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Fungal infections are global public health problems and can lead to substantial

human morbidity and mortality. Current antifungal therapy is not satisfactory,

especially for invasive, life-threatening fungal infections. Modulating the

antifungal capacity of the host immune system is a feasible way to combat

fungal infections. Neutrophils are key components of the innate immune system

that resist fungal pathogens by releasing reticular extracellular structures called

neutrophil extracellular traps (NETs). When compared with phagocytosis and

oxidative burst, NETs show better capability in terms of trapping large pathogens,

such as fungi. This review will summarize interactions between fungal pathogens

and NETs. Molecular mechanisms of fungi-induced NETs formation and

defensive strategies used by fungi are also discussed.
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Introduction

Pathogenic fungi have a significant effect on human health by leading to either

superficial or invasive infection or both (Köhler et al., 2014). Skin and mucosal infections

are the sites of most fungal diseases. Invasive infections are of lower morbidity, yet they

kill 1.5 million individuals annually despite several available antifungal drugs (Schwartz,
Abbreviations: NETs, neutrophil extracellular traps; MPO, myeloperoxidase; NE, neutrophil elastase;

PMA, phorbol 12-myristate 13-acetate; NOX, NADPH oxidase; PKC, protein kinase C; ROS, reactive

oxygen species; CR3, complement receptor 3; PAD4, protein-arginine deiminase type 4; CGD, chronic

granulomatous disease; PAMPs, pathogen-associated molecular patterns; PRRs, pattern recognition

receptors; CR3, complement receptor 3; Fn, fibronectin; FOH, farnesol; eDNA, extracellular DNA; Saps,

secretory aspartic proteases; GAG, galactosaminogalactan; GalNAc, galactose and n-acetylgalactosamine;

GXM, glucuronoxylomannan; GXMGal, glucuronoxylomannogalactan; 3 ’NT/NU, 3 ’-

nucleotidase/nuclease.
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2004; Brown et al., 2012; Vallabhaneni et al., 2016; Fisher et al.,

2018). Candida albicans, Aspergillus fumigatus , and

Cryptococcus neoformans are the top species leading to fungal-

associated deaths (Kim, 2016). Significantly, the efficiency of

current antifungals is compromised by the emergence of drug

tolerance in pathogen populations and additional drug-resistant

species, such as C. auris and C. glabrata (Rhodes and Fisher,

2019; Latgé and Chamilos, 2019; Coste et al., 2020; Lee et al.,

2021). Drug–drug interactions, toxicity, and poor bioavailability

are also responsible for the limitations of traditional antifungal

agents (Stewart and Paterson, 2021). It is widely accepted that

strengthening the fungicidal capability of the host immune

system may provide a prospective therapeutic strategy (Lee

et al., 2021). Therefore, insight into the mutual effects between

fungal pathogens and the immune system may provide new

ideas for clinical therapy of fungal infections.

Polymorphonuclear leukocytes (neutrophils), one kind of

phagocyte, play a crucial role in the innate immune system. As

the primary effecter in host defense, their role in combating

fungal pathogens is generally recognized. Neutrophils defend

against fungal infection by secreting antimicrobial peptides,

cytokines, and chemokines, depriving fungal spores of essential

nutrients, engulfing fungal spores, and releasing neutrophil

extracellular traps (NETs) (Brinkmann et al., 2004;

Pathakumari et al., 2020). NETs are netlike structures and

capture and kill fungal hyphae that are too large to undergo

phagocytosis. Since being discovered in 2004, NETs have

received increasing scrutiny although studies mainly focus on

the role of NETs in bacterial infections. Their role in fungal

infections is usually overlooked. In this review, the molecular

mechanisms of NET formation is described. The emerging role

of NETs in fungal infections and fungal responses are

summarized. Additionally, controversy in this particular field

will be discussed.
Neutrophil extracellular traps
and NETosis

NETs are extracellular reticular structures released from

activated neutrophils and consist of both nuclear and granular

components. The nuclear components are composed of

histones and highly depolymerized chromatin. Most

chromatin in NETs is derived from nuclear DNA, but

current studies reveal that mitochondrial DNA is also

involved (Lood et al., 2016). The granular components

include granule proteins, such as like myeloperoxidase

(MPO), neutrophil elastase (NE) and calprotectin in addition

to cytosolic proteins, such as actin and a actinin, which provide

microbicidal activity (Urban et al., 2009). NETs are related to

many diseases and can lead to adverse cardiovascular events

(Bonaventura et al., 2020), tumor development and metastasis
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(Masucci et al., 2020), and autoimmune diseases (Lee et al.,

2017). In terms of infectious diseases, the formation of NETs

was initially described in bacterial infections. Subsequently,

NET formation stimulated by fungi, viruses, and parasites has

also been demonstrated. Intriguingly, NETs retain

antimicrobial activity when they encounter large pathogens,

such as like C. albicans hyphae and Leishmanis infantum

promastigotes (Gabriel et al., 2010; Brinkmann et al., 2004;

Saitoh et al., 2012; Wardini et al., 2019; Arcanjo et al., 2020).

