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Abstract: Two isoforms of extracellular regulated kinase (ERK), namely ERK-1 and ERK-2,
are associated with several cellular processes, the aberration of which leads to cancer. The ERK-1/2
inhibitors are thus considered as potential agents for cancer therapy. Multitarget quantitative
structure–activity relationship (mt-QSAR) models based on the Box–Jenkins approach were developed
with a dataset containing 6400 ERK inhibitors assayed under different experimental conditions.
The first mt-QSAR linear model was built with linear discriminant analysis (LDA) and provided
information regarding the structural requirements for better activity. This linear model was also
utilised for a fragment analysis to estimate the contributions of ring fragments towards ERK inhibition.
Then, the random forest (RF) technique was employed to produce highly predictive non-linear
mt-QSAR models, which were used for screening the Asinex kinase library and identify the most
potential virtual hits. The fragment analysis results justified the selection of the hits retrieved through
such virtual screening. The latter were subsequently subjected to molecular docking and molecular
dynamics simulations to understand their possible interactions with ERK enzymes. The present work,
which utilises in-silico techniques such as multitarget chemometric modelling, fragment analysis,
virtual screening, molecular docking and dynamics, may provide important guidelines to facilitate
the discovery of novel ERK inhibitors.

Keywords: ERK inhibitors; QSAR; multi-target models; fragment analysis; virtual screening;
molecular docking; molecular dynamics; binding free energy

1. Introduction

Mitogen-activated protein (MAP) kinases regulate a large variety of biological processes such
as apoptosis, cell proliferation, motility, differentiation, mitosis, gene expression and immunity in
response to growth factors and environmental stress [1]. The MAP kinase family consists of four
major subfamilies of related proteins. Among these, the RAS/RAF/MEK/ERK signal transduction
cascade (also referred as ERK pathway) was the first to be discovered, and it was found to play a
crucial role in diverse cellular processes including cell proliferation, differentiation, migration and
survival [2]. Aberration of the extracellular regulated kinase (ERK) pathway is associated with the
prognosis of numerous human cancers including lung, kidney, ovary, colon and pancreas [3]. This
pathway is therefore considered as an important therapeutic target for cancer treatment [4,5]. Since
ERK exists at the end of this pathway to mediate various cellular processes, its inhibition should
be the most effective to abort such pathway. More significantly, mutations of upstream regulators
such as MEK or BRAF, which is frequently found to create resistance for MEK and BRAF inhibitors,
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hardly affect the activity of ERK inhibitors [6,7]. Therefore, ERK inhibitors are considered as promising
agents for cancer therapy [5,8]. In mammals, two isoforms of ERK enzyme are found and these are
ERK-1 and ERK-2, which share many but not all biological processes [8,9]. These two isoforms have
>80% sequence identity and their ATP binding sites are also conserved [10]. Moreover, these isoforms
are simultaneously activated in cellular systems and also demonstrate equivalent catalytic activity
in vitro, indicating their functional redundancy [11,12]. Nevertheless, ERK-1 competes antagonistically
with ERK-2 for MEK weakening its signalling. It is still unclear if these two isoforms have different
substrates [8]. Despite many promises, only a few ERK inhibitors have entered different stages of
clinical trials so far, thus demonstrating that the design and development of ERK inhibitors lagged
far behind in comparison with the upstream inhibitors of the ERK pathway [8,13,14]. Currently
ulixertinib (or BVD-523) is the most advanced ERK inhibitor that has depicted promising outcomes in
clinical trials for the treatment of pancreatic cancer, acute myelogenous leukaemia and non-Hodgkin
lymphoma [8,15,16]. Apart from ulixertinib, MK-8353, KO-947 and LTT-462 are in various stages of
clinical development. Most of these agents simultaneously target both ERK-1 and ERK-2 and are
referred as ERK-1/2 inhibitors [11,15,17].

Computational approaches are now considered as an integral part of the early stage of drug design
and development [18–20]. Interestingly, only a few in silico investigations on the ERK inhibitors have
been reported so far. These investigations were based on in silico methods such as 2D/3D-quantitative
structure–activity relationships (2D/3D-QSAR), molecular docking, molecular dynamics simulations,
etc [21–23]. However, these in silico investigations were performed with one of the isoforms of ERK and
the number, as well as the structural diversity of the data points considered, have been also limited. The
purpose of the present work is to develop multi-target chemometric models that may simultaneously
predict the response parameters against both ERK isoform inhibitors (i.e., ERK-1 and ERK-2 inhibitors)
under different experimental assay conditions [20,24–27]. Therefore, the scope of the proposed models
will be not limited to only one isoform of ERK. By incorporating information from diverse inhibitors
of both ERK-1 and ERK-2 assayed against multiple experimental conditions, these models attempt
to provide meaningful explanations regarding the structural or physicochemical features required
by potent ERK-1/-2 inhibitors. Furthermore, the current work also highlights important favourable
and unfavourable fragments for the design of novel ERK inhibitors. Additionally, the QSAR model
developed in the present work was utilised for virtual screening of a kinase library to obtain the most
potential virtual hits as ERK-1/2 inhibitors. Finally, molecular docking calculations and molecular
dynamics simulations were performed to confirm the results of the present drug design endeavour.

2. Results and Discussions

2.1. Linear mt-QSAR Model

A schematic representation of the workflow carried out here is presented in Figure 1. The dataset
contained 6,400 ERK inhibitors, which were assayed against at least one of two ERK isoforms (i.e.,
ERK-1 and ERK-2). Moreover, the measure of effectiveness for these dataset compounds are either
half-maximal inhibitory concentration (IC50) or binding affinity (Ki). The details of the dataset are
provided in the Supporting Information (SI, file SM1.xlsx). The rationale and methodology of the
Box–Jenkins based mt-QSAR modelling approach is described in the Materials and Methods section.
Briefly, one of the most important factors considered for such multi-target models is their experimental
elements, which are required to be decided before development of the model [27,28]. Two experimental
elements, namely bt (biological target) and me (measure of effectiveness) are considered in the present
analysis, depending on the nature of the current dataset. The bt element depends on the specific
enzyme isoform (ERK-1 or ERK-2) against which the assay is performed whereas me is based on the
type of measure of effect used for the response variable (IC50 or Ki). A combination of these two
elements (i.e., bt and me) defines a specific experimental condition, which may be expressed as an
ontology of the form cj→(bt,me). Therefore, the dataset contains some compounds which are assayed
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against more than one experimental element. In order to obtain categorical response variables IAi(cj),
any dataset compound (i) with activity (IC50/Ki) value ≤ 500 nM was assigned as active [IAi(cj) =

