

�
Cmax C Zˇ1

�q n1
n1Cnmax

(10)

and the relevant stage two threshold, Cmax (which is different
to C), is found by solving the integral

1 �ˆ.h/ � ˛ D

Z k1

h
ˆ

2
64Cmax

�
Cmax C Zˇ1

.u/
�
� u2q�

Cmax C Zˇ1
.u/
�2
� u2

3
75�.u/du.

(11)
The upper limit on the integral is defined as before. The

denominator of theˆ../ function in (11) remains well defined for
Zˇ1
.z1/ < Zˇ1

because, from (10), when this occurs

Cmax C Zˇ1
.z1/ D Cmax C z1

r
nmax C n1

n1
� Cmax

D z1

r
nmax C n1

n1
> z1

3.3. Example revisited

Adding in the extra constraint nmax D 90 to the remaining param-
eters of design 1 in Section 3.1, we calculate Cmax to be 1.936.
This is listed as ‘design 2’ in Table I, and we refer to capping the
maximum sample size in this way as the modified LSW approach.
Figure 2 (left) shows the total sample size of design 2 as a func-
tion of Oı1. Figure 2 (right) shows the minimum conditional power
guaranteed by this design as a function of Oı1. It starts at close to
40% when Oı1 D 0.2 and increases up to a maximum of 80% by
Oı1 D Oı

�
1 D .Cmax C Zˇ1

/
q

2
n1Cnmax

D 0.332. So, artificially con-

straining the sample size to not exceed a maximum value leads
to some loss of power when Oı1 is small. It is therefore important
to assess this constraint’s effect on both on the overall power and
expected sample size of the adaptive trial.

3.4. An assessment of designs 1–2

Figure 3 highlights the operating characteristics of the original
fixed design proposal (n D 129, ˛ D 0.025, ˇ D 0.2) and adap-
tive designs 1 and 2 as a function of ı. They are calculated from
the list of expressions given in Table S1 in the appendix (avail-
able online as Supporting Information). Figure 3 (top left) shows,1
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Figure 2. Left: modified LSW design 2. Right: minimum conditional power guaranteed by design 2.

Figure 3. Operating characteristics of the fixed design and adaptive designs 1–2.

for adaptive designs 1 and 2, how the probability of stopping for
efficacy or futility changes as ı increases from 0 to 1. The two

probabilities are equal when ı equals the mid-point of
q

2
n1

h andq
2

n1
k. Under design 1, the probability that the total sample size

is greater than the maximum of 140 per arm is maximised at

around 26% when ı equals the mid-point of
q

2
n1

h and Oı�1 . The

same value of ı maximises the probability that n2 D nmax under
design 2. Figure 3 (top right) shows that the expected sample size
of designs 1 and 2 is always less than that of the fixed design. The
maximum expected sample size of design 2 is over 20 patients
less than that of design 1. Figure 3 (bottom left) shows the overall
unconditional power, P.Reject H0/, of all three designs. Formula
(12) in Table S1 gives this quantity, as well as a more standard for-
mula for the power of the fixed design. The fixed design’s overall

power is greater than the adaptive designs for all reasonable val-
ues of ı. At the originally hypothesised value ı D ıH1 D 0.35,
the overall power is 80% by definition, whereas adaptive designs
1 and 2 only achieve an overall power of� 71% and 69%, respec-
tively. This shortcoming of the adaptive designs is returned to in
Section 4. Figure 3 (bottom right) shows the ratio of the design’s
overall power with their expected sample size (which is of course
constant for the fixed design). Comparisons of power between
designs with different expected sample sizes can be mislead-
ing, so the power per unit of expected sample size provides a
new and potentially useful standardised measure. Indeed, it has
been recently employed by the second author to compare the
relative merits of competing development strategies for phase
II trials [14]. Despite design 2 being the least powerful of the
three, it is the superior of the three for all values of ı according to
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this measure. It also highlights how unnecessarily large the fixed
design is when ı is over 0.5.

