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Spatially localized proteolysis represents an elegant means by which neuronal activity
dependent changes in synaptic structure, and thus experience dependent learning
and memory, can be achieved. In vitro and in vivo studies suggest that matrix
metalloproteinase and adamalysin activity is concentrated at the cell surface, and
emerging evidence suggests that increased peri-synaptic expression, release and/or
activation of these proteinases occurs with enhanced excitatory neurotransmission.
Synaptically expressed cell adhesion molecules (CAMs) could therefore represent
important targets for neuronal activity-dependent proteolysis. Several CAM subtypes
are expressed at the synapse, and their cleavage can influence the efficacy of synaptic
transmission through a variety of non-mutually exclusive mechanisms. In the following
review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM
shedding, including those that may be calcium dependent. We also highlight CAM
targets of activity-dependent proteolysis including neuroligin and intercellular adhesion
molecule-5 (ICAM-5). We include discussion focused on potential consequences of
synaptic CAM shedding, with an emphasis on interactions between soluble CAM
cleavage products and specific pre- and post-synaptic receptors.

Keywords: metalloproteases, MMP, adhesion, CAM, glutamate, dendritic spine

A Brief Overview of the Players: Excitatory Synapses,
Metalloproteinases, and Cell Adhesion Molecules

Excitatory Synapses in the Central Nervous System (CNS)
Changes in the number, structure, and/or function excitatory glutamatergic synapses are critical
to experience dependent plasticity (Moser et al., 1994; Kopec et al., 2006). In a simplified view,
the majority of these synapses are dipartite structures consisting of pre-synaptic axon terminals
from which transmitter is released and post-synaptic neurotransmitter receptor-bearing dendritic
spines. The latter are small protrusions of varied size and shape that emerge from the dendritic
shaft of glutamate-responsive neurons (Alvarez and Sabatini, 2007). Spines with relatively large
diameter heads or a mushroom-like morphology tend to be comparatively more stable and to have
an increased α-amino-3-hydroxy-5methyl-4-isoxazoleproprionic acid (AMPA) receptor (GluA)
number (Matsuzaki et al., 2004; Kopec et al., 2006; Bourne andHarris, 2007; Matsuzaki, 2007; Kasai
et al., 2010). Importantly, neuronal activity dependent spine head enlargement, with a concomitant
increase in synaptic incorporation of GluAs, is thought to underlie lasting enhancement of synaptic
transmission or long-term potentiation (LTP). In a more complex view, glutamatergic synapses can
be appreciated as multipartite sites in which glial cell processes approximate pre- and post-synaptic
contact sites. Glial cells, or their soluble products, may thus modulate the structural and functional
dynamics of neurotransmission (Dityatev and Rusakov, 2011).
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Metalloproteinases in the CNS
Metzincin proteases are zinc-dependent endopeptidases that
include cell-secreted matrix metalloproteinases (MMPs) and
transmembrane spanning adamalysins [a disintegrin and
metalloproteinase (ADAMs)]. These proteases are increasingly
appreciated as important effectors of brain function [reviewed
in Rivera et al. (2010), Huntley (2012), Sonderegger and
Matsumoto-Miyai (2014)]. Though a variety of MMPs
and ADAMs are expressed in man, including more than
23 MMPs identified to date (Page-McCaw et al., 2007),
it should be noted that a select subset is likely relevant
to physiological and pathological CNS plasticity. Family
members with well-described expression in neurons, astrocytes,
or microglia include MMP-1, MMP-2, MMP-3, MMP-7,
MMP-9, MMP-12, MMP-13, MMP-14, and a disintegrin and
metalloproteinase-10 (ADAM-10; Yong et al., 2001; Van Hove
et al., 2012a).

The cell regulates overall activity of specific MMP and
ADAM family members at several levels including that of gene
expression. At the transcriptional level, activator protein 1 (AP-
1) and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) increase the expression of varied family members
such as MMP-9 (Ganguly et al., 2013; see also Table 1 of
Berry et al., 2013 for more on transcription factors and select
MMPs). In contrast the transcription factor Yin Yang 1 (YY1)
directs histone modification to strongly repress transcription of
MMP-9 (Rylski et al., 2008). While less is known about the
regulation of ADAM family member expression, we do know
that the promoter for ADAM10 contains several transcription
factor binding-sites including a retinoic acid-responsive element
where retinoic acid receptors and retinoic X receptors can
bind and thereby activate gene expression (Prinzen et al., 2005;
Tippmann et al., 2009). Retinoic acid receptors are present
in synaptoneurosomes and dendrites and contribute to select
forms of synaptic plasticity (Aoto et al., 2008; Groth and Tsien,
2008).

Post-translational regulation of MMPs and ADAMs is also
important with respect to enzymatic activity. Since MMPs
typically act on extracellular substrates, release mechanisms
represent a potentially important point of control. In a study
that activated fibrosarcoma cells with phorbol myristate acetate
(PMA), it was shown that subsequent release of MMP-2 and -9
is soluble NSF attachment protein receptor (SNARE) dependent
(Kean et al., 2009). The SNARE protein family is critical for
calcium-dependent vesicular fusion and release from neurons
(Gerber and Sudhof, 2002; Sudhof, 2013). Since neuronal
activity can increase intracellular calcium through mechanisms
including activation of voltage gated calcium channels, it is
tempting to speculate that calcium-dependent MMP release
could be facilitated with the same. Of interest, MMP-2 and
MMP-9 containing vesicles are observed in the somatodendritic
compartment and found in dendritic spines (Sbai et al., 2008;
Wilczynski et al., 2008). Moreover, stimuli that may increase
intra-neuronal calcium and can induce LTP, can also evoke local
MMP-9 release (Wang et al., 2008).