+1] whereas the remaining considered as inactive [IAi(cj) = −1]. Notably, from the context of drug
discovery, compounds exhibiting micromolar inhibitory potential are considered as ‘hit’ molecules [29].
The selected cut-off value, therefore, renders the developed models suitable for the selection of potent
inhibitors. At the same time, this cut-off prevents excessive imbalance between active and inactive
compounds. The software QUBILs-MAS v1.0 [30] was employed to calculate the molecular descriptors
known as the atom-based quadratic indices, which have been earlier proved to be highly efficient for
developing mt-QSAR models [27,31–35]. A detailed description of how these descriptors are calculated
is provided in the Materials and Methods section. The linear and non-linear mt-QSAR models are
developed separately with the help of genetic algorithm-linear discriminant analysis (GA-LDA) [36,37]
and random forest (RF) methods, respectively, using the QSAR-Co tool [38]. QSAR-Co [39] is an open
access Java-based tool developed by our group to facilitate the development of mt-QSAR models
resorting to the Box–Jenkins approach. Before setting up these models, the whole dataset (n = 6400)
was subjected to k-means cluster analysis (k-MCA) [40] to obtain a modelling set (n = 4481) and an
external validation set (n = 1919). The setup of both linear and non-linear QSAR models are based
solely on the modelling dataset, these being then validated with the external validation set compounds.

Figure 1. Flowchart showing the investigation performed in the current work.
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2.2. Linear Interpretable mt-QSAR-LDA Model

With the aim to develop an interpretable QSAR model, the GA-LDA technique was applied to
the modelling dataset [38]. An interpretable QSAR model contains a limited number of molecular
descriptors and these, therefore, may highlight the most significant structural and physicochemical
factors important for the variation in response parameters [41,42]. The atom-based quadratic indices
were employed to develop the linear models. For the model development, the modelling set was
randomly divided into a sub-training set (n = 3585) and a test set (n = 896), using the QSAR-Co tool.
The best linear mt-QSAR model found (a seven-variable equation) is shown below together with the
statistical parameters of the GA-LDA.

IAi(cj) = 1.653 − 0.080 D[Tnsq5(CH)_N2]me − 1.842 D[Tnsq3(CH)_MN]bt

+ 18.180 D[Tssq11(CH)_MN]me − 0.027 D[Tssq5(POL)_MX]me

+ 0.005 D[Tnsq1(PSA)_GM]me + 0.003 D[Tnsq13(VDW)_N2]bt

− 0.111 D[Tssq2(HYD)_N1]me

(1)

where n= 3585, λ= 0.397, Canonical R = 0.776, χ2 = 3302.20, D2 = 6.54, p < 10−16, and F (73,577) = 774.498.
The low Wilk’s lambda (λ) [41], the high values of the canonical R index, chi-square (χ2), and

squared Mahalanobis distance (D2), overall indicate the goodness-of-fit and statistical significance
of the developed model [42]. To go a step further and judge about the predictive power of this
mt-QSAR classification model against both the sub-training and test sets, parameters such as the
sensitivity, specificity, accuracy and the Matthews correlation coefficient (MCC) [42,43] were also
examined (see Table 1).

Table 1. Overall performance of the final multitarget quantitative structure–activity relationship
(mt-QSTR) linear discriminant analysis (LDA) model.

Classification a Sub-Training Set Test Set

NDTotal
b 3585 896

NDactive
b 1306 316

CCDactive
c 1256 310

Sensitivity(%) 96.17 98.10
NDinactive

b 2279 580
CCDinactive

c 1779 510
Specificity (%) 89.03 87.93

F-measure 0.893 0.891
Accuracy (%) 91.63 91.52

MCC 0.831 0.832
a Classification parameters, b ND: Number of datapoints, c Correctly classified datapoints.

As can be seen from Table 1, the model shows a satisfactory predictive ability as indicated by the
values of the accuracy, MCC, along with the sensitivity, specificity and the F-measure obtained for both
the sub-training and test sets [43–45]. This can also be judged by computing the area under the receiver
operating characteristic (ROC) plots [46] shown in Figure 2. Indeed, the values attained for both the
sub-training (ten-fold cross-validation) and test sets (i.e., 0.963 and 0.956, respectively), confirm once
more the acceptable predictive power of the model.
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Figure 2. Receiver operating characteristic curves for the sub-training (ten-fold cross-validation) and
the test sets.

However, the reliability of every linear classification model does not merely depend on its
predictability. Multi-collinearity, the applicability domain (AD) as well as the statistical robustness of
the models should also be critically examined before judging the overall reliability of any mt-QSAR
model [38,47]. To do so, the cross-correlation matrix of the independent variables included in the model
was examined and it is presented in Table 2. As seen, the highest Pearson correlation (r) observed
between two independent variables is 0.779. Therefore, it may be inferred that the model does not
contain highly intercorrelated descriptors and it is non-redundant in nature. Next, the Y-randomization
test [48] was performed in order to ensure that the model is not developed by chance. The average λ

value of 100 randomised models was found to be 0.998, which is considerably higher than the original
λ value obtained for the mt-QSAR model (i.e., 0.397), thus justifying its uniqueness. Finally, the AD of
the developed model was estimated by a standardisation approach as suggested by Roy et al. [49].
A hundred and sixty-five compounds of the sub-training set and thirty-eight compounds of the test
set were found outside the domain of applicability. Therefore, these compounds may be considered
as possible outliers, but even so, no compound was removed in the current work on the basis of this
AD analysis.
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Table 2. Degree of collinearity among the variables of the mt-QSAR-LDA model.

Descriptors D[Tnsq5(CH)N2]me D[Tnsq3(CH)MN]bt D[Tssq11(CH)MN]me D[Tssq5(POL)MX]me D[Tnsq1(PSA)GM]me D[Tnsq13(VDW)N2]bt D[Tnsq2(HYD)N1]bt

D[Tnsq5(CH)N2]me 1.000 −0.779 −0.613 0.225 0.218 −0.015 0.059
D[Tnsq3(CH)MN]bt −0.779 1.000 0.606 −0.092 −0.277 0.093 0.073

D[Tssq11(CH)MN]me −0.613 0.606 1.000 0.097 0.015 0.176 −0.130
D[Tssq5(POL)MX]me 0.225 −0.092 0.097 1.000 0.127 0.461 0.139
D[Tnsq1(PSA)GM]me 0.218 −0.277 0.015 0.127 1.000 0.158 −0.259
D[Tnsq13(VDW)N2]bt −0.015 0.093 0.176 0.461 0.158 1.000 0.451
D[Tnsq2(HYD)N1]me 0.059 0.073 −0.130 0.139 −0.259 0.451 1.000
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After confirming that the developed linear mt-QSAR-LDA model fulfils the criteria for being a
robust classification model, its true external predictability was determined by screening the external
validation set (n = 1919), employing the QSAR-Co tool [38]. In so doing, it was found that 775 out
of 791 active molecules and 1000 out of 1128 inactive compounds are correctly predicted by the
model, leading therefore to an accuracy of 92.50%. This along with the MCC value attained (=0.854),
implies also a satisfactory prediction ability of the model for the external validation set. Moreover,
only sixty compounds of the external validation set were found to be outside the AD of the model.
Altogether, these diverse statistics demonstrate the high internal quality as well as predictive power of
the developed mt-QSAR-LDA model. All these results pertaining to this developed mt-QSAR-LDA
model as well as its outliers are shown in SI (file SM1.xlsx).