Nevertheless, NETs act as a double-edged sword in the

infectious milieu. When NETs capture and neutralize

pathogens, they also lead to collateral damage by intensifying

inflammatory cellular responses, such as in pulmonary

infections induced by COVID-19 and A. fumigates (Ellett

et al., 2017; Arcanjo et al., 2020).

The process of NET formation is called NETosis. NETosis

is a type of programmed cell death. However, it is currently

believed that not all NETs formation ends up with cell death

(Boeltz et al., 2019). The cell death-involved one is called lytic

NETosis, and the other one is termed vital NETosis as shown in

Figure 1 (Papayannopoulos, 2018). Lytic NETosis usually

occur within 3 to 8 h of neutrophil activation. This process

includes actin remodeling, cell depolarization, nuclear

membrane disappearance, chromosome decondensation, and

an improvement in cell membrane permeability. However,

vital NETosis induced by Staphylococcus aureus occurs

within a few minutes, which is much more rapid than lytic

NETosis. The chromatin is secreted out of the neutrophils and

the remaining nuclear-free cells can still perform phagocytosis

(Pilsczek et al., 2010). During vital NETosis, mitochondrial

DNA (mtDNA), rather than nuclear DNA, is excreted by

neutrophils that have been stimulated by granulocyte/

macrophage colony-stimulating factor (GM-CSF), toll-like

receptor 4 (TLR4) stimulation, or complement factor 5a

(C5a) receptor stimulation (Yousefi et al., 2009). Unlike

nuclear DNA that physically traps pathogens, mtDNA has

additional proinflammatory effects (Lood et al., 2016; De

Gaetano et al., 2021).

A variety of stimuli, such as phorbol 12-myristate 13-acetate

(PMA), calcium ionophores, pathogenic microorganisms, and

immune complexes, can trigger the release of NETs. Stimuli

influence both the structure and morphology of NETs. PMA-

and Pseudomonas aeruginosa-induced NETs are cloud-like

structures, while C. albicans- and Staphylococcus aureus-

induced NETs consist of elongated filaments (Sosa-Luis et al.,

2021). Besides, the components involved in NETosis vary

depending on stimuli (Kenny et al., 2017).

Reactive oxygen species (ROS) are the protagonists of

NETosis. The upstream ROSs are dependent on different

stimuli-dependent kinases, such as protein kinase C,

extracellular-signal-regulated kinase, phosphoinositide 3-

kinase, and IL-1 receptor-associated kinase (PKC, ERK, PI3K,

and IRAK, respectively) (Hakkim et al., 2011; DeSouza-Vieira
frontiersin.org
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et al., 2016; Zawrotniak et al., 2017). The involvement of PKC

was primarily discovered in NEToisis induced by PMA, which is

a non-physiological stimulus that is used widely in research.

PKC is also required for C. albicans- and group B Streptococcus

(GBS)-induced NETosis (Kenny et al., 2017). Besides, syk is also

an important kinase, especially in Candida species-induced NET

formation (Clark et al., 2018). A syk-deficient neutrophil lacks

fungicidal activity due to a decline in ROS production and NET

formation (Negoro et al., 2020).

The kinases mentioned above phosphorylate the NADPH

oxidase (NOX) subunit gp91phox/Nox2 and catalyze ROS

production, which can stimulate the downstream MPO–NE

pathway. MPO forms a complex with NE that stretches across

the azurophilic granule membrane. After MPO is stimulated by

ROS and produces oxidants, nuclear translocation of NE is

promoted. NE eventually acts on histones to assist

chromosome de-condensation (Papayannopoulos et al., 2010).

Additionally, NE cleaves Gasdermin D (GSDMD) and forms

GSDMD-p30 pores in the plasma membrane (Sollberger et al.,

2018).Finally, the nucleus disintegrates, the plasma membrane

ruptures, and NETs are released (Figure 1).

Unlike NE, other neutrophil serine proteases (NSPs)

stored in azurophilic granules, including Cathepsin G

(CatG), proteinase 3 (PR3), and NSP4, do not play a role in

NET formation. These NSPs exist in NETs in an inactive
Frontiers in Cellular and Infection Microbiology 03
conformation; therefore, they have no antimicrobial functions

(Kasperkiewicz et al., 2020). In addition to NE, the de-

condensation of chromosomes also depends on the histone

H3 citrullination. This reaction is catalyzed by protein-

arginine deiminase type 4 (PAD4), which can be activated

by the high concentration of calcium (Li et al., 2010). In

addition to chromatin de-condensation, PAD4 is also required

for nuclear envelope rupture and extracellular DNA release

(Thiam et al., 2020). Whereas PAD4 is not indispensable in

every kind of NETosis (Holmes et al., 2019), the relative

importance of NE and PAD4 is associated with the stimulus.