With respect to transmembrane spanning ADAMs,
localization is also regulated. For example, ADAM10 and

ADAM17 are mainly associated with the endoplasmic reticulum
(ER) and Golgi apparatus, with little protein present at the
plasma membrane (Schlondorff et al., 2000; Gutwein et al., 2003).
ADAM10 contains an ER retention signal at its C-terminus,
suggesting that unidentified proteins are required for the ER exit
and transport of this protease to the plasma membrane (Marcello
et al., 2010, 2012). The binding of tetraspanins to ADAM10 (Xu
et al., 2009; Prox et al., 2012) can promote ADAM10 exit from
the ER. Synapse-associated protein-97 (SAP-97), a cargo protein
involved in protein trafficking at excitatory synapses, can bind
to proline-rich sequences in the cytosolic domain of ADAM10
(Marcello et al., 2012). N-methyl-D-aspartate receptor (GluN)
activation has been shown to affect phosphorylation of SAP97, as
well as the transport of ADAM10 from Golgi outposts to synaptic
membranes (Saraceno et al., 2014).

The activation of appropriately localized proteases represents
an additional point of control. In the case of MMPs, this
is typically achieved following release from the cell through
cleavage of the pro-domain by other metalloproteinases or
plasmin (Nagase et al., 1990). Cleavage of the pro-domain
disrupts a critical Cys-Zn2+ interaction that otherwise blocks
substrate processing (Van Wart and Birkedal-Hansen, 1990).
Non-proteolytic activation of MMPs, however, also occurs. For
example, nitration or oxidation may alter tertiary structure
to activate pro-forms (Gu et al., 2002). Though less well-
studied, MMPs may also be active within the cell (Wang et al.,
2002).

Finally, MMP activity can be quenched by processes including
low density lipoprotein receptor dependent internalization
(Hahn-Dantona et al., 2001), and non-covalent interactions
with endogenous tissue inhibitors of metalloproteinases (TIMPs;
Gardner and Ghorpade, 2003; Visse and Nagase, 2003; Brew and
Nagase, 2010).

In terms of brain plasticity related mechanisms that impact
MMP expression, release and/or activity, several stimuli or
stressors have been studied (see Table 1 for a partial summary).
These include seizure activity (Zhang et al., 1998; Szklarczyk et al.,
2002), cytokines (Khuth et al., 2001; Ogier et al., 2005; Ben-Hur
et al., 2006), neurotrophins (Kuzniewska et al., 2013), chronic
stress (van der Kooij et al., 2014), spatial learning (Wright et al.,
2003; Meighan et al., 2006), head trauma (Phillips and Reeves,
2001; Kim et al., 2005), cocaine (Brown et al., 2008; Smith et al.,
2014), methamphetamine (Liu et al., 2008), modafinil (He et al.,
2011), ischemia (Planas et al., 2001; Rivera et al., 2002), and
viral infection of the central nervous system (CNS; Conant et al.,
1999; Johnston et al., 2002; Patrick et al., 2002; Zhang et al.,
2003). Upregulation of MMP-9 mRNA and enzymatic activity
has also been documented in response to neuronal depolarization
by KCl (Von Gertten et al., 2003) and kainate (Szklarczyk et al.,
2002; Konopacki et al., 2007; Wilczynski et al., 2008; Rylski
et al., 2009). MMP-9 levels are increased with LTP (Nagy et al.,
2006), and MMP-9 mRNA can be transported to dendrites
to undergo local translation and protein release following
glutamate stimulation (Dziembowska et al., 2012). Brain-derived
neurotrophin factor (BDNF) also upregulates MMP-9 at the
mRNA, protein, and enzymatic activity level in dendrites. This
process requires engagement of TrkB receptors with subsequent
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TABLE 1 | Stimuli and stressors linked to altered MMP levels in the CNS.

Effector(s) MP(s) Regional focus Model system Findings and/or biological relevance Reference

Seizure induction with
kainate

MMP-2
and -9

Hippocampus, striatum,
diencephalon, midbrain, frontal
cortex, and cerebellum

Rat (1) Increased MMP-2 and -9 activity
(2) Increased GFAP immunoreactivity in
hippocampus and frontal cortex

Zhang et al. (1998),
Szklarczyk et al.
(2002)

Hippocampal dependent
learning and memory
(Morris water maze)

MMP-3
and -9

Hippocampus and prefrontal
cortex

Rat (1) Increased MMP-3 and -9 protein Wright et al. (2003),
Meighan et al.
(2006)

Chronic stress MMP-9 CA1 region of hippocampus Rat (1) Increased MMP-9
(2) Reductions in Nectin-3

van der Kooij et al.
(2014)

Traumatic brain injury MMP-3 Hippocampus Rat (1) Astrocyte-derived MMP-3 levels and
activity increase 7 days after induction of
traumatic brain injury

Kim et al. (2005)

Ischemia MMP-2
and
MMP-9

Hippocampus, lateral cortex,
and striatum

Rat (1) MMP-9 levels increase at 4 h post injury
(2) MMP-2 levels peak at 4 days post
injury, which corresponds with an increase
in reactive microglia and macrophage
infiltration

Planas et al. (2001),
Rivera et al. (2002)

Viral infection MMP-2
and -9

Cerebral spinal fluid (CSF) Human
(cerebrospinal
fluid)

Damage to the blood–brain barrier (BBB)
may facilitate the CNS ingress of
monocytes that mediate brain injury. Select
MMPs, such as MMP-2 and -9, can
reduce BBB integrity

Conant et al. (1999)

Psychostimulants
(methamphetamine,
cocaine, and modafinil)

MMP-9 Hippocampus, medial prefrontal
cortex

Rat Data suggest that MMP-9 expression may
be involved in the addiction phenotype
and/or remodeling of the nervous system

Brown et al. (2008),
Liu et al. (2008), He
et al. (2011)

activation of extracellular signal-regulated kinase 1/2 (ERK1/2)
and binding of c-Fos to the proximal MMP-9 promoter region
(Kuzniewska et al., 2013). In contrast, MMP gene expression
can be suppressed by factors including TGF-β, the anesthetic
propofol (Zhang et al., 2013), retinoic acid (Osteen et al., 1996;
Li et al., 2011; Ye et al., 2011), or sleep deprivation (Taishi et al.,
2001).