2.3. Interpretation of Molecular Descriptors

Undoubtedly one of the major aspects of any QSAR linear model is its mechanistic
interpretation [50], since its molecular descriptors may provide key insights about the structural
requirements of a compound for having higher biological activity against one specific biological
target under a particular experimental condition. Herein, we discuss the physicochemical/structural
information of the molecular descriptors included in the linear mt-QSAR-LDA model with respect
to their relative importance, by analysing the absolute values of their standardised coefficients.
These standardised coefficients pertaining to the seven descriptors of the model are provided in
Figure 3 whereas a description of their meaning is outlined in Table 3. The relative importance of
such descriptors are as follows: D[Tnsq13(VDW)N2]bt > D[Tnsq3(CH)MN]bt > D[Tssq5(POL)MX]me >

D[Tnsq2(HYD)N1]me > D[Tnsq5(CH)N2]me > D[Tnsq1(PSA)GM]me > D[Tssq11(CH)MN]me.
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Table 3. Molecular descriptors of the mt-QSAR-LDA model and their respective definitions.

Descriptor Description

D[Tnsq13(VDW)N2]bt

Total atom-based non-stochastic quadratic index of order 13 weighted by the
van der Waals volume, modified by the Euclidean distance as mathematical

operator, and depending on the chemical structure and the target

D[Tnsq3(CH)MN]bt

Total atom-based non-stochastic quadratic index of order 3 weighted by the
charge, modified by the minimum value as mathematical operator, and

depending on the chemical structure and the target

D[Tssq5(POL)MX]me

Total atom-based stochastic quadratic index of order 5 weighted by the
polarizability, modified by the maximum value as mathematical operator,

and depending on the chemical structure and the measure of effect

D[Tnsq2(HYD)N1]me

Total atom-based non-stochastic quadratic index of order 2 weighted by the
hydrophobicity, modified by the Manhattan distance as mathematical

operator, and depending on the chemical structure and the measure of effect

D[Tnsq5(CH)N2]me

Total atom-based non-stochastic quadratic index of order 5 weighted by the
charge, modified by the Euclidean distance as mathematical operator, and

depending on the chemical structure and the measure of effect

D[Tnsq1(PSA)GM]me

Total atom-based non-stochastic quadratic index of order 1 weighted by the
polar surface area, modified by the geometric mean as mathematical

operator, and depending on the chemical structure and the measure of effect

D[Tssq11(CH)MN]me

Total atom-based stochastic quadratic index of order 11 weighted by the
charge, modified by the minimum value as mathematical operator, and

depending on the chemical structure and the measure of effect

It must be noted that the total atomic quadratic indices are calculated on the basis of the ‘topological
distance’, which is simply the number of bonds (without considering bond multiplicity) present between
any two atoms in a molecule [33,34]. Moreover, these descriptors of the model are modified from the
originally calculated descriptors based on the Box–Jenkins approach (described below). Therefore, each
descriptor is sensitive to two factors, namely: (a) Value of the core molecular descriptor, which is the
calculated total atom-based quadratic index and (b) the experimental elements. Interestingly, the two
most significant descriptors of the model are found to be sensitive to the experimental element bt (or
biological target), whereas the remaining descriptors are dependent on the element me (or measure of
effect). The most significant descriptor of the model is D[Tnsq13(VDW)N2]bt, which characterizes the
increment of van der Waals volume by considering any two atoms separated at a topological distance
equal to 13. A positive coefficient associated with this descriptor may indicate that by incrementing the
steric volume of atoms linked with a topological distance of 13 favours higher activity. The second most
important descriptor of the model is D[Tnsq3(CH)MN]bt and the negative coefficient of this descriptor
suggests that by diminishing the charge between two atoms placed at a topological distance of 3
may favour higher activity. The third most important descriptor of the model is D[Tssq5(POL)MX]me,
which also has a negative coefficient. It implies that by decreasing the polarizability between two
atoms present at a topological distance of 5 may improve the ERK inhibition activity. Like charge
and polarizability, hydrophobicity generally plays a crucial role in determining the biological profile
of drug-like compounds. D[Tnsq2(HYD)N1]me is the only descriptor that is based on the atomic
property hydrophobicity (Ghose–Crippen logP) [51] and this signifies that the hydrophobicity between
two atoms separated at a topological distance of 2 should be decreased. Interestingly, three out of
the seven descriptors of the model are based on the atomic property charge. One of these, named
D[Tnsq5(CH)N2]me is the fifth most important independent variable of the model, which thus implies
that the diminution of the charge between two atoms linked with an atomic distance of 5 favours
higher activity. The sixth most important descriptor of the model D[Tnsq1(PSA)GM]me is based on
the physicochemical property polar surface area. Notably a positive coefficient was found for this
descriptor in the model, and therefore that indicates that an increment of the polar surface area linked
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with a topological distance of 1 improves the activity. The least important descriptor of the model is
D[Tssq11(CH)MN]me, which is positively correlated with the biological activity. This thus indicates that
an increase of the charge between two atoms linked with a topological distance of 11 should be higher
in order to obtain higher inhibitory activity against ERK enzymes. Overall, it is observed that when
atoms are present at shorter distances (topological distances 1–5), their overall charge, polarizability
and hydrophobicity should be lower, but their overall polar surface area should be higher. When
the atoms are separated by longer distances (topological distances 6–15), their overall steric volume,
as well as charge, should be increased.