NE is more crucial in C. albicans-induced NETosis, while

PAD4 plays a more important role in calcium ionophore- and

bacteria-induced NETosis (Li et al., 2010; Lewis et al., 2015) as

shown in Figure 1.

However, ROS is not always required for NET formation.

Chronic granulomatous disease (CGD) is found in neutrophils

that are deficient in NADPH oxidase activity are often used as

a tool to study the role of ROS in NETosis (Yu et al., 2021).

Since some CGD patients have residual NADPH oxidase

activity, it is necessary to measure ROS production initially.

After comparing the number of NETs formed by healthy

neutrophils versus CGD neutrophils, results demonstrated

that ROS is necessary for PMA-induced NET formation,

while C. albicans- and GBS-induced NETosis are only
FIGURE 1

Neutrophil extracellular trap (NET) formation Stimulation recognized by the corresponding receptor activates the downstream kinase and ROS
pathway or ROS-independent pathway. NE nuclear transfer is promoted by ROS and helps degrades histones. PAD4 promotes histone
citrullination. The NETs formation can be divided into vital-NETosis and lytic-NETosis. NE, neutrophil elastase; PAD4, protein-arginine deiminase
type 4; MPO, myeloperoxidase; NOX, NADPH oxidase; ROS, reactive oxygen species.
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partially required, and no requirement for calcium and

potassium ionophores are necessary (Kenny et al., 2017).

The molecular mechanisms of ROS-independent NETosis

remain unclear. It was recently found that the calcium-

induced ROS-independent NETosis is mediated by the SK3

channel (a family member of calcium-activated small

conductance potassium channels) and mitochondrial ROS.

Hypercitrullination of histone H3 is also involved in this

process (Pathakumari et al., 2020).
NET formation triggered by fungal
pathogens and NET fungicidal effect

NETosis has been discovered in many mycoses. It can be

induced by diverse fungal components and fungal secreted

proteins. It is generally believed that patterns [pathogen-

associated molecular patterns (PAMPs)] on the surface of

fungal cell walls, which can be recognized by pattern

recognition receptors (PRRs) on neutrophils result in NET

formation. The following section summarizes NETosis

pathways stimulated by various fungal stimulation (Figure 2)

and discusses the role of NETs in innate immunity against

fungal pathogen.
Candida albicans

C. albicans is a common opportunistic pathogen leading to

skin and mucous membranes or systemic infections, especially

in immunocompromised patients. C. albicans is polymorphic.
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C. albicans conidia normally have a symbiotic relationship

with the host. Once they transform into the hypha form, their

virulence is enhanced and even results in disseminated

infections (Shepherd et al., 1985; Cleary et al., 2016).

Candida yeast can be phagocytized by neutrophils, while the

hyphae are too large to be engulfed. As early as 2006, it was

observed that C. albicans could induce NET formation (Urban

et al., 2006). Later on, NETosis was found in both mice and

zebrafish C. albicans infection models in which they showed

antifungal activity (Ermert et al., 2009; Gratacap et al., 2017).

Previous research has mainly focused on opsonized C.

albicans, which undergoes complement receptor 3 (CR3)

(CD11b/CD18)-mediated NET formation via the Syk-PKC-

ROS pathway (Kenny et al., 2017; Wu et al., 2017). PI3K is also

involved in this pathway. Inhibition of PI3K results in a

decrease in ROS production and NE nuclear transfer and

finally leads to less NETosis (Romao et al., 2015). PAD4-

mediated histone H3 citrullination occurs during NET

formation, but inhibition of PAD4 does not affect the release

of NETs (Guiducci et al., 2018). Therefore, PAD4 is not

indispensable in opsonized C. albicans-induced NETosis.

The role of unopsonized C. albicans has also been

supplemented recently. Unopsonized C. albicans can induce

rapid NET release through the ROS-independent Dectin-2-

mediated Syk-Ca2+–PKCd–PAD4 pathway (Wu et al., 2019) as

shown in Figure 2.

Recently, the molecular mechanisms used d by specific

components of C. albicans, such as cell wall and biofilm

components, have been further studied (Figure 2). Mannans

and b-glucans were found to be cell wall polysaccharides of C.

albicans, which are crucial PAMPs. Mannans can be recognized
FIGURE 2

Pathways employed by different fungal components. Cellular components involved in NETosis vary depending on different fungal stimulation.
Neutrophils recognize by Dectin-1, Dectin-2, TLRs, CD14, CD16 and CR3 receptors, and activate both ROS pathway and ROS-independent
pathway. CR3, complement receptor 3; TLR, Toll-like receptor; MPO, myeloperoxidase; ROS, reactive oxygen species.
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by CD14, TLRs, and Dectin-1, and promote the formation of