While a wide variety of studies have examined MMP and
ADAM expression in brain or brain-derived cell cultures as
a function of specific stimuli, CNS changes have also been
examined in a limited number of mutant mouse models.
A summary of results from studies using this approach is shown
in Table 2.

CAMs in the CNS
Cell adhesion molecules represent transmembrane adhesion
molecules expressed at cell contact sites including the synapse.
These molecules typically belong to one of several superfamilies
which include cadherins, neurexins/neuroligins, and Ig-domain
containing members [reviewed in Benson and Huntley (2012)].
CAMs can mediate stable cell–cell junctions and select family
members also play a role in the initiation of synapse formation.
Cell surface levels of these molecules, as well as adhesive contact
strength, are modified by processes including clathrin-dependent
endocytosis (Kamiguchi and Lemmon, 2000). In addition, varied
transmembrane CAMs have important intracellular interactions.
For example, while integrin cytoplasmic tails do not possess
endogenous kinase activity, they interact with critical effectors
of intracellular protein phosphorylation cascades (Clark and
Brugge, 1995). Finally, through cis-interactions, transmembrane

CAMs may influence the localization of synaptic proteins. As a
potential example,N-cadherin, GluN1 and L1 are found together
in large multiprotein complexes (Husi et al., 2000) suggesting that
GluN may be part of a membrane adhesion complex (Sheng and
Lee, 2000).

Accumulating evidence demonstrates that disrupted CAM
expression can influence experience dependent plasticity. For
example, ablation of N-cadherin from excitatory forebrain
synapses of post-natal mice is associated with an alteration
in the composition of glutamatergic synapses, so that levels
of the GluA1 subunit and PSD95 are diminished (Nikitczuk
et al., 2014). Earlier work by the same group has shown that
a conditional N-cadherin knockout causes a reduction in the
maintenance, but not induction, of LTP (Bozdagi et al., 2010).
These studies are of particular relevance in that conditional
ablation of N-cadherin addresses potential confounds that
might be associated with knockout effects on early brain
development.

Neuron-specific deletion of dystroglycan, a transmembrane
protein that links extracellular matrix and the cytoskeleton,
also reduces LTP. Specifically, neuron-specific deletion
of this protein is associated with a blunting of high
frequency stimulation (HFS) induced LTP at CA3–CA1
synapses (Satz et al., 2010). Dystroglycan is expressed by
varied cell types including glia, and glial expression of the
molecule is involved in forebrain development (Satz et al.,
2010).

A number of studies have also investigated LTP in mice that
lack specific Ig-domain CAM family members [comprehensively
reviewed in Dityatev et al. (2008)]. Neural cell adhesion molecule
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TABLE 2 | Altered neuronal migration and/or plasticity in mutant mouse models.

Animal model Regional focus Results Reference

MMP-3 knock out mouse Cerebellum (1) Increased size of the external granular layer (EGL) and enhanced
granule progenitor cell proliferation at post-natal days 8–12
(2) Delayed migration of granule cells to the EGL
(3) Decreased length and complexity of Purkinje cells at post-natal day 12

Van Hove et al. (2012b)

MMP-3 knock-out mouse Visual cortex (layer V) (1) Decreased dendritic length and increased number of apical oblique
dendrites in pyramidal neurons

Aerts et al. (2014)

MMP-9 overexpressing rat Hippocampus (1) Increased length of dendritic spines in CA1 Michaluk et al. (2011)

MMP-9 knock-out mouse Cerebellum (1) Increased granule precursor cell number and decreased apoptosis in
the external granular layer at post-natal day 12

Vaillant et al. (2003)

MMP-9 knock-out mouse Hippocampus (slices) (1) Impaired magnitude and duration of LTP Nagy et al. (2006)

MMP-2/-9 double knock-out
mouse

Nucleus accumbens (1) Decreased sensitization and reward behavior following
methamphetamine (2 mg/kg) administration

Mizoguchi et al. (2007b)

MMP-2 and MMP-9 single knock
out mice (observed in both)

Cerebral cortex (1) Increased number of cell in cerebral-cortical layers 2–3
(2) Altered ICAM-5 and L1CAM levels as a function of age

Tian et al. (2007)

ADAM-10 knock-out mouse Hippocampus (1) Decreased neural progenitor cell number with increased differentiation
toward the neuronal lineage
(2) Impaired performance on a hippocampal-dependent test of memory

Zhuang et al. (2015)

MMP-9/-12 double knockout Corpus callosum (1) Decreased myelination at post-natal day 7
(2) Decreased oligodendroglial cell number at post-natal day 10

Larsen et al. (2006)

(NCAM) is a homophilic binding protein that is expressed on the
surface of neurons and glia and has been implicated in neurite
outgrowth and synaptic plasticity. Indeed, NCAM-deficient mice
show impaired LTP in area CA3 (Cremer et al., 1998), and
impaired LTP in NCAM knockouts can be rescued by increasing
GluN dependent glutamate transmission (Kochlamazashvili
et al., 2012). In related work, Cremer et al. (1998) studied
mice with a targeted deletion of a polysialyltransferase that
attaches polysialic acid (PSA) to NCAM, and that is expressed
predominantly in post-natal life (Eckhardt et al., 2000). These
animals were shown to have lower post-natal levels of PSA
in the brain as well as impaired LTP in CA1 that is evident
by 4 weeks of age. Mice that are deficient in ICAM-5, an
additional Ig-domain family member expressed on excitatory
neurons of the telencephalon (Oka et al., 1990; Benson et al.,
1998), also show changes in glutamatergic synapses. These
animals show an increase in the dendritic spine/filopodia ratio
at P7, suggesting that full length ICAM-5 may delay spine
maturation (Matsuno et al., 2006). Though full length ICAM-
5 is gradually excluded from spines during their developmental
maturation, it remains in approximately 60 percent of spines
in adult hippocampal neurons (Sakurai et al., 1998; Matsuno
et al., 2006). An antibody directed against ICAM-5, which
would presumably disrupt adhesive interactions important to
filopodial maintenance, inhibits LTP in rat hippocampus (Sakurai
et al., 1998). In mouse hippocampus, however, LTP is relatively
increased in an ICAM-5 null animal (Nakamura et al., 2001).
Though confounds include antibody specificity, as well as
developmental and compensatory effects in the knockout, results
are of interest with respect to ICAM-5 as a potential modulator
of glutamatergic function.