2.4. Quantitative Contributions of the Molecular Fragments

In this work, we utilised the built mt-QSAR-LDA model to understand the contributions of
different molecular fragments for higher/lower activity towards ERK inhibition. For this, the whole
dataset (n = 6400) was used to collect the Bemis–Murcko scaffolds [52] by using the OCHEM web
server [53]. Forty-six single ring fragments were then identified from the current dataset on the basis
of their frequencies (present in more than 15 compounds) in the dataset compounds. The molecular
descriptors of Equation (1) were then calculated for these fragments. For each fragment four different
types of experimental conditions were considered, and these are c1 (bt: ERK-1, me: IC50), c2 (bt: ERK-1,
me: Ki), c3 (bt: ERK-2, me: IC50) and c4 (bt: ERK-2, me: Ki). Notably, all these four conditions are found
in the dataset on which the LDA model was developed. A total of 184 (= 46 × 4) scores were obtained
by putting the calculated variables into Equation (1). These scores are however non-standardised, and
the following standardisation procedure was employed to obtain standardised scores. The average
and standard deviation of the non-standardised scores were calculated and each non-standardised
score is subtracted from the average score and these subtracted values were subsequently divided by
the standard deviation. These standardised scores (or confidence scores) represent the quantitative
contributions of the fragments for the inhibitory potentials of these fragments and various experimental
conditions [25–27,35,42,54]. The confidence scores obtained for four different assay conditions were
then averaged to obtained average confidence scores (ACS). Twenty-one fragments showing positive
average confidence scores are depicted in Figure 4. Fragments such as F15, F11, F21, F45, F1, F42, F46,
F7, F14 and F23 showed highly positive confidence scores (>0.70). Therefore, these fragments may be
considered for the design of novel ERK-1/2 inhibitors. Interestingly, most of the fragments showing
positive contributions are either bulky in nature or have aromaticity. Moreover, steroidal structures (F3
and F11) showed positive contributions towards higher activity. Notably in mt-QSAR-LDA model,
descriptor containing van der Waals volume (i.e., D[Tnsq13(VDW)N2]bt) was found to have the most
significant positive contribution to the increase of biological activity. Therefore, it may be inferred that
the mt-QSAR-LDA modelling results are consistent with the ones coming from the fragment analysis
since both suggest the high significance of steric groups for better activity.
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Similarly, 26 fragments with negative ACS are presented in Figure 5. As can be deduced,
fragments such as F38, F39, F37, F18, F33, F36, F4, F8, F43, F31 and F25 have significantly high negative
contributions (<−0.70). Interestingly, all alicyclic fragments (i.e., F4, F25, F27, F31, F33, F34, F36, F37,
F39, F40 and F43) demonstrated negative contributions in our analysis. These fragments mainly interact
through hydrophobic interactions (though for some fragments hydrogen bonding interactions may
take place). It matches the former interpretation of our mt-QSAR-LDA model where hydrophobicity
(obtained from specific topological distances) was found to be negatively correlated with the enzyme
inhibitory potential. As far as the aromatic rings are concerned, benzene as a single fragment (i.e., F15
and F46) or part of polycyclic rings (F7, F10, F12, F14, F24 and F35) showed positive ACS. However,
F20 is an exception. Nevertheless, for other heterocyclic aromatic rings no such definite conclusion
may be made as some of these fragments showed positive contributions whereas other fragments
depicted negative ones. This reflects the complex relationship between the enzyme inhibitory activity
and the molecules’ charge distribution just as observed in our mt-QSAR-LDA model. It is, however,
worth mentioning here that quantitative contributions of these all fragments are relative. The scores
may be altered if these are connected to other fragments. In such situation, the derived model may also
be used for the calculation of multiple ring fragments to understand their contributions. The results
pertaining to the current fragment analysis are provided in SI (file SM2.xlsx).
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2.5. Non-Linear mt-QSAR-RF Model

Following on, we applied the random forest (RF) technique [55,56] to develop a non-linear
predictive model, using the QSAR-Co tool [38]. It is often observed that when non-linear machine
learning techniques are employed with all calculated descriptors, these generate highly predictive
QSAR models, of course at the expense of lacking overall interpretability [41,42,57,58]. RF classification
models are developed by generating a forest of decision trees using the modelling set. RF models
are considered as robust as well as highly predictive. However one the major advantages of RF
over other non-linear machine learning methods is that, to a large extent, it restricts the model from
overfitting [58,59]. Here, the modelling set (n = 4481) used for developing the linear model was also
used for generating the mt-QSAR-RF model, and the statistical results of this model are depicted
in Table 4.

Table 4. Overall performance of the final mt-QSTR-random forest (RF) model.

Classification a Sub-Training Set (10-Fold CV) Test Set

NDTotal
b 3585 896

NDactive
b 1306 316

CCDactive
c 1239 304

Sensitivity(%) 94.87 96.20
NDinactive

b 2279 580
CCDinactive

c 2209 559
Specificity (%) 96.93 96.38

F-measure 0.962 0.948
Accuracy (%) 96.18 96.32

MCC 0.918 0.920
a Classification parameters, b ND: Number of datapoints, c Correctly classified datapoints.
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As seen in Table 1 as well as in Table 4, the statistical quality of the mt-QSAR-RF is considerably
higher than that of the mt-QSAR-LDA model. The RF model could correctly predict 1239 out of
1306 active compounds as well as 2209 out of 2279 inactive compounds of the sub-training set,
after ten-fold cross-validation. At the same time, 304 out of 316 active compounds and 559 out of
580 inactive compounds of the test set are correctly predicted by this model. Therefore, the RF model
afforded significantly high accuracy values of 96.18% and 96.32% for the sub-training and the test
sets, respectively. The MCC values obtained for the sub-training and test sets are 0.918 and 0.920,
respectively. Additionally, the high area values of the ROC plots calculated for both the sub-training
and test sets (0.990 and 0.987, respectively) clearly indicate that a strong correlation exists between the
observed and predicted categorical values.

In order to understand whether the external predictability of the RF model is as good as its
internal predictability, the model was used to screen the external validation set (n = 1919). The model
successfully predicted 762 out of 791 active and 1093 out of 1128 inactive compounds achieving values
for the sensitivity, specificity, accuracy and MCC of 96.33%, 96.90%, 96.70% and 0.931, respectively.
These statistical values strongly indicate the high discriminatory power of this mt-QSAR-RF model.