4. AN ALTERNATIVE IMPLEMENTATION OF
THE LSW METHOD

The standard implementation of the LSW approach gives the user
freedom to choose the h and k (albeit subject to some weak con-
straints) determining whether or not the trial continues to stage
two. It also allows the user to specify the minimum conditional
power level desired at stage two and leaves the choice of n1 com-
pletely open. As we have seen, this can help identify adaptive
designs with a far smaller expected sample size compared with
the fixed design. However, because the method is constructed to
control the minimum conditional power at stage two, we have
also demonstrated that it generally has a lower overall power,
as given by equation S1 (available online as Supporting Informa-
tion), compared with the fixed design. This power loss is especially
evident, and indeed relevant, at the originally hypothesised value
for ı, ıH1 . Furthermore, the use of a non-standard critical thresh-
old (C or Cmax) at stage two that is different (and especially
lower) than the nominal ˛ level will doubtless sit uncomfort-
ably with some trialists. For example, one could envisage the
following scenario: a clinical trial using a specific LSW design
proceeded to stage two and suggested a rejection of the null
hypothesis, because the final test statistic, z, was > C. However,
a standard analysis of the data based around the maximum likeli-
hood estimate (MLE) at the ˛ level of significance—which would
inevitably be preferred by the trial committee and general medi-
cal community—did not. With these two things in mind, we now
propose a different rationale for choosing the parameters in an
LSW or modified LSW design.

4.1. Reverse implementation of the LSW design

For the standard LSW method, rather than choosing h, k,˛, Zˇ1

and determining C, we instead propose to identify a family of
possible designs by implementing the following algorithm:

(1) Identify a fixed sample size design with type I error ˛ and
power 1 � ˇ at ı D ıH1 .

(2) Find all joint values of (h,k,Zˇ1
) consistent with ˛ and C D Z˛

from equation (7).
(3) For each specific value of (h,k,Zˇ1

), find the minimum value of
n1 that sets the unconditional power in equation S1 at ı D ıH1

equal to 1 � ˇ.

Fixing C to Z˛ means that rejection of H0 at stage two via
the adaptive design must coincide with a rejection based on a
standard analysis using z. The algorithm can be split into the
aforementioned steps two and three because equation (7) is inde-
pendent of n1, and this also makes the numerical optimisation
an easier task. The solid line in Figure 4 shows the values of (h, k,
Zˇ1

, n1) consistent with this strategy. Scales for h and k are shown
alongside the p-values for early stopping due to efficacy and futil-
ity (Pk and Ph) they imply. For scales Zˇ1

and 1-ˇ1, the expected
sample size per arm at ıH1 and n1 are also shown. The red point
highlights an interesting and appealing design, where the mini-
mum conditional power equals the unconditional overall power,
or ˇ D ˇ1. This occurs at (approximately) h D 1.14, k D 2.24 and
n1= 70. This is listed as ‘design 3’ in Table I. The expected sample

Figure 4. Possible parameter choices under the reverse implementation LSW
design.

size at ıH1 is approximately 123, which is greater than design 1 in
Section 3.4 but is still below the fixed design’s sample size.

4.2. Reverse implementation of the modified LSW design

Our motivation for proposing the modified LSW design was to
allow the user to limit the overall trial size through the second
stage sample size, n2, given that the trial had already accrued n1

patients in stage one. However, under the reverse implementa-
tion, n1 is considered as an additional parameter in the design
space. This suggests that, rather than simply controlling the stage
two sample size via nmax , it would be more sensible to control
the maximum total sample size per arm, (n1 C n2.z1//. An algo-
rithm to find possible modified LSW designs under this strategy is
now described. The algorithm is more computationally demand-
ing than before, because equation (11) depends implicitly on n1

through Zˇ1
.z1/.

(1) Identify a fixed sample size design with type I error ˛ and
power 1-ˇ at ı D ıH1 . Additionally fix the maximum value of
(n1 C n2.z1/), nTmax say, and set C equal to Z˛

(2) Given nmax = nTmax � n1, find the joint values of
(h,k,Zˇ1

,n1,nmax) such that:

(a) (h,k,Zˇ1
,n1,nmax) are consistent with ˛ and C D Z˛ from

equation (11).
(b) n1 is minimised given the joint values of (h,k,Zˇ1

,nmax).
(c) The unconditional power in equation S1 at ı D ıH1

equals 1-ˇ.

Table II shows the joint values of (h,k,Zˇ1
,n1,nmax) consistent

with this strategy when nTmax is fixed at 192 - 50% larger than the
original fixed design’s sample size per arm of 129. A simple plot
is not possible because the design parameters do not all increase
or decrease together. We again highlight the design for which
the minimum conditional power equals the unconditional over-
all power, or ˇ D ˇ1. This occurs at h D 1.08, k D 2.32, n1=
71 and nmax=121. It is listed as ‘design 4’ in Table I and high-
lighted in bold in Table II. The expected sample size of the design
at ı D ıH1 D 0.35 is approximately 111.