Specific neuroligin family members have also been
investigated with respect to glutamatergic transmission. These
are cell adhesion proteins on the post-synaptic membrane that
mediate the formation and maintenance of synapses between

neurons. Neuroligins act as ligands for β-Neurexins, which are
located on the presynaptic membrane. Of particular interest is a
study of an autism-associated point mutation in the neuroligin
tail that was evaluated following generation of a knock-in mouse
(Etherton et al., 2011). Whole-cell voltage-clamp recordings in
hippocampal CA1 pyramidal neurons from the knock-in showed
a decrease in mini excitatory post-synaptic current (mEPSC)
frequency but not amplitude. Changes in GluA receptor subunit
composition or presynaptic release possibility were excluded by
additional studies, and it was suggested that the neuroligin-3
cytoplasmic tail modulates recruitment of GluAs to post-synaptic
sites of excitatory synapses (Etherton et al., 2011).

In addition to in vitro and animal model based studies,
human genetic studies are consistent with an important role
for CAMs in neuroplasticity. Mutations in contactin-associated
protein 2, which may promote neuronal circuit assembly during
development (Anderson et al., 2012), predispose to autism.
Moreover, polymorphisms in CAMs including cadherin 13
(Johnson et al., 2008; Uhl et al., 2014) are associated with
addiction risk.

Synaptic CAMs: Perfectly Poised
Substrates for Neuronal Activity
Dependent Cleavage

Though a role for CAMs in processes such as LTP could be
in whole or large part secondary to the function of full-length
molecules, it should also be considered that synaptically localized
CAMs represent especially attractive targets for neuronal
activity dependent proteolysis. CAM cleavage could disrupt
stable interactions with exogenous CAM ligands and/or cause
additional effects, including generation of bioactive or dominant
negative receptor fragments. Varied CAMs are expressed at
synaptic contacts including N-cadherin, L1-CAM, ICAM-5,
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DSCAM, syndecan 2, syncam 2, and neuroligin (Benson et al.,
1998; Peixoto et al., 2012; Sonderegger and Matsumoto-Miyai,
2014), and activity-dependent, membrane-proximal cleavage
of these molecules is supported by in vitro studies that
have demonstrated juxtamembrane shedding for specific family
members (Peixoto et al., 2012; Sonderegger and Matsumoto-
Miyai, 2014). Data from analysis of cerebrospinal spinal fluid
samples also supports shedding of CAMs (Strekalova et al., 2006).
In this case, shed CAMs likely access the interstitial space from
where they in turn gain access to CSF. In one study, an increase
in levels of soluble ICAM-5 ectodomain was detected in the CSF
of patients with epilepsy and/or infection (Lindsberg et al., 2002;
Tian et al., 2008). In related work, N terminal sequencing of
NCAM fragments from the CSF of patients with schizophrenia
was performed and a disease-associated increase in levels of
ectodomain fragments observed (Vawter et al., 2001).

Regulated cleavage of synaptic CAMs can influence
glutamatergic transmission through several non-mutually
exclusive mechanisms including reduced synaptic stability,
conversion of N-terminal CAM ectodomains into soluble
effectors of plasticity, and increased generation of intracellular
domains (ICDs) that influence transcription. With respect to
ICD generation, it should be noted that ectodomain shedding
of CAMs is frequently followed by intramembranous gamma
secretase cleavage to generate specific C terminal fragments
[reviewed in Jordan and Kreutz (2009)].

Activity Dependent Cleavage of Neuroligin and
N-Cadherin
Though it has been suggested that ectodomain shedding is highly
regulated with only 2% of cell surface proteins released by this
process (Hayashida et al., 2010), emerging evidence suggests
that neuronal activity dependent CAM shedding represents an
important mechanism by which synaptic structure and function
are modulated. For example, neuronal activity dependent
cleavage of neuroligin-1 is triggered by GluN activation and
dependent on MMP or ADAM activity (Peixoto et al., 2012;
Suzuki et al., 2012). It occurs in a membrane proximal location
and results in destabilization of neuroligin-1’s presynaptic
partner, neurexin-1β. Destabilization of neurexin is in turn
thought to reduce the probability of presynatic neurotransmitter
release (Peixoto et al., 2012).

GluN agonists, as well as ADAM and MMP family members
that are regulated in a neuronal activity dependent manner,
have also been linked to N-cadherin shedding (Reiss et al.,
2005; Uemura et al., 2007; Williams et al., 2010; Paudel et al.,
2013; Porlan et al., 2014). One of many potential sequelae
of this event is the associated generation of a C terminal
fragment which is quickly processed by gamma secretase to
generate a smaller intracellular fragment that destabilizes a
protein critical for CREB dependent transcription (Marambaud
et al., 2003).

Activity Dependent Cleavage of Ig-domain
CAMs
In work related to a potential role of ICAM-5 shedding in
developmental plasticity, it has been shown that long term

treatment (16 h) of DIV 14 hippocampal neurons with 5 μM
NMDA or AMPA stimulated an MMP-dependent increase
in supernatant levels of shed ICAM-5. ICAM-5 is expressed
on dendritic elements of excitatory/spiny neurons in the
telenchephalon (Benson et al., 1998). Since full length ICAM-
5 may be a negative regulator of filopodia-to-spine transition
(Matsuno et al., 2006), these findings are consistent with the
possibility that ICAM-5 shedding contributes to developmental
spine maturation.

Studies related to the possibility that ICAM-5 cleavage may
occur in a relatively rapid manner to influence activity dependent
glutamatergic transmission in the adult CNS have also been
performed. NMDA stimulation of cultured hippocampal neurons
and high frequency tetanic stimulation of hippocampal slices
have both been linked to relatively rapidMMP-dependent ICAM-
5 shedding (Conant et al., 2010b). In cultured cells, appreciable
release of soluble ICAM-5 into culture supernatants can be
detected within 5 min of NMDA exposure (Conant et al.,
2010b).