2.6. Virtual Screening with Kinase Database

Considering its high predictability, we applied the developed mt-QSAR-RF model to perform
a virtual screening with a focused library named Asinex Kinase Library [60], which contains
6538 compounds. The structures of all these database compounds are depicted in the Supporting
Information (file SM3.xlsx). Similar to the fragment analysis, each of these database compounds was
assigned with four different types of experimental conditions, which are c1 (bt: ERK-1, me: IC50), c2 (bt:
ERK-1, me: Ki), c3 (bt: ERK-2, me: IC50) and c4 (bt: ERK-2, me: Ki). After screening with the RF model,
only 1255 out of these 26,152 (=6538 × 4) cases were found to be predicted as active (i.e., IAi(cj) = +1).
After scrutinising these positive/active cases, we observed that only 19 compounds demonstrated
positive activity for all these four experimental conditions (i.e., c1–c4) (These results are provided in
the Supporting Information, file SM4.xlsx.). These 19 compounds (named as H1–H19) are considered
as the most potent virtual hits (for ERK inhibition) and their structures are shown in Figure 6.
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Figure 6 clearly indicates that all these top hit molecules are structurally similar to each other. Each
molecule contains four ring fragments while three-ring fragments named 5,6,7,8-tetrahydropyrido
[3,4-d]-pyrimidine, pyridine and benzene are common in all these structures. Interestingly, these
common fragments were previously analysed in Section 2.4. Therefore, all these three fragments
were also observed multiple times (>15 dataset compounds) in the dataset used for developing the
QSAR models. Both pyridine (F44, ACS:0.392) and benzene (F46, ACS:0.827) show positive ACS but
5,6,7,8-tetrahydropyrido[3,4-d]-pyrimidine (F30, ACS:−0.247) has a slight negative score. It is also
interesting to find that many of the previously analysed fragments are found in the hit molecules and
these are F42 (ACS:0.889), F41 (ASC:0.054), F38 (ASC:−0.711), F28 (ASC:−0.326) and F29 (ASC:−0.353).
H8 is the only hit molecule, one fragment of which is not analysed in fragment analysis (see Section 2.4).
Furthermore, adding all ACS values of these fragments we get an overall positive score for all other
18 virtual hits (i.e., H1–H7, H9–H19).

2.7. Molecular Docking Analysis

To understand how these 19 hit molecules may interact with the ERK enzymes, we performed
molecular docking calculations. The X-ray crystal structures of ERK-1 (PDB ID: 4QTB [61] and
ERK-2 (PDB ID: 4QTA [61]) were used separately for the docking of these 19 hit molecules. These
two protein structures were reported with a very low resolution of 1.40 and 1.45 Å, respectively.
Moreover, both these protein structures are bound with the ligand SCH772984, which apart from being
a selective inhibitor of ERK1/2, also has characteristics of both type I and type II kinase inhibitors [61,62].
SCH772984 utilises three different binding pockets (i.e., adenine mimetic pocket, ribose/phosphate
pocket and p-loop pocket) for interacting with ERK-1/2 enzymes [61]. In order to understand the
binding cavity, we performed blind docking calculations with the virtual hits using the Autodock Vina
software [63]. In this blind docking, the whole structures of the enzyme crystal structures were taken
into consideration for docking of the hit molecules. Interestingly, it was observed that all these hit
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molecules preferably bind at the binding cavity of SCH772984. The blind docking was followed by a
rigid docking experiment performed with Autodock 4.2 [64] to estimate the binding energies as well as
to understand possible interactions of these hits with the enzymes. The binding energy of the virtual
hits (H1–H19) obtained in the rigid docking is presented in Table 5.

Table 5. Autodock binding energy values of the virtual hits (H1–H19) in ERK-1 and ERK-2 enzymes.

Cpd
Rigid Docking Flexible Docking

ERK-1 (4QTB) ERK-2 (4QTA) ERK-1 (4QTB) ERK-2 (4QTA)

H1 −9.48 −10.22 −10.79 −10.87
H2 −9.64 −9.25 −10.21 −10.39
H3 −9.36 −9.7 −10.27 −9.87
H4 −8.99 −8.96 −10.74 −9.72
H5 −9.68 −10.69 −9.84 −11.23
H6 −9.63 −9.35 −10.31 −10.8
H7 −8.92 −9.03 −10.48 −10.97
H8 −9.65 −10.52 −10.83 −9.78
H9 −9.28 −9.51 −10.19 −10.21
H10 −9.63 −10.19 −10.55 −9.62
H11 −9.46 −10.12 −10.06 −10.27
H12 −9.21 −9.56 −10.51 −9.47
H13 −9.21 −9.39 −10.3 −10.63
H14 −9.24 −10.06 −10.02 −9.59
H15 −9.19 −9.51 −9.62 −10.06
H16 −9.16 −9.75 −9.92 −9.93
H17 −9.63 −10.15 −10.43 −10.54
H18 −10.07 −9.9 −10.76 −10.58
H19 −9.16 −9.24 −10.86 −11.01

Ulixertinib −8.77 −8.38 −9.97 −9.73

In rigid docking, all these hit molecules (H1–H19) showed similar binding energies against the
ERK enzyme isoforms. Moreover, these binding energies are comparable to binding energies of the
reference compound ulixertinib. The 2D docking interactions diagrams of H1 with 4QTB (ERK-1) and
4QTA (ERK-2) are presented in Figure 7.
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Notice that the 5,6,7,8-tetrahydropyrido[3,4-d]-pyrimidine residue of H1 displays a hydrogen
bond interaction with the catalytic Lys48 residue of ERK-1, as well as in a similar fashion with the
catalytic Lys45 residue of ERK-2. These catalytic lysine residues also foster π-cation interactions with the
pyridine moiety of H1. Apart from this, Tyr27 of ERK-2 and Tyr30 of ERK-1 were found to be important
residues as these establish strong π-π interactions with the 5,6,7,8-tetrahydropyrido[3,4-d]-pyrimidine
moiety of H1. Apart from these, this rigid docking confirms that a number of hydrophobic interactions
are possible between H1 and the binding site amino acids of ERK-1/2.

It is well known that kinases may adopt multiple conformations depending on the ligand structures.
ERK enzymes are not an exception since, for instance, it has been reported that the isoform ERK-2
may adopt multiple conformations depending on the nature of the ligands [65]. In both 4QTA and
4QTB, Tyr27/Tyr30 are present as ‘in’ conformations. As an example, Tyr27 of 4QTA tucks under the
glycine-rich loop. The π-π stacking interactions that are obtained between tyrosine residues (i.e., Tyr27
and Tyr30) and 5,6,7,8-tetrahydropyrido[3,4-d]-pyrimidine residues of H1 may thus appear because
of ‘in’ conformations of these tyrosine residues [61,65]. However, it was observed that Tyr27 ‘out’
conformation also exists in ERK-2 where Tyr27 on the glycine-rich loop is engaged in π-π stacking
interactions with Tyr55 of the C-α helix [65]. In addition, the polar side chains of the Lys48/Lys45
residues in ERK-1/2 are also highly flexible in nature. Therefore, in order to further elaborate the
interaction patterns of these virtual hits, flexible docking was performed with the help of Autodock
software [64]. In the flexible docking of ERK-1, flexibility was imparted to the side chains of Lys48 and
Tyr30 residues. Similarly, the Lys45 and Tyr27 were rendered flexible in the ERK-2 crystal structure.
The binding energies obtained in the flexible docking are presented in Table 5.