NETs through ROS-independent pathways, while b-glucan is

recognized by receptors Dectin-1 and CR3 and induce NETosis

(Li et al., 2010). Researchers have also found that when the

extracellular matrix component fibronectin (Fn) is present, b-
glucans on C. albicans hyphae can be recognized by CR3 and

induces rapid ROS-independent release of NETs. This process

depends on the extracellular signal-related kinase/mitogen-

activated kinase (ERK/MAPK) pathway (Byrd et al., 2013) and

suggests that extracellular matrix components are also involved

in the regulation and induction of NET formation. In addition,

recognition between Fn+b-glucan and CR3 has crosstalk with b1
integrins, VLA5 and VLA3 (a5b1 and a3b1, respectively). First
CR3 promotes NETosis by activating VLA5, and then CR3

inside-out self-activation happens, leading to both VLA5

inhibition and VLA3 activation after which crosstalk between

CR3 and b1 integrins first causes acceleration of NETosis, and

second leads to inhibition of NET formation and promotion of

the neutrophil accumulation at the location at which NETosis

has occurred (Johnson et al., 2017). Unlike mannans and b-
glucans, Als3 (a member of the agglutinin-like sequence family)

and enolase, which are cell wall surface proteins of C. albicans

did not stimulate NETosis (Zawrotniak et al., 2017). However,

they can bind to proteins in NETs such as MPO, NE,

lactotransferrin (LF), and LL-37 (cathelicidin-derived peptide)

(Karkowska-Kuleta et al., 2021).

C. albicans forms biofilms on the surface of host tissues to

protect fungal cells. The phenomenon that microorganisms

gathered in biofilms communicate with each other is called

quorum sensing (QS). The molecules that play a role in QS

are named quorum sensing molecules (QSMs) (Padder et al.,

2018). QSMs are composed of farnesol (FOH), farnesolic acid

(FA), and tyrosol (TR). Among them, FOH, which is

sesquiterpene alcohol released by C. albicans outside of the

cell, is a chemotactic factor for neutrophil aggregation.

Moreover, FOH can trigger NET formation. Neutrophils

recognize FOH through CR3 and TLR2 and promote ROS-

dependent NETosis (Zawrotniak et al., 2019). Furthermore, the

nucleic acid components in C. albicans biofilms can also induce

NETosis. Extracellular RNA (eRNA) is released into the biofilm

by C. albicans, which can enhance the biofilm’s resistance to

antifungal drugs, and eDNA is recognized by TLR8 and

promotes NETosis in ROS-dependent manner (Smolarz

et al., 2021).

C. albicans modulates NET formation mainly via the

expression of virulence factors and morphological

transformation. Secretory aspartic proteases (Saps) are

virulence factors produced by C. albicans and have a

chemotactic effect on neutrophils (Gabrielli et al., 2016).

Different members of Saps induce different pathways and

levels of NET formation. Saps4 and 6 can cause the strongest

release of NETs, which is induced by both ROS-dependent and
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-independent pathways after being recognized by the CD11b

receptor. Saps9 and 10 induce the formation of NETs through

ROS-dependent pathways after being recognized by CD16 and

CD18 receptors. Saps6 and 10 also stimulate CD14, which is the

co-receptor of TLR4 (Gabrielli et al., 2016) as shown in Figure 2.

Phospholipase is another virulence factor of C. albicans.

Researchers have found strains of Candida spp. that produced

phospholipases could induce NETosis, while C. glabrata did not

(Campos-Garcia et al., 2019). Since this research did not control

other variables between Candida spp., the role of phospholipases

in NETosis needs further investigation.

The morphological transformation of C. albicans has a great

influence on NET formation. Hyphae- and yeast-induced NETosis

differ in amount, kinetics, andmechanisms (Kenno et al., 2016). For

instance, autophagy is involved in different periods of hyphae- and

yeast-induced NETosis. It is currently believed that the formation of

NET is related to autophagy-mediated DNA unfolding and

excretion (Remijsen et al., 2011). In both forms of C. albicans,

autophagy plays a role in the rapid induction of NETs, while the

yeast form uses both autophagy and ROS pathways. When exposed

to neutrophils for 4 h, only the hyphae form can induce NETosis

through autophagy and the ROS pathway (Kenno et al., 2016).

However, whether rapid NET formation caused by C. albicans as

mentioned above is of the same type as the rapid vital-NETosis

induced by Staphylococcus aureus needs further study (Pilsczek

et al., 2010; Byrd et al., 2013; Kenno et al., 2016). When compared

with hyphae, C. albicans conidia has more difficulty inducing the

release of NETs. This size-dependent NET formation is regulated by

Dectin-1, which acts as a phagocytic receptor. Activation of Dectin-

1 abrogates NE nuclear transmission and sequesters NE in

phagosomes leading to phagocytosis rather than NETosis (Branzk

et al., 2014). Therefore, Dectin-1 induces contradictory effects in

NET formation. In addition, differences in neutrophil responses

induced by different clinical isolates of C. albicans have been found.