Additional studies have examined neuronal activity dependent
cleavage of nectin-1, an Ig-like adhesion molecule expressed at
puncta adherentia junctions in the CA3 pyramidal region of adult
mouse hippocampus (Lim et al., 2012). Of interest, in vitro over-
expression of cleavage resistant mutants of nectin 1 is associated
with an increase in the density of dendritic spines (Lim et al.,
2012). One possibility is that cleavage resistant mutants might
lead to an increase in the stability of spines.

Elegant work on a related adhesion molecule, demonstrated
enhanced MMP-9 dependent cleavage of nectin-3 in perisynaptic
CA1 in the setting of chronic stress (van der Kooij et al., 2014).
Intriguingly, inhibition of MMP-9 activity or GluN activation led
to a reduction chronic stress related behavioral alterations.

IgLON family members, abundant GPI anchored
transmembrane proteins, are also processed in a
metalloproteinase dependent manner. The IgLON family is
a subgroup of the immunoglobulin superfamily cell adhesion
molecules (CAMs) and composed of limbic system-associated
protein (LAMP), opioid binding cell adhesion molecule
(OBCAM), neurotrimin (NTM) and Kilon. Long term treatment
of hippocampal neurons with a broad spectrum MMP inhibitor
and subsequent pull down of surface proteins demonstrated
that inhibitor-treated neurons show increased levels of specific
IgLON family members including NTM (Sanz et al., 2014).

Glutamate and MMP dependent shedding of synaptic cell
adhesion molecule 2 (SynCAM-2) has also been described (Bajor
et al., 2012), which is of interest given the role of this molecule
in synapse organization and function (Biederer et al., 2002; Fogel
et al., 2007).

Emerging and Future Studies of Neuronal
Activity Dependent CAM Cleavage
Matrix metalloproteinases and ADAMs can also act on a variety
of less traditional CAMs including nerve-glia antigen 2 (NG2),
β-dystroglycan, and amyloid precursor protein (APP) and netrin-
G ligand-3 (Ahmad et al., 2006; Michaluk et al., 2007; Lee et al.,
2014; Sakry et al., 2014). There is evidence that these molecules
are shed in a neuronal activity-dependent manner, and that they
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play a role in developmental and/or adult plasticity. For example,
recent work suggests that glutamatergic transmission is altered in
NG2 knockout animals (Sakry et al., 2014). Future studies will be
necessary to further explore mechanisms by which shedding of
these proteins can influence plasticity.

Future studies will also be necessary address issues related to
shedding of dimers versus monomers, as well as issues of whether
single nucleotide polymorphisms (SNPs) influence shedding.
Results from recent work suggest that ADAM dependent
shedding of neuregulin-1 requires prior dimerization (Hartmann
et al., 2015), and analysis of soluble ICAM-1 in pleural fluid
suggests that this molecule may also be shed as a dimer (Melis
et al., 2003).

Future studies could additionally explore the question of
whether post-translational modifications such as glycosylation
can influence the cleavage and/or bioactivity of protease-
generated CAM fragments. And finally, unbiased proteomics
could be utilized to examine interactions between shed CAMs
and other proteins in the background of select physiological and
pathological processes.

Metalloproteinases and Synaptic
Transmission

Despite their ability to stimulate effects that could both enhance
or depress neurotransmission, the majority of studies support
a view in which non-pathological neuronal activity stimulates
an MMP dependent enhancement of long term memory and its
correlates. For example, several groups have demonstrated that
MMP inhibitors reduce LTP stimulated by HFS and/or theta
burst stimulation (TBS; Nagy et al., 2006; Meighan et al., 2007;
Conant et al., 2010b). Inhibition of MMP activity also reduces
chemical LTP (cLTP) associated increases in the firing rate and
bursting of dissociated cultures of primary hippocampal neurons
(Niedringhaus et al., 2012).

Consistent with their effects on hippocampal LTP, varied
biochemical and behavioral studies support a role for MMPs in
hippocampal dependent learning and/or memory. For example,
knockout of MMP-9 impairs contextual fear conditioning (Nagy
et al., 2007). Interestingly, in wild-type animals contextual fear
conditioning increases hippocampal MMP-9 protein levels as
well as MMP-9 dependent cleavage of dystroglycan (Ganguly
et al., 2013). These data suggest that MMP-9 plays a role in
hippocampal memory association and/or retention. It has also
been shown that hippocampal MMP-3 and -9 mRNA levels
are increased with Morris water maze (MWM) training, as are
levels of active MMP-3 and -9 protein (Meighan et al., 2006).
Moreover, treatment with the non-competitive GluN antagonist,
MK801, reduces training-associated increases in specific MMP
levels, as well as post-training performance assessed by latency to
reach platform. Intra-hippocampal or intra-cerebral ventricular
injection of a broad-spectrum chemical MMP inhibitor, as
compared to artificial CSF control injection, can also reduce
time spent in the target quadrant during the MWM probe trial
(Meighan et al., 2006). Of interest with respect to anesthetic-
modulation of learning andmemory, it has been shown that while

MWM training can induce a gradual increase in pro- and active-
MMP-9, propofol can reduce this increase and also disrupt spatial
memory retention 24 h after training (Zhang et al., 2013). In
contrast, the wake promoting agent modafinil increases MMP-9
expression in dorsal hippocampal CA3 in a model of REM sleep
deprivation (He et al., 2011). In this same model, modafinil
increases synapsin 1 expression in an MMP-9 dependent
manner. In addiction-related plasticity work, it has been shown
that context dependent learning of nicotine induced conditioned
place preference (CPP) is associated with an increase in
hippocampal MMP-2, -3, and -9 expression, and that exposure to
a chemical MMP inhibitor during nicotine induced CPP training
can block CPP acquisition (Natarajan et al., 2013). In addition,
methamphetamine-induced behavioral sensitization is reduced
in mice lacking MMP-2 or MMP-9 (Mizoguchi et al., 2007b).