Figure 5 compares the operating characteristics four designs
featured. Designs 1 and 2 have a far smaller expected sample size1
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Table II. Possible parameter choices under the
reverse implementation modified LSW design.

h k 1-ˇ1 n1 n1 C EŒn2� nmax

0.700 2.76 0.847 54 117 138
0.751 2.66 0.835 56 115 136
0.802 2.59 0.826 58 114 134
0.853 2.52 0.818 61 114 131
0.904 2.47 0.813 63 113 129
0.955 2.41 0.808 65 112 127
1.010 2.37 0.804 67 111 125
1.060 2.34 0.801 70 111 122
1.080 2.32 0.800 71 111 121
1.110 2.30 0.799 72 111 120
1.160 2.27 0.796 75 111 117
1.200 2.25 0.795 77 111 115

than 3 and 4 but because of this, do not control the overall power
at ı D ıH1 at the original desired level of 80%. As well as being
identical to the fixed design at ı = ıH1 , the unconditional power
curves of designs 3 and 4 are very close to that of the fixed design
across all values of ı.

Design 3 has a higher expected sample size than the fixed
design at ı D 0.35. This may raise concerns in some quarters, but
we do not view it as an inherent weakness. Our argument is that
funding bodies should generally be prepared to support a trial
the size of (or bigger than) the fixed design, but want the chance
to stop altogether if the interim data suggests so. This flexibility
is provided by the adaptive approach. However, design 4—which
additionally caps the maximum sample size—has an expected
sample size that is always lower than the fixed design. As is shown
in Figure 2 (right), the price paid for this property is that it can
exhibit a low conditional power when z1 is just above the futility
threshold h.

5. DISCUSSION

In this paper, we have reviewed the LSW method for a two-stage
trial with SSR and suggested two extensions to make the
approach more amenable for use in practice. We firstly modified
their standard approach to allow the second stage sample size to
be capped. This restriction may be useful in practice, because it

would enable funders to maintain a reasonable grip on the max-
imum cost of the trial when presented with preliminary findings
from stage one. The maximum size of the trial may not be lim-
ited by the funding body, but instead by the trialists, because of
practical constraints on its duration, the number of study cen-
tres available and likely recruitment rate. Our modification would
also be useful in this case. We secondly suggested an alternative
‘reverse’ implementation of the LSW approach. Our aim was to
make the resulting LSW designs a more obvious and transpar-
ent alternative to a standard fixed sample size design. The reverse
implementation can identify adaptive designs whose uncondi-
tional power is near identical with a specific fixed design (across a
large range of treatment effects) whilst ensuring that its expected
sample size is generally well below that of the fixed design. Fur-
thermore, there is no danger that the resulting decision to reject
the null hypothesis at stage two will be odds with inference based
around the final test statistic.

5.1. The approach of Mehta and Pocock

Although different in its exposition, our approach is similar in
spirit to the recent work of Mehta and Pocock [15], that has gen-
erated a lot of discussion in the literature (see [16,17]). In the same
context of two-stage trials with mid-trial sample size adjustment,
Mehta and Pocock were motivated to find a simple composite
design strategy that would be attractive to trialists who were
contemplating moving away from a traditional fixed sample size
design. Using the notation of this paper, they encourage the trial-
ist to specify a sample size based on a fixed design (with sample
size n, type I error ˛ and power 1 � ˇ), but to allow for an interim
after n1 patients. At this interim, they identify values of the test
statistic, z1, that correspond to so-called unfavourable, promising
and favourable regions of conditional power—defined analo-
gously to equation (3). If z1 is in the favourable or unfavourable
regions then the trialist’s are encouraged to continue recruiting
up to the original sample size of n. However, if z1 is in the promis-
ing region, the user is encouraged to increase the sample size
(over and above n up to a maximum level) and to fix the con-
ditional power at 1 � ˇ using the data derived treatment effect
estimate. Following this decision framework is guaranteed to not
inflate the type I error rate of a standard ˛-level analysis at the
trials end. Mehta and Pocock therefore argue that the use of
standard analysis methods, as opposed to non-standard adaptive
design methods (e.g [4,8]), makes the method attractive.

Figure 5. Expected sample size (left) and overall power (right) of the LSW methods under designs 1–4, as a function of ı .