As compared to rigid docking, flexible docking yielded slightly higher binding energies for most of
the hits. Moreover, the binding energies of these hits are close to each other as well as with the reference
compounds ulixertinib. However, the ligand-receptor interactions obtained in flexible docking varied
considerably from the interactions obtained in rigid docking. As an example, the interaction obtained
for H1 in the flexible docking is presented in Figure 8.
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In ERK-2, H1 forms hydrogen bond interactions with binding site amino acids such as Met99,
Asp97, Lys45 and Lys105. The pyridine moiety of H1 establishes strong π-π interactions with Tyr27
whereas π-anion interactions are set up between the fluorobenzene moiety of H1 and Asp102. On the
other hand, the H1 docked pose in ERK-1 depicts hydrogen bond interactions with Met102 and Lys71.
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At the same time, the pyridine moiety of H1 undertakes π-π, π-cation as well as π-anion interactions
with Tyr30, Lys45 and Asp161, respectively. It is worth mentioning here that Tyr30 of ERK-1 and Try27
of ERK-2 are found as ‘out’ conformations in the flexible docking of these virtual hits. Therefore, it may
be inferred that the binding of these virtual hits may prefer the ‘out’ conformations of these tyrosine
residues. However, in the flexible docking of the reference compound ulixertinib, these tyrosine
residues are found as ‘out’ conformations. It is worth mentioning that this observation complies with
experimental results where ulixertinib favoured the ‘out’ conformation of Try27 in ERK-2 [65].

The fluorobenzene residue establishes halogen mediated interactions with Glu27 residue of ERK-1.
Overall, the flexible docking indicates that the binding pattern may alter considerably when the
flexibilities of binding site amino acids are taken into consideration. These results thus encouraged us
to perform a molecular dynamics (MD) simulation with selected docked complexes to understand the
dynamic behaviour of the virtual hits within the ERK enzymes.

2.8. Molecular Dynamics Analysis

We performed 10 ns molecular dynamics (MD) simulations with ERK2-H1 and ERK1-H1 complexes
obtained from the rigid docking experiments. As references, the docked poses of ulixertinib in
ERK-1 (ERK1-ULX) and ERK-2 (ERK1-ULX) obtained were also subjected to MD simulations. The
root-mean-square-deviation (RMSD) of the backbone atoms of the receptor-ligand complexes as well as
the root-mean-square-fluctuation (RMSF) plots of these protein structures are presented in SI (Figures
S1–S3). These diagrams confirm that all these complexes achieved sufficient dynamic stabilities
during the simulation. Similarly, the radius of gyration’ plots (see Figure S4 of SI) also indicates
enough compactness of these macromolecule complexes. In addition, the stability of the ligands is also
confirmed from the RMSD values of the ligands, presented in SI (Figure S5). The binding free energies
of the ligands obtained through MM-GBSA analyses are given in Table 6.

Table 6. Calculated binding free energies [∆Gbind] of the ERK-1/2 bound ligands.

Complexes ∆GBind

ERK2-H1 −33.46
ERK1-H1 −23.28

ERK2-ULX −27.44
ERK1-ULX −21.38

Note that the ERK-2 bound complexes of H1 and the reference compound (i.e., ulixertinib)
have higher binding energies (i.e., −33.46 and −27.38 kcal/mol, respectively) as compared to their
respective ERK-1 complexes (−23.28 and −21.38 kcal/mol, respectively). It is important to note here that
ulixertinib, which is an ATP competitive kinase selective inhibitor, depicts 7.5 times higher inhibitory
potential against ERK-2 (i.e., 40 pM) compared to ERK-1 (300 pM) [66]. Therefore, the binding free
energies obtained for ulixertinib in our MM-GBSA analysis are consistent with the experimental results.
Interestingly, similar binding free energy results are obtained for the H1 complexes of ERK isoforms.
That is, the binding free energy analysis shows that H1, as well as the other virtual hits identified
in this work (i.e., H2–H19), may act as potent inhibitors of ERK-1/2. An attempt has been made
to identify major residues involved in the ligand–protein interactions through per-residue energy
decomposition analysis. The per-residue energy decomposition plots of ERK1-H1 and ERK2-H2 are
provided in Figure 9.
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Such analyses reveal that the interactions of H1 with ERK-2 is favoured by residues such as
Ile22, Ala26, Tyr27, Val30, Arg61, Glu62, Ile63, Gln95, Asp97, Met99, Trp101, Arg139, Leu147 and
Cys157, whereas Lys45, Asp102, Lys105 and Lys142 are the main residues that disfavoured its binding.
Significantly, most of these interactions are predicted by molecular docking calculations (Figures 7
and 8). Complying with the binding energy results, fewer interactions are obtained when H1 is
complexed with ERK-1. Note that residues such as Leu101, Met102, Asp105, Leu109, Leu115, Leu124,
Leu150, Ile151, Trp154, Cys155, Cys160 and Asp161 favoured binding of H1 in ERK-1. At the same
time, Lys108 and Asp118 disfavoured its binding. These energy decomposition results of ERK1-H1
are more consistent with the results coming from the flexible docking rather than the ones from the
rigid docking.

For comparison and validation, the per-residue decomposition profile of ERK2-ULX complex was
also analysed and the decomposition analysis plot is presented in SI (Figure S6). As can be seen, this
plot resembles the per-residue decomposition plot of ERK2-H1 complex (Figure 9). More importantly,
most of the residues which were found to be important in the binding of ulixertinib have been earlier
reported in the ulixertinib-bound ERK-2 crystal structure (PDB:6GDQ) [65].

2.9. Assessment of Drug-Likeness

To estimate the drug-likeness of the proposed virtual hits, molecular descriptors like molecular
weight (MW), number of hydrogen bond donor (nHDon), number of hydrogen bond acceptor (nHAcc)
and lipophilicity (ALOGP) were calculated for these hits with the help of the software Dragon [67].
As seen in Table 7, the values of these physicochemical properties justify that all these hit molecules
comply with the Lipinski’s rule of five [68], which states that in order to exhibit good oral bioavailability,
a compound should have a molecular weight (MW) less than 500 Da, no more than 5 hydrogen
bond donors (nHDon), no more than 10 hydrogen bond acceptors (nHAcc) and a logarithm of the
octanol–water partition coefficient (ALOGP) less than 5.
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Table 7. Physicochemical properties of the virtual hits.