Themost commonly used strain in research is SC5314, and it differs

from other strains in terms of the genome, toxicity, resistance to

immune cell killing (Hirakawa et al., 2015), and interactions with

neutrophils, which includes the induction of neutrophilic ROS

production, NET release, phagocytosis, and tumor necrosis factor

(TNFa) production (Shankar et al., 2020). Compared with 3683

strains, SC5314 induces more NETs, a finding that can be explained

by higher expression of Rac2 (Zhang et al., 2017), which is the

member of the Rho family GTPases that participate in the

formation of NETs (Lim et al., 2011). Moreover, compared with

pseudohyphal isolates P78042 and P57072 and yeast

isolates P94015, SC5314 can prompt neutrophils to release the

largest amount of NETs, which is directly proportional to the degree

of hyphae formation (Shankar et al., 2020).

Both C. albicans conidia and hyphae can be captured or

entwined by chromatins in by NETs and then killed by the

granular proteins (Urban et al., 2006; Karkowska-Kuleta et al.,

2021), among which calprotectin is essential for the
frontiersin.org
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elimination of C. albicans (Urban et al., 2009). Of note, MPO

is also a key antifungal factor in NETs. Patients with severe

congenital neutropenia (SCN) have mutations in the gene for

jagged 1 protein, (JAGN1). When JAGN1 expression-

inhibited neutrophils are co-cultured with C. albicans, the

production of MPO in NETs was found to be reduced, and the

antifungal activity declined (Khandagale et al., 2018).

Neutrophils from MPO-deficient patients are weak in NET-

dependent C. albicans growth inhibition (Metzler et al., 2011).

Furthermore, attention should be paid to the finding that

NETs can also influence fungal cell wall epitope changes.

NETs function in unmasking b-glucan and enhancing

Dectin-1 recognition in a ROS-dependent manner, which

leads to an elevation in the interleukin 6 (IL-6) response and

promotion of fungal containment. However, proteases, such as

NE, cathepsin G, and proteinase 3, do not have a role in

triggering cell wall remodeling (Hopke et al., 2016). Further

investigation is required to elucidate the exact NET

component that mediates this process.

Another intriguing study points out a negative aspect of

NETs, which is the destruction of human tissue associated with

interacting with C. albicans. Protein components of NETs, such

as NE, MPO, lactotransferrin, and LL-37 (cathelicidin-derived

peptide), binding with C. albicans surface proteins results in

surrounding tissue damage and acceleration of fungal invasion

(Karkowska-Kuleta et al., 2021). Moreover, NET-dependent

tissue damage and fungal invasion can be promoted by Saps,

which is secreted by C. albicans. Saps play a role in the cleavage

of a1-proteinase inhibitor (A1PI), which is a serine protease

inhibitor that can inhibit NE and lead to restoration of NE,

which is a crucial part of NET-dependent tissue damage (Gogol

et al., 2016).
Aspergillus fumigatus

Aspergillus fumigatus is an important saprotrophic fungus

with a strong capacity to resist human immune system attacks.

The lung is the most common site of infection and leads to

pulmonary aspergillosis (Latgé and Chamilos, 2019). Both

conidia and hyphae trigger the formation of NETs in human

neutrophils (McCormick et al., 2010). Morphotypes and strains

of A. fumigatus have a decisive impact on the formation of

NETs. Swollen and resting conidia, especially, result in less NET

production. When compared with the ATCC46645 wild-type

strain, DAL wild-type strain showed weaker NET inducibility

(Bruns et al., 2010). Additionally, NETs were observed as the

first immigrating neutrophils 3–4 h after infected with A.

fumigates (Clark et al., 2016).

ROS pathway is involved in A. fumigatus-induced

NETosis. This process is mediated by CR3, among which the

I domain of CD11b has a recognition function, and activated
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downstream Syk-PI3K pathway. PDA4 is also involved, but

PAD4 does not affect the fungicidal capability of the NETs

(DeSouza-Vieira et al., 2016). Addition of the PDA4

inhibitors, Cl-amidine and GSK484, did not lead to

cessation of A. fumigatus-induced NETosis (Silva et al.,

2020). Moreover, the ROS-independent pathway is also used

by A. fumigatus. This finding is supported by studies using

neutrophils from CGD patients (Gazendam et al., 2016).

Nevertheless, the pathway that promotes ROS-independent

NETosis is still unknown.