Pharmaceut. Statist. 2014, 13 163–172 © 2014 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.
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Our reverse implementation of the LSW approach in designs
3 and 4 allow for early stopping at stage one but provide the
termination thresholds and a simple SSR rule such that a stan-
dard ˛-level analysis is still possible at the final stage. They can
deliver substantial reductions in the expected sample size com-
pared with a fixed design when ı is much smaller or larger than
expected (especially modified LSW design 4), but with no appre-
ciable loss in overall power. Furthermore, the ˛-level analysis
conducted at the end of stage two is correct in the sense that
it preserves the theoretical type I error rate at ˛, whereas Mehta
and Pocock’s ˛-level threshold is actually over-conservative and
therefore inefficient.

5.2. Regulatory support for the use of unblinded SSR

In recent US Food and Drug Administration (FDA) guidance to
industry on adaptive trials [1], the FDA is positive about the use
of blinded SSR, citing its ability to improve study efficiency and
ability to achieve the study goal, without affecting the type I
error rate of the trial (Section B, lines 668–674). In contrast, no
explicit endorsement can be found in this document on the use
of unblinded SSR and so it is necessary to look for principles of
guidance more widely.

Revising a study’s design in light of an unblinded interim anal-
ysis has the potential to induce bias and type I error inflation.
Therefore, revisions should be prospectively defined and carefully
implemented to avoid bringing the interpretation of study results
into doubt. This legitimises the use of GSDs in the FDA’s eyes [1]
(Section D, lines 817–829), where formal testing of a null hypothe-
sis is carried out at one or more interim analyses to make decisions
regarding the continuation of the trial. This is under the proviso
that (a) methods for controlling resulting type I error inflation
are incorporated as standard; (b) an independent DMC is tasked
with reviewing the data at the interim analyses, and furthermore,
a statistician independent of the study prepares the report for
the DMC.

Throughout this paper, we have pointed the LSW approach’s
similarity with GSDs, both in their sequential design and in their
analysis. So, can current FDA guidance on GSDs be invoked to
cover its use? Our opinion is a qualified ‘yes’. Although (a) and
(b) would be sufficient for a GSD, the LSW approach (and any
SSR procedure for that matter) is arguably more vulnerable to the

de-masking of interim results for the following reason: A keen
and suitably qualified individual in the study team could poten-
tially transform the recommended stage two sample size into
the stage one effect estimate and use this to influence the trial
going forward. We therefore believe that an additional condition
is necessary; information about the precise value of the stage two
sample size must not be fed back to the study team unnecessar-
ily. Rather, trial recruitment should be allowed to continue or stop,
until the independent statistician can reveal that the planned size
is about to be reached.

5.3. Estimation following an adaptive design

The MLE of ı at the end of the adaptive design will generally
be biased, because it ignores the trial’s sequential nature. In the
appendix, we provide a detailed investigation of the MLEs prop-
erties in this context and contrast it with that of the median
unbiased estimate (MUE) suggested by Wang et al. [10]. The
MUE is shown to provide estimates with a reduced bias and
mean squared error compared with the MLE, when ı is small
and positive.

5.4. Implementation of the adaptive approach
when � unknown

We assume that � is known in the calculations used to both find
our designs and report their operating characteristics. The sim-
ple mathematical formulae would not work if � were treated as
a random variable. However, in practice one will need to esti-
mate it from the data to implement any of the design proposals.
It is important therefore to verify that this estimation does not
cause a design’s true operating characteristics to differ substan-
tially from its theoretical counterpart. Figure 6 (left) shows the
expected sample size of Design’s 1 and 2 as a function of ı using
(a) theoretical calculation (i.e. using formulae from Table S1) and
(b) via simulation (incorporating estimation of � separately at
stage 1 and 2). To clarify, treatment and control group data were
simulated from equation (1) for specific values of �x , �y and n1,
but with a common value of � D 20. This defined the theo-
retical value of ı. A pooled estimate for � , O� was then obtained
from these two populations and Oı1 was estimated as .Nx � Ny/= O� .
If the trial proceeded to stage 2, � was re-estimated from the

0.0 0.2 0.4 0.6 0.8

60
80

10
0

12
0

δ

E
xp

ec
te

d 
sa

m
pl

e 
si

ze
 p

er
 a

rm

129
Fixed design

Design 1
Design 2

Theoretical result
 Via simulation (with variance estimation)

55 60 65 70 75 80 85

0.
02

5
0.

02
6

0.
02

7
0.