NAME MW nHDon nHAcc ALOGP

H1 457.56 2 8 4.18
H2 457.56 2 8 4.20
H3 427.48 1 9 2.16
H4 440.52 1 8 3.34
H5 442.49 2 9 3.15
H6 426.49 1 8 2.88
H7 426.49 1 8 3.31
H8 431.47 1 10 2.55
H9 429.50 1 8 3.11

H10 442.49 2 9 1.84
H11 441.51 1 9 2.53
H12 443.53 1 8 2.76
H13 429.50 1 8 3.11
H14 441.51 1 9 2.53
H15 443.53 1 8 2.76
H16 427.48 1 9 2.16
H17 426.49 1 8 2.88
H18 440.52 2 8 3.94
H19 441.51 2 9 2.79

3. Materials and Methods

3.1. Dataset Curation and Descriptor Calculation

After collecting the reported ERK-1/2 inhibitors from CHEMBL (https://www.ebi.ac.uk/chembl/),
the dataset was curated by removing duplicate data-points. The SMILES formats of the molecules
obtained from the CHEMBL were converted into SDF formats by the MarvinView v18.18.0 software
(https://docs.chemaxon.com/display/docs/MarvinView). The atom-based quadratic indices were
calculated by the software QUBIL-MAS v1.0, a freely available webserver for QSAR descriptor
calculation. These descriptors have been used in different fields of research associated with drug
discovery [25–27]. At present, the quadratic indices are calculated according to the following formalism:

Lqkx =
n∑

j=1

kai jxix j (2)

where Lqkx is the quadratic index of order k which considers the atom i and its chemical environment
with respect to its neighbour atoms at the topological distance k. The term kaij represents the
adjacency between the atoms of the molecule. The x term characterises the physicochemical
property considered for calculation of the descriptors. In this work, eight properties were considered,
namely: hydrophobicity or Ghosh Crippen logP (HYD), charge (CHR), electronegativity (E), mass (M),
polarizability (P), polar surface area (PSA), refractivity (R) and van der Waals volume (VDW). As it can
be seen from Equation (2), the quadratic indices are calculated for each atom of the molecules, and a
few different mathematical techniques may be adopted for the calculation of the total quadratic indices
(TsqxMT), these being as follows:

TsqkN1 =
n∑

i=1

Lqkx, (3)

TsqkN2 =
n∑

i=1

√
(Lqkx)2, (4)

https://www.ebi.ac.uk/chembl/
https://docs.chemaxon.com/display/docs/MarvinView
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TsqkGM = n

√√ n∏
i=1

(Lqkx), (5)

TsqkRA = Lqkxmax − Lqkxmin. (6)

In these equations, Tsqkx may either refer to the total non-stochastic quadratic index (represented
as Tnsqkx) calculated from the non-stochastic adjacency matrix. Similar strategies are adopted for
stochastic adjacency matrix-based descriptors, which are represented as Tssqkx. In Equation (3) and
Equation (4), N1 an N2 refer to the Manhattan distance and the Euclidean distances, respectively.
Equation (5) represents geometric mean (GM) based calculations of the total quadratic indices whereas
Equation (6) depicts range-based (RA) ones. The maximum (MX) and the minimum (MN) values are
used for the calculation of the later and these maximum and minimum values may also be used for the
calculation of the total quadratic indices. Here, the total quadratic indices were calculated based on N1,
N2, GM, RA, MX and MN techniques.

3.2. Box–Jenkins Approach

Although the calculated total quadratic indices characterise the chemical structures of the
compounds, these descriptors fail to incorporate the influence of the multiple experimental conditions on
chemical structure. This problem may be sorted out by the Box–Jenkins moving average approach, which
has been largely discussed previously in detail [27,28,35,38,47]. Briefly, in Box–Jenkins based mt-QSAR
modelling, the calculated descriptors (or Di) are modified to obtain deviation descriptors (∆(Di)cj),
which represent the structural attributes of the compounds as well as the experimental conditions cj.
Therefore, ∆(Di)cj allows estimating to what extent a compound may structurally deviate from a set of
compounds assigned as active and tested against the same experimental condition [34,38,54,69]. In
this work we used our recently launched QSAR-Co tool [38,39] to automatically calculate the ∆(Di)cj
descriptors with the input descriptors Di.

3.3. Model Development and Validation

The QSAR-Co tool was also used for developing the mt-QSAR models by employing both GA-LDA
and RF methods [38]. Before setting up both these models, the dataset was divided into a modelling
set and an external validation set by the k-means cluster analysis (k-MCA) technique [40] with the
help of the STATISTICA software [70] to ensure that both these sets have similar chemobiological
spaces [47]. For k-MCA, the calculated total quadratic indices (Di) and the IAi(cj) values were used for
generating 10 clusters based on the Euclidian distances from 500 iterations. From each cluster, external
validation set samples were randomly collected to build an external validation set of 1919 data samples.
It is worth mentioning here that the mt-QSAR models were developed only with the remaining 4481
samples used as the modelling dataset. Once the models are developed with the modified descriptors,
these were then used to screen the external validation set in order to estimate their true predictivity [28].
The best predictive model was selected based on the predictivity obtained for the external validation
set. For setting up the models, however, the modelling dataset was further randomly divided into a
sub-training (80% of the training data) and a test set (20% of the training data) with the help of the
QSAR-Co tool [38].

The parameter settings used for the GA-LDA technique in QSAR-Co were: (a) total number
of iteration/generation: 100, (b) equation length: 10 (fixed), (c) mutation probability: 0.3, (d) initial
number of equation generated: 100, (e) number of equation selected in each generation: 30. Similarly,
important parameter settings of QSAR-Co for RF modelling were: (a) each bag size: 100, (b) maximum
depth: 0 (unlimited), (c) number of randomly chosen features: 0 [i.e., n = int(log2(#Predictors) +

1)], (d) number of iterations: 100. It should be noted that changes in these parameter settings failed
to improve the predictivity of the modelling dataset to a considerable extent. During development
of both GA-LDA and RF models, data pre-treatment was carried out where descriptors containing
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intercorrelation (r2) of more than 0.85 and variations less than 0.001 were removed. Statistical indices
such as the Wilks’ lambda (λ), chi-squared (χ2), the square of Mahalanobis distance (D2), Fisher’s
statistic index (F) and the corresponding p-value (p) were calculated by the STATISTICA software [49]
to estimate the goodness-of-fit of the LDA model [43]. The goodness of prediction for the sub-training,
test and external validation sets was evaluated by computing the following statistical measures:
sensitivity (correct classification of the active cases), specificity (correct classification of inactive cases),
accuracy (overall correct classification), F-measure and Matthews correlation coefficient (MCC) [43,44].
Moreover, a Y-randomization test was carried out on the sub-training set by QSAR-Co to check the
uniqueness of the statistical model [47,48]. Therefore, the values of the dependent variable were
randomly scrambled 100 times, and the Wilk’s lambda (λ) of the original model was then compared
with the average Wilk’s lambda (λrand) of the randomized models. For determining the applicability
domain, the standardisation approach [49] was employed with the help of the QSAR-Co tool [38].