The effect of NETs on A. fumigatus is controversial. On

the one hand, some believe that NETs are capable of

inhibiting the germination of A. fumigatus conidia and

killing the hyphae (Bruns et al., 2010; Gazendam et al.,

2016). The fungicidal function is related to the NETs

granules components. Calprotectin in NETs can capture the

extracellular zinc of A. fumigatus, thereby inhibiting the

germination of A. fumigatus conidia (Gazendam et al.,

2016). This inhibitory effect can be reduced by the addition

of Ze2+ (McCormick et al., 2010). The anti-hyphal activity of

calprotectin can be restored by injecting recombinant

calprotectin into calprotectin-deficient mice (Clark et al.,

2016). Moreover, it was found that pentraxin 3 (PTX3), a

secreted pattern recognition molecule with a known

nonredundant role in resistance to A. fumigates, is localized

in neutrophil granules and released into the NETs. NET

component proteins, such as MPO and histone are PTX3

ligands, which can be enriched by PTX3 around PTX3-

captured pathogens and contribute to host defense

(Garlanda et al., 2002; Jaillon et al., 2007; Daigo and

Hamakubo, 2012; Daigo et al., 2016). On the other hand,

other researchers hold opposite opinions. The addition of

DNAse during the formation of NETs does not abrogate the

antifungal capability of neutrophils, which suggests that

inhibition of germination is mainly due to phagocytosis

(McCormick et al., 2010; Gazendam et al., 2016). Therefore,

the above results indicate that NETs can control A. fumigatus

infection to a certain extent even though they are not

adequate enough to eradicate A. fumigatus. Besides, another

study shows that NETs in invasive pulmonary aspergillosis

reduce fungal clearance and increase tissue damage (Alflen

et al., 2020). However, this study used PAD4-deficient mice as

the experimental group and citrullinated H3 as an indicator

of NETs formation. This method contradicts the view that

PAD4 is not necessary for A. fumigatus to induce NET release

(Silva et al., 2020); thus, further research is still needed.
Other fungi

Histoplasma capsulatum can also induce NET formation.

This fungus activates Scr and Syk through a ROS-dependent
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pathway mediated by CD18 instead of Dectin-1, and eventually,

NETosis occurs. Similarly, PAD4 participates in this process, but

it is dispensable (Thompson-Souza et al., 2020).

While Paracoccidioides brasiliensis is mainly recognized by

Dectin-1 receptors, the network structure of the NETs can

inhibit the spread of P. brasiliensis (Bachiega et al., 2016). Two

strains of P. brasiliensis, Pb18 (a virulent strain) and Pb265 (a

less virulent strain) can cause the release of NETs in vitro, and

the presence of NETs has been found in skin lesions (Della

Coletta et al., 2015). NETs also have a killing effect on P.

brasiliensis because the antifungal activity of neutrophils after

DNAse treatment decreases (Bachiega et al., 2016). This finding

contradicts the results of a previous study in which neutrophils

were co-cultured with P. brasiliensis treated with DNAse. No

decrease in the number of colony forming units (CFUs) was

observed. Therefore, it is believed that NETs are ineffective

against P. brasiliensis (Mejıá et al., 2015). This contradiction

may be due to differences in the research methods used to

investigate neutrophil antifungal activity. The former study used

granulocyte macrophage colony-stimulating factor (GM-CSF),

interferon gamma (IFNg), and TNFa to stimulate neutrophils to

simulate the situation of neutrophil activation in vivo, while the

latter did not.

Phialophora verrucosa is the pathogen of chromoblastomycosis.

Both opsonized and unopsonized conidia of P. verrucosa can induce

NET production, while the opsonized one was found to induce

more. This process is dose-dependent. The higher the proportions

of conidia, the more NETs are induced. NETs can capture and kill

both hyphae and conidia of P. verrucosa (Liu et al., 2021).

Scedosporium apiospermum is an opportunistic pathogen,

and the most common site of infection is the lung. NETs have

also been found in the lungs of mice infected with S.
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apiospermum. NETs can exert antifungal activity in the early

stages of S. apiospermum lung infection (Luna-Rodrıǵuez

et al., 2020).
Fungal escape from NETs

Three mechanisms for microorganisms to evade the killing

of NETs are known: (1) inhibition of the formation of NETs, (2)

formation of capsules and biofilms to enhance resistance to

NETs or avoid interaction with NETs, and (3) secretion of

proteins to degrade NETs (Papayannopoulos, 2018; Rıós-

López et al., 2021). Fungal evasion of NETs also follows the

above strategies (Figure 3).
Fungi cause a reduction in NET
formation and improve the capability to
resist NETs

Biofilms provide a protective extracellular matrix for C.

albicans, which can not only resist the killing effect of NETs

but also reduce the formation of NETs. When compared with

planktonic C. albicans, ROS production and release of NETs

induced by C. albicans biofilm is reduced (Kernien et al., 2020).

This inhibition depends on the intact biofilm coming into

contact with the NETs. The destroyed biofilm or the

supernatant of biofilm does not inhibit NETs formation,

which implies that soluble substances in biofilm do not exert

inhibitory function (Johnson et al., 2016). Even though different

clinical isolates produce biofilms varying in thickness and

structure, they all attenuate the formation of NETs. Most
FIGURE 3

The mechanisms of fungi evading NETs (A) Fungi can reduce the release of NETs by forming biofilms. (B) Changes in fungal cell wall
compositions and biofilm formation can enhance the ability to resist NETs. (C) Fungi can promote the degradation of NETs by secreting DNAse
and Saps.
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isolates lead to a decrease in ROS generation. In contrast, 98–210

strains elicit production of ROS despite the inhibitory effects of

ROS on NETosis (Kernien et al., 2017). Analogously, the biofilm

of C. glabrata also has a defensive effect on NETs. Compared

with planktonic C. glabrata, the C. glabrata biofilm induces a

decrease in neutrophil ROS production and NET formation

(Johnson et al., 2017).