Matrix metalloproteinase activity can also contribute to
enhanced glutamatergic transmission in regions including
striatum and amygdala. For example, a chemical MMP inhibitor
can disrupt reconsolidation of a fear memory associated with
a conditioned stimulus that is independent of contextual cues
(Brown et al., 2009). In studies with MMP-9 null mice,
Kaczmarek and colleagues have shown that MMP activity in
the central amygdala is required for appetitive but not aversive
learning (Knapska et al., 2013). In recent work related to
cocaine and MMP levels in nucleus accumbens core, an increase
in gelatinase activity as detected by in situ zymography was
detected along neuronal soma and dendrites (Smith et al.,
2014). AMPA/NMDA ratios were also increased in medium
spiny neurons in cocaine extinguished rats and further increased
by cue-induced reinstatement, in an MMP dependent manner.
MSNs also showed MMP dependent changes in MSN spine head
diameter and/or number in cocaine extinguished and reinstated
animals (Smith et al., 2014).

Mechanisms by which MMPs Influence
Neurotransmission; A Focus on CAM
Cleavage as a Means to Generate
Integrin-Binding Ligands

In terms of the mechanisms by which MMPs modulate actin
and spine dynamics to enhance glutamatergic transmission, it
should be noted that despite their potential to act on varied
substrates such as proneurotrophins (Lee et al., 2001), evidence
suggests that their ability to enhance LTP is β1 integrin dependent
(Nagy et al., 2006; Meighan et al., 2007). Since changes in the
number and size of dendritic spines are thought to underlie
LTP, Huntley and colleagues (Wang et al., 2008) also monitored
spine size and EPSPs simultaneously in hippocampal neurons
with combined 2-photon time-lapse imaging and whole-cell
recordings. These investigators observed that persistent spine
enlargement and synaptic potentiation required both MMP
activity and β1 integrins (Wang et al., 2008). In related
studies, we have previously shown that a β1 integrin blocking
antibody prevents cLTP associated increases in the overall
firing rate of hippocampal-derived neurons (Niedringhaus et al.,
2012).
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Integrin signaling, and signaling through β1 containing
integrins in particular, has been well-associated with changes
in dendritic and spine actin dynamics (Huang et al., 2006;
Shi and Ethell, 2006). The majority of hippocampal integrin
heterodimers contain a β1 subunit (Pinkstaff et al., 1998; Chan
et al., 2006; Huntley, 2012). In addition, β1 integrins are expressed
on dendrites (Mortillo et al., 2012) and implicated in the
regulation of post-natal dendritic arbor and synapse density
(Warren et al., 2012). Antagonism of β1 integrin signaling by
function blocking antibodies or GRGDS peptide administration
is associated with a decay of LTP, and hippocampal infusion of
function blocking antibodies to β1 blocks formation of long-
term object location memory (Babayan et al., 2012). Integrin
like kinase is also involved in the induction and maintenance
of cocaine sensitization, and its silencing prevents sensitization-
associated serine-845 phosphorylation of GluA1 (Chen et al.,
2010). Though a role for integrin signaling has been implicated
in potentiated synaptic activity (Bernard-Trifilo et al., 2005;
Nagy et al., 2006; Meighan et al., 2007), the identity of
physiologically relevant ligands and important mechanisms
by which these ligands are generated has yet to be fully
explored.

Recent work is consistent with the possibility that MMP-
dependent CAM shedding represents a potential mechanism by
which excitatory transmission generates integrin-binding
ligands. As opposed to larger ECM components, CAM
ectodomains may be relatively soluble. Indeed, previous
studies have shown that cleavage of relatively large molecules
does not necessarily disrupt three dimensional integrity of
the same (Huganir and Racker, 1980). Numerous studies,
including those that have demonstrated the integrity of CAM
N-terminal fragments in spinal fluid and tissue, support the
concept of ectodomain solubility and stability (Lindsberg et al.,
2002).

Cell adhesion molecule ectodomains are known to possess
integrin-binding motifs and indeed stable CAM/integrin
interactions have been described (Conant et al., 2010a; Kelly
et al., 2013; Ning et al., 2013). CAM ectodomains can also
stimulate integrin dependent signaling. For example, shedding
of the L1 adhesion molecule has been shown to stimulate
integrin dependent cell migration (Mechtersheimer et al.,
2001). In addition, we have observed that soluble ICAM-5
can stimulate a β1 dependent increase in action potential
frequency in cultured hippocampal neurons (Niedringhaus
et al., 2012). We also observe co-immunoprecipiation of
both full length and shed N terminal ICAM-5 with β1 in
hippocampal lystates from methamphetamine challenged
mice, suggesting that the shed ectodomain may interact with
β1 in vivo (Conant et al., 2010a). NCAM and NG2 can also
interact with integrins, and though not yet tested for effects
on integrin-dependent neurotransmission, dorsal hippocampal
injection of PSA-NCAM has been shown to partially restore
impaired contextual memory in NCAM deficient mice (Senkov
et al., 2006). Of interest, mice that overexpress the NCAM
ectodomain show memory impairments that are similar to
those observed in the knockout (Pillai-Nair et al., 2005). This
is consistent with a dominant negative effect as well as the

FIGURE 1 | Synaptically localized CAM cleavage. Pre and post synaptic
components (black outline) and glial components (green outline) of the
synapse are shown. MMPs can be released from neurons and/or glia to
cleave peri-synaptic CAMs, thus generating CAM N-terminal fragments with
the potential to stimulate intregrin dependent signaling. Though not the focus
of this review, cleavage generated CAM intracellular domains (ICDs) may also
influence synaptic transmission.

possibility that dysregulated ectodomain shedding is deleterious,
and it underlines our need to better explore the bioactivity
of CAM ectodomains in both physiological and pathological
conditions. A schematic of CAM ectodomain shedding from glia
and/or neurons, with subsequent integrin binding, is shown in
Figure 1.