3.4. Molecular Docking Analysis

The X-ray crystal structures of ERK-1 (PDB:4QTB) and ERK-2 (PDB:4QTA) were obtained from the
Protein Data Bank [71,72]. The non-terminal missing amino acid residues of 4QTA were filled with the
help of Modeller package [73] in Chimera software (version 1.12, University of California, San Francisco,
CA, USA) [74]. The protonation states of amino acid residues of all these protein structures were fixed
at pH = 7.0 with the help of PropKa server [75]. The blind docking calculations of the virtual hits
were performed by the Autodock Vina tool (version 1.1.2., The Scripps Research Institure, La Jolla,
CA, USA) [63]. The protein structures were prepared by removing all water molecules and ligands.
For both protein and ligands, the partial atomic charges were assigned using the Gasteiger–Marsili
method [76]. A grid box was centred on the macromolecules with 120 Å × 120 Å × 120 Å dimensions.
The blind docking calculation was performed with an exhaustiveness value of 45. The rigid and flexible
docking experiments are performed using Autodock 4.2 (The Scripps Research Institure, La Jolla, CA,
USA) [64]. A grid map with 60 Å × 60 Å × 60 Å with a grid-point spacing of 0.375 Å were defined
from the blind docked poses. A genetic algorithm-based conformational search was performed in both
rigid and flexible dockings. However, in the rigid docking, the maximum number of evaluations was
set to 2,500,000, and this was increased to 25,000,000 for the flexible docking. Other important genetic
algorithm parameters used for docking are as follows: (a) number of runs: 10, (b) population size: 150,
(c) maximum number of generations: 27,000, (d) rate of gene mutation: 0.02, (e) rate of cross-over:
0.8 (method twopt). Default docking parameter settings found in Autodock 4.2 were used for both the
rigid and flexible docking. Analysis of the 2D ligand protein interactions was conducted using the
Discovery Studio Visualizer 2017 R2 [77].

3.5. Molecular Dynamics Simulation

We have performed molecular dynamics (MD) simulations for four different protein-ligand
complexes, i.e., ERK1-H1, ERK1-ULX, ERK2-H1 and ERK2-ULX. The initial structures of the complexes
were obtained from the results of the molecular docking simulations and placed each of them at the
centre of a three-dimensional periodic box of size 9.3 nm × 9.3 nm × 9.3 nm. Thereafter, the boxes
were filled with 25,000 water molecules, and few Na+ ions were added to naturalize the charge of
the complexes.

All the MD simulations were performed using the GROMACS-5.1.4 software package (Uppasala
University, Stockhome, Sweden) [78,79]. The GROMOS96-54a7 force filed parameters were used
for both proteins and ions, whereas the PRODRG server [80,81] was used to generate force field
parameters for the ligands. The SPC/E water model [82] was used for describing the water–water
interactions, and geometric combination rules were used to calculate cross interactions between unlike
atoms considering the recent work by Giri et al. [83–85]. Initially, the systems were optimised for
5000 steps with a time constant of 1 fs using the steepest descent algorithm. Thereafter, the systems
were equilibrated in two steps: (i) first, 100 ps in the NVT ensemble were performed to reach a stabilised
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system’s temperature at 300 K; (ii) then, the systems were equilibrated for 100 ps in NpT ensemble to
stagnate the pressure of the system at 1 bar. After completion of the equilibration steps, the systems
were simulated for 10 ns in NpT ensemble at 300 K to collect data for analysis. During this final
simulation, the leap-frog algorithm [86] with a time step of 2 fs was used to integrate the equations of
motion. The pressure of the system was controlled using the Parrinello–Rahman method [87] with a
time constant of 2 ps. We used the v-rescale coupling algorithm [88] with a time constant of 0.1 ps to
keep the system’s temperature at the intended value of 300 K. The short-range Lennard–Jones potential
and Coulombic interactions were cut off at 1 nm, and the long-range Coulombic interactions were
computed by the Particle Mesh Ewald (PME) method [89,90].

Binding free energy (∆Gbind) of the ligands was evaluated using the Molecular Mechanics Poisson
Boltzmann Surface Area (g_mmpbsa) method [91] implemented in GROMACS 5.1.4. The binding free
energy can be expressed as follows:

∆Gbind = Gcomplex −
(
Gprotein + Gligand

)
(7)

where Gcomplex is the total free energy of the complex, and Gprotein and Gligand are the total free energy of
the separately solvated protein and ligand, respectively. The free energy (Gx) of the individual species,
x, can be represented as,

Gx =< EMM > −TS+ < Gsolvation > (8)

where EMM = Ebonded + Enon−bonded = Ebonded + (Evdw + Eelec). The <EMM> is the average molecular
mechanics’ potential energy in vacuum, which is the sum of the bonded, van der Waals and electrostatic
interaction potentials. The solvation free energy, Gsolvation, can be expressed as the sum of the electrostatic
solvation free energy (Gpolar) and non-electrostatic solvation free energy (Gnon-polar). Gpolar is estimated
solving Poisson–Boltzmann equation, whereas Gnon-polar is calculated from the solvent-accessible
surface area (SASA) using the following equation,

Gnon−polar = γSASA + b (9)

where γ and b are the empirical constants.

4. Conclusions

Machine learning techniques may effectively extract crucial information from large complex
diverse datasets and are now regularly employed for the design of new therapeutic agents [19]. Taking
advantage of the ever-expanding chemical libraries and the latest advances in machine learning
techniques, potential drug-like candidates may be identified in an efficient and cost-effective way.
Machine learning-based multi-target QSAR modelling, which truly integrates the chemical library
data for simultaneous prediction of response variables under various experimental assay conditions,
have been successfully employed in the last few years to develop chemometric models against various
biological targets [27,28,33–35,38,47,50]. In this work, we developed linear and non-linear mt-QSAR
models with a large dataset containing ERK-1 and ERK-2 inhibitors. On one hand, the setup of the
mt-QSAR-LDA model provided information regarding structural requirements for higher ERK-1/2
inhibition. At the same time, it also helped to perform a fragment analysis, where the contributions of
different molecular fragments for the inhibition of ERK-1/2 were estimated. The non-linear mt-QSAR-RF
model, which was produced with an average accuracy of more than 96%, was used for screening of a
focused kinase inhibitor library to retrieve the most potential virtual hits, which were then analysed
from the aspects of fragment analysis. Finally, molecular docking and MD simulations were carried
out with these drug-like virtual hits to estimate the binding energies of these virtual hits and also
to understand their possible binding modes in ERK-1 and ERK-2 enzymes. The combination of the
different in silico techniques employed in this work can provide important guidelines to facilitate the
discovery of novel ERK-1/2 inhibitors.
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