In addition to biofilms, fungal cell wall components are the

earliest elements that come into contact with neutrophils.

Hydrophobin RodA was the first discovered cell wall

component that inhibits A. fumigatus-induced NETosis. This

prote in binds to the ce l l wa l l po lysacchar ide by

glycosylphosphatidylinositol (GPI) anchor proteins and forms

a coating on the surface of conidia. In this case, PAMPs, such as

mannan and b-glucan, are covered and hard to recognize

(Carrion et al., 2013). RodA is expressed on conidia rather

than hyphae, which explains why conidia trigger less NETosis;

therefore swollen or resting conidia with rodAmutation causes a

drastic increase in the release of NETs in contrast to the wild

type (Bruns et al., 2010). The cell wall component,

galactosaminogalactan (GAG), also plays a role in resisting

NETosis. GAG is an extracellular polysaccharide that contains

galactose and n-acetylgalactosamine (GalNAc) (Fontaine et al.,

2011). Studies have found that when compared with the more

virulent A. fumigatus, A. nidulans’ GAG contains less GalNAc

and has an incomplete biofilm. When UDP-glucose 4-

epimerases uge3 or ugeB is overexpressed leading to an

increase in the GalNAc content in GAG, biofilm formation of

A. nidulans is promoted, and the capability to defend against

NETs is improved (Lee et al., 2015). This process may be due to

the deacetylation of GalNAc, which leads to a positively charged

GAG, thereby inhibiting the positively charged antimicrobial

peptides and histones in NETs from coming into contact with

fungi (Lee et al., 2016).

The capsule is a common factor protecting bacteria

against NETs (Wartha et al., 2007), which is rare in fungi.

Nevertheless, Cryptococcus neoformans is a distinctive fungal

pathogen with a coating (the main virulence factor) over its

polysaccharide capsule. The predominant component of the

polysaccharide capsule is glucuronoxylomannan (GXM),

while glucuronoxylomannogalactan (GXMGal) occupies

only a small portion of the capsule (Heiss et al., 2009;

Fonseca et al., 2019). It has been found that only acapsular

strains, CAP67 and GXMGal, can trigger NETosis via an ROS-

dependent pathway, while GXM cannot, a finding that implies

that GXM is important for defense against NETs (Rocha

et al., 2015).

Another fungus of the genus Candida, C. auris, is an

emerging pathogen that threatens global public health (Lone

and Ahmad, 2019). Compared with C. albicans, C. auris is

more resistant to neutrophils. No NETs and less ROS

production were found in the human neutrophils co-
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cultured with C. auris or in a zebrafish model of invasive

candidiasis. Citrullination of histones was not observed either

(Johnson et al., 2018). However, C. auris cannot inhibit ROS

production or PMA-induced NET formation, so C. auris does

not directly inhibit the ROS pathway to reduce NET

production (Johnson et al., 2018).

The oxygen content in the environment also affects the

resistance of fungi to NETs. A hypoxic environment can occur

at the infection site in which the phagocytosis of neutrophils, the

capability of producing ROS, and the capability of releasing

NETs are reduced. Hypoxia improves the escape capability of C.

albicans. This finding may be due to hypoxia that causes C.

albicans cell wall masking, which prevents b-glucan from being

recognized by neutrophil receptors (Lopes et al., 2018).
Fungi degrade NETs

Fungi can accelerate the degradation of NETs by

producing enzymes. It was revealed that DNase assists

microbes in evading NETs by directly degrading the DNA

components (Buchanan et al., 2006). An extracellular nuclease

secreted by C. albicans and C. glabrata, 3’-nucleotidase/

nuc l e a s e (3 ’NT/NU) , ha s a deg r ad ing e ff e c t on

NETs. Adding the 3 ’NT/NU inhibitor , ammonium

tetrathiomolybdate (TTM), to the neutrophils co-cultured

with both C. albicans and C. glabrata can lead to a reduction

in the destruction and degradation of NETs (Afonso et al.,

2021). DNase secretion is observed in both C. albicans SC5314

and 3683 strains; however, DNase production of strain

SC5314 is greater (Zhang et al., 2017). Of note, it has been

suggested that virulent strain P. brasiliensis Pb18 may use the

same method to degrade NETs. NETs induced by the two

strains of P. brasiliensis, Pb18 (a virulent strain) and Pb265 (a

less virulent strain), have morphological differences. The

NETs induced by Pb265 are denser, while the NETs induced

by Pb18 are looser and larger in area, which is similar to the

degraded form (Della Coletta et al., 2015). Subsequent studies

confirmed this view by using DNase TEST Agar. When

compared with Pb265, virulent strain Pb18 co-cultured with

neutrophils has a higher expression of PADG_08528, which is

a hypothetical protein in the fungus genome (Desjardins et al.,

2011), suggesting that this gene may be related to the

production of DNAse-like protein (Zonta et al., 2020). In

addition to degrading chromatins, degrading NETs proteins

by Saps secreted by C.albicans is another available method

(Rapala-Kozik et al., 2015; Gogol et al., 2016; Karkowska-

Kuleta et al., 2021). LL-37 and histones are most sensitive

components to Saps, especially Saps3 and Saps9, which are

most effective in NETs proteins degradation and weakening

NETs (Rapala-Kozik et al. , 2015; Karkowska-Kuleta

et al., 2021).
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NETosis provides new ideas for
clinical antifungal strategies