In terms of the functional consequences of MMPs and/or
CAM ectodomains at single synapses to in turn affect LTP, several
non-mutually exclusive possibilities exist as shown in Figure 2.
In the first, supported by high resolution imaging (Wang et al.,
2008), MMP activity causes a change in actin dynamics with
a subsequent widening of spines. This would likely bring an
increase in functional GluA receptors to the spine head and
increase amplitude of mEPSCs. A second possibility is that
MMP generated integrin binding ligands could stimulate the
growth of new spines. Integrin signaling has been linked to the
same (Shi and Ethell, 2006), and though we did not observe
a significant increase in spine number in ICAM-5 ectodomain
stimulated DIV 14 rat hippocampal neurons at 1 or 24 h
(Lonskaya et al., 2013), it would be premature to rule out the
possibility that this measure could be increased at other time
points or following exposure to additional CAM ectodomains.
The potential for integrin binding ligands to cause an unsilencing
of post-synaptic components that were previously silent due to
deficient synaptic levels of GluA receptors should be considered
as a third possibility. Integrin signaling can activate protein
kinases that would in turn phosphorylate specific GluA subunits
to enhance their synaptic entry (Lim et al., 2008; Chen et al.,
2010). Consistent with this possibility, in previous work we have
observed both an ICAM-5 ectodomain stimulated increase in
the phosphorylation and membrane localization of GluA1, and
an increase in the frequency of mEPSCs (Lonskaya et al., 2013).
A fourth possibility is that MMP-dependent signaling stimulates
in increase in spine head protrusions to affect glutamatergic
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FIGURE 2 | Post-synaptic mechanisms by which MMP activity
could enhance glutamatergic transmission. There are several
non-mutually exclusive possibilities by which MMP activity could
influence excitatory neurotransmission. Shown (top) is a dendritic
segment with representative spines. As the schematic suggests with

arrows to show potential changes, existing spine expansion, new
spine formation, synaptic unsilencing, and formation of spine head
protrusions represent post synaptic changes that might contribute to
MMP and/or integrin dependent changes in the post synaptic
element.

transmission. While LTP is generally thought to represent an
experience dependent increase in dendritic number and/or size
(Kopec et al., 2006), increased complexity of spines might
also occur. It has been shown that MMP-9 can stimulate
an increase in spine head protrusions (Szepesi et al., 2013).
This finding is of significance in that these protrusions may
be PSD-95 and GluA positive (Richards et al., 2005; Szepesi
et al., 2013), and they may be functionally active in terms
of mediating glutamateric neurotransmission (Richards et al.,
2005).

Future studies related to CAM-integrin interactions will be
necessary to examine a variety of additional questions including
that of which integrin binding ligands are generated with learning
and memory in vivo. Further study of whether ectodomain
shedding plays and important role in select MMP dependent
endpoints including changes in spine size or number (Shi and
Ethell, 2006; Wang et al., 2008), the development of spine head
protrusions (Szepesi et al., 2013), and developmental changes in
neurite outgrowth and dendritic arbor (Van Hove et al., 2012a)
may also be warranted. MMPs have also been linked to changes
in neuronal excitability (Wojtowicz and Mozrzymas, 2014), and
since integrin signaling can also influence ion channel function
(Wildering et al., 2002), this could represent a parallel topic for
future exploration.

An additional avenue for exploration includes the question of
whether the downstream effects of CAM shedding can synergize
with events that follow from MMP-dependent processing of
additional synaptic substrates. As an example, we consider
protease activated receptor-1 (PAR-1). A select subset of MMPs
target PAR-1, a G protein coupled receptor that is activated by
cleavage in N-terminal domain and consequent exposition of a
tethered peptide ligand (Vergnolle et al., 2001; Soh et al., 2010).
The receptor is expressed on select neuronal subpopulations
and has been detected in synaptoneurosomes (Han et al., 2011;
Maggio et al., 2013a,b). While activation of neuronal PARs
has the potential to enhance GluN subunit phosphorylation
and GluN function (Gingrich et al., 2000), whether PAR
activation enhances neuronal integrin signaling is unknown.
In non-neural cells, however, it has been shown that PAR-1
activation can enhance integrin affinity for ligands (Shattil et al.,
2010).

CAM Shedding: From Physiology to
Pathology

While regulated physiological release of MMPs can contribute
to adaptive plasticity, it is important to note that dysregulated
release has the potential to disrupt the same (Wojtowicz and
Mozrzymas, 2014). Consistent with this, MMP inhibitors have
been shown to ameliorate neuronal injury in a number of
disease models. In many of these studies, however, reduced
MMP-dependent damage to blood brain barrier integrity is
likely to account for much of the observed neuroprotection
(Asahi et al., 2001). There is, however, an increasing appreciation
synaptic proteolysis in particular as significant a contributor
to neurological disease. To follow, we will briefly discuss two
disorders in which altered synaptic proteolysis may be critical to
disease expression. The first is fragile X syndrome (FXS) and the
second is psychostimulant addiction.

Fragile X Syndrome
Fragile X syndrome is a leading genetic cause of intellectual
disability and autism (Santoro et al., 2012). At present, no
cure is available. Symptoms include developmental delay and
increased susceptibility to seizures, while pathological findings
include relatively dense and immature dendritic spines (Galvez
and Greenough, 2005; McKinney et al., 2005; Pan et al., 2010;
Santoro et al., 2012). Expansion of the trinucleotide CGG repeat
in excess of 200 repeats located in the 5′ untranslated region
of the X chromosome-linked FMR1 gene cause FXS (Verkerk
et al., 1991; Sutcliffe et al., 1992). This leads to transcriptional
silencing and a consequent lack of functional protein product,
fragile X mental retardation protein (FMRP). FMRP regulates
expression of a subset of dendritically localized mRNAs, and
thus levels of dendritically localized proteins may be altered
in FXS (Darnell et al., 2012; Santoro et al., 2012). FMRP
generally acts to inhibit the translation of target genes, but in
select cases it may have actions that lead instead to enhanced
translation (Darnell et al., 2012; Santoro et al., 2012). For
example, FMRP is thought to enhance translation of superoxide
dismutase (Bechara et al., 2009), and thus antioxidant enzyme
activity might be reduced in FXS. This has implications for
glial activation, which has been observed in association with
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the disease (Rossignol and Frye, 2012). Moreover, neuronal
and/or glial expression of MMPs may be elevated in response
to increased glial activation and/or oxidant stress (Gu et al.,
2002).