02
8

0.
02

9

n1

Ty
pe

 I 
er

ro
r 

ra
te

Modified LSW

Design 4

Fixed design

n=128

Nominal

level

Figure 6. Left: expected sample size of the LSW (design 1) and modified LSW (design 2) using theoretical calculation (black) and using empirical simulation (red). Right: type
I error rate inflation (above the nominal 0.025 level) when the data is used to estimate � under the modified LSW design. Design 4 highlighted in red.1

7
0

© 2014 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd. Pharmaceut. Statist. 2014, 13 163–172



J. Bowden and A. Mander

n2.z1/ additionally simulated patients in each arm in the same
manner, and used to calculate Oı2, z2 and z for equation (2). The
difference between the theoretical expected sample size and
those obtained in practice (with estimation of � ) is tiny, which is
re-assuring. The theoretical and practical power curves for these
designs are also near identical (results not shown). However, it
is of crucial importance to check that the type I error rate is not
drastically inflated (i.e. the power when ı=0).

Figure 6 (right) the theoretical and practical type I error rate of
the reverse implementation modified LSW design (with a nomi-
nal ˛-level of 0.025) as a function of the stage 1 sample size, n1.
Each point corresponds to a row (possible design) in Table II, with
the red dot corresponding to design 4. Some inflation is clearly
present. As n1 increases this inflation reduces and when n1 is
equal to 71 (design 4) the inflation is 0.0018 over the stated 2.5%
level. For a comparison we also plot the type I error rate of the
fixed design (n D 129, ˛ D 0.025) when � is estimated from the
data. Design 4 is 0.001 above this level.

In summary, there is a minimal difference in the operating
characteristics when � is estimated from the data and n1 is of a
reasonable size. It therefore seems a sensible strategy to use the
known variance assumption to identify sensible designs and, if
one so desires, to then add small perturbations to the parame-
ters in conjunction with empirical simulations until the observed
operating characteristics are acceptable. This might be efficiently
achieved by substituting threshold parameters (e.g. h,k,C) that are
close to the equivalent quantiles mapped from the t-distribution.
For example, if the maximum sample size of 192 is used under
design 4, then a value for Cmax close to t0.025,191 � 1.972 (instead
of 1.96) may be sensible first guess.

5.5. Further work

One may wish to extend the modified LSW method to allow not
only a maximum cap to be put on the future sample size (given
continuation) but also a minimum cap. This extra design facet
may be needed in practice if the study team do not wish to
halt recruitment whilst waiting for the stage outcome data to be
observed. In our motivating example, this was up to 6 months,
which is a lengthly delay. Of course, if the interim decision is
to stop the trial but further patients end up being recruited,
then methods for dealing with trial overrun must be employed.
Koyama and Chen [18] have investigated this issue for two-stage
trials with a binary response, and it would be interesting to see if
this could be generalise to the setting we have discussed.

Using the interim effect estimate to evaluate, the conditional
power has been criticised, because for a fixed ı, CPı .n2, Cjz1, n1/

is a random variable containing a substantial amount of variabil-
ity [19]. Thus, it is very important to understand the operating
characteristics of any design procedure that utilises conditional
power in this way. We have tried to do this here, for a large range
of possible values for the parameter ı. Unwanted variability in
CPı .n2, Cjz1, n1/ can be mitigated to a certain extent by restrict-
ing n1 to be greater than a minimal value. As we have seen, this
will also limit the need to correct for any type I error inflation
caused by estimating � . However, as further work, we plan to
extend the LSW approach to explicitly account for the uncertainty
in the estimation of ı and � using Bayesian and semi-Bayesian
approaches, as in Wang [20].

Multi-arm multi-stage trials—in which several active treat-
ments are sequentially tested against a standard therapy—are
becoming increasingly popular in the era of stratified medicine.

The STAMPEDE trial is a prime example [21]; it has the additional
interesting feature whereby early outcome data (on progression
free survival) is used to decide whether specific treatment arms
should remain active in the trial, whereas the final analysis of a
treatment’s effect will be based on overall survival. So far SSR has
not been considered for such designs but may offer some utility.
To apply the LSW approach, one would need to generalise it to
account for interim estimation of the primary endpoint based on
a correlated secondary endpoint. The definition of power used to
guide the calculation would also need to be carefully chosen, as
different definitions are possible when multiple hypotheses are
being tested.

Software is made available at http://www.mrc-bsu.cam.ac.uk/
Software/download.html to reproduce the set of reverse imple-
mentation LSW and modified LSW designs shown in Figure 4
and Table II respectively. This work was funded by the Medical
Research Council (grant number G0800860). The authors would
like to acknowledge the reviewers’ for their helpful comments
which greatly improved this manuscript.
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