Published studies have linked MMP activity to FXS. Levels
of MMP-9 are increased in affected humans and in a murine
model (Sidhu et al., 2014). Increased dendritic translation of
MMP-9 has also been observed (Janusz et al., 2013). Recent work
suggests that expression of additional MMPs may be increased
as well. For example, transcripts for MMP-2, -3, -7, -9, and -
24 are increased in heavy polysomes from Fmr1 mutant mice
(Gkogkas et al., 2014). In terms of functional consequences,
dendritic spine abnormalities in a mouse model of FXS can be
reduced by minocycline, an inhibitor of MMP activity that can
access the brain (Bilousova et al., 2009). Spine abnormalities are
also reduced in the background of MMP-9 deficiency (Sidhu
et al., 2014). Moreover, exogenous MMP administration to
cultured neurons has been associated with relevant changes in
spine morphology (Bilousova et al., 2006). Interestingly, MMP
knockout can also reduce neuronal circuit defects in a drosophila
model of disease (Siller and Broadie, 2011).

The mechanism(s) by which excess MMP activity stimulates
the FXS phenotype have yet to be determined. Several possibilities
have been suggested, including increased signaling by MMP-
dependent activation of pro-neurotrophins and/or generation
of integrin-binding laminin fragments (Sidhu et al., 2014). It
is tempting to speculate, however, that excess generation of
integrin-binding CAM fragments might play a role. Future
studies to address this question may therefore be warranted.

Addiction
Matrix metalloproteinase-dependent changes in synaptic
structure and function are also thought to contribute to the
maladaptive learning and memory associated with addiction
to stimulants including methamphetamine. Methamphetamine
is a widely abused illicit drug that has high addictive potential.
A variety of studies suggest that methamphetamine is linked
to metabolic changes in the brain as well as to synaptic injury
(Pu et al., 1996; Volkow et al., 2001; Chang et al., 2009).
Evidence for increased MMP expression, release, and/or
activation in the setting of methamphetamine exposure comes
from several groups. This stimulant can increase release of
MMP-1 from cultured neural cells (Conant et al., 2004). This
observation is consistent with results from rodent studies
in which methamphetamine stimulates increased binding of
AP-1, a transcription factor critical to the expression of MMPs
including MMP-1 (Akiyama et al., 1996). Additional studies have
demonstrated that 5 days of exposure to the drug (2 mg/kg/day)
is associated with increased MMP-2 and -9 protein in the
frontal cortex and nucleus accumbens of rats (Mizoguchi et al.,
2007a). Moreover, an acute high dose of MA (40 mg/kg) is
followed by increased mRNA expression of MMP-9 in murine
CNS (Liu et al., 2008). Similarly, cocaine, which is similar to
methamphetamine in its potential to increase catecholamine
levels, has been shown to increase MMP-9 activity in the medial
prefrontal cortex at 1, 3, and 24 h post-administration (Brown
et al., 2008).

Methamphetamine has the potential to increase MMP
expression through several non-mutually exclusive mechanisms
including increased catecholamine dependent signaling,
activation of glutamate receptor signaling, and increased oxidant
stress. For example, methamphetamine associated increases
dopamine can act on D1 type dopamine receptors to enhance
substrate proteolysis (Iwakura et al., 2011). Since both D1 and
D2 type are linked to βγ subunits that can activate PKC and
release of intracellular calcium, activation of either receptor
type might stimulate calcium dependent MMP release and/or
PKC dependent activation of a transmembrane MMP. Another
possibility is that MA increases levels of glutamate, as has been
shown by Yamamoto and colleagues (Mark et al., 2004), and
that glutamate signaling can in turn stimulate increased MMP
expression and/or activity. Relatively high concentrations of
MA also stimulate an increase in signaling by reactive oxygen
intermediates (Lee et al., 2002), which can enhance both the
expression and the activation of select MMPs (Gu et al., 2002).

Increased MMP activity may also contribute to synaptic and
behavioral changes observed with stimulant exposure. It has been
shown that methamphetamine-induced behavioral sensitization
is reduced in mice lacking MMP-2 or MMP-9 (Mizoguchi et al.,
2007b). Protease activity has also been shown to contribute to
cocaine associated CPP (Brown et al., 2007). In recent work
focused on structural and function changes at the levels of
the synapse in the setting of cocaine exposure paradigms, an
increase in the AMPA/NMDA current ratio was increased in
extinguished rats, and further increased 15 min following cue-
induced reinstatement (Smith et al., 2014). An increase in the
AMPA/NMDA ratio after extinction was restored to control
by a selective MMP-2 inhibitor, while the altered reinstatement
ratio was restored by either and MMP-2 or -9 inhibitor (Smith
et al., 2014). Complementary measures of spine density and
spine size supported a view in which MMP-2 could increase the
density and head size of spines in extinguished animals and that
MMP-9 activity contributed to an increase in spine size with
reinstatement.

Overall, studies related to the role of MMPs in addiction are
exciting and should stimulate further work to address underlying
mechanistic components.

Summary

Matrix metalloproteinases were named for their ability to cleave
extracellular matrix proteins such as laminin and collagen. While
matrix remodeling effects may be essential during development
and wound healing, proteolysis of cell surface receptors including
CAMs could represent a critical means by which MMPs can fine
tune synaptic structure and function in a more stable or relatively
mature CNS. This possibility is supported by work showing that
neuronal activity stimulates proteolysis of synaptically localized
CAMs, and that CAM shedding can influence varied measures
of synaptic transmission. Future studies will be necessary to
examine CAM cleavage as affected by variables including cell
type, brain region, stimulus type/duration, and developmental
stage. Future studies will also be necessary to determine which
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CAM cleavage products are most likely to influence MMP
dependent plasticity in vivo, and to determine the extent to which
CAM shedding combines with additional MMP-stimulated
events to influence experience dependent plasticity.
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