Unravel ing the mechanisms of the fungi-NETs

interactions will help provide new ideas for treating fungal

infections. For example, restoration of NADPH oxidase

activity in GCD patients with refractory A. nidulans lung

infection using gene therapy shows a remarkable curative

power. After gene therapy, NET formation can be observed

in GCD neutrophils, which leads to inhibition of A. nidulans

growth (Bianchi et al., 2009). This antifungal activity of NETs

is calprotectin-dependent (Bianchi et al., 2011). This discovery

highlights the consequence of metal chelation in defending

against fungal infections. Besides, treating C. albicans biofilms

with sub-inhibitory concentrations of echinocandin can

increase the release of NETs and weaken the protective

effects of biofilms. Echinocandin’s effects may be due to the

promotion of C. albicans cell wall remodeling in which b-
glucan on the cell wall is exposed, thereby stimulating the NET

release (Hoyer et al., 2018). The latest study found that

extracelluar traps might be trained as a memory response

termed “trained immunity” (Gao et al., 2022), which refers to

the phenomenon that certain pathogens promote stronger

responses of innate immunity against reinfection (Netea

et al. , 2016). The formation and killing capacity of

extracellular traps can be heightened by C. albicans (Gao

et al., 2022). It implicates that pre-treatment of C. albicans

may benefits infectious diseases and targeting extracellular

traps memory responses is a prospective antifungal strategy.

However, excessive NET formation induced by trained

immunity results in becteriemia and endoxemia (Vitkov

et al., 2021). Therefore, modulating the memory response of

NETs to treat fungal infections is still challenging. Many

pathways for fungi to promote the release of NETs or to

evade the killing of NETs exist, all of which provide rich

targets for antifungal therapy and may help solve the problem

of antifungal drug resistance.

Furthermore, NET formation may be a prospective indicator

for prognosis and diagnosis. In C. albicans keratitis, the larger

the amounts of NETs found in corneal scraps is, the better the

treatment effect is. It is a pity that there no prominent difference

between NETs from bacterial keratitis and fungal keratitis can be

detected; therefore, the diagnostic function of NETs still requires

more studies (Jin et al., 2016). To push the prognostic and

diagnostic function of NETs forward, it is also important to

optimize detection and quantification methods. Computational

methods, such as support vector machines and convolutional

neural networks, help assess NETs detected by flow cytometry

and confocal microscopy (Ginley et al., 2017; Zharkova

et al., 2019).

In addition, fungi-induced NETosis may offer medication

guidance in clinical practice. People who use biologics,
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chemotherapeutics, and glucocorticoids are more susceptible

to fungal infections (Chen et al., 2017; Fan et al., 2020), owing

to immune system suppression. The latest research found that

this suppression is related to the inhibition of NETs. In C.

albicans keratitis, glucocorticoids not only lead to an increase

in the virulence of the fungus but also promote disease

progression by limiting NET formation (Fan et al., 2020).

Notably, not all immunodeficiency populations’ vulnerability

to fungus is caused by low NETs. Emerging Candidas-induced

neonatal sepsis may be associated with deficiencies in

neutrophil phagocytosis and respiratory burst (Melvan et al.,

2010) rather than NETosis because neonatal neutrophils show

active CR3-mediated rapid NETosis after encountering C.

albicans (Byrd et al., 2016). Interestingly, some antifungal

drugs also have inhibitory effects on NETs. Traditional

amphotericin B, liposomal amphotericin B, and voriconazole

can inhibit the release of NETs by neutrophils co-cultured with

inactivated A. fumigatus hyphae (Decker et al., 2018). The

influence of this phenomenon on the effects of antifungal drugs

remains to be studied. This finding shows the potential to be

served as a guide for clinical antifungal usage.

Since overwhelming NET formation may result in tissue

damage, especially in invasive pulmonary aspergillosis (Alflen

et al., 2020), it is important to maintain the balance and

determine the mechanisms used by NETs in causing collateral

damage. Components of NETs, such as histones and MPO,

produce direct cytotoxic effects on epithelial and endothelial cells

(Saffarzadeh et al., 2012). Besides, proteins in NETs such as

MPO, NE, lactotransferrin (LF), and LL-37 can directly bind to

proteins on C. albicans cell wall like Als3, enolase and Gmp1. C.

albicans hyphae covered by these proteins have stronger

destructive power to epithelial cells and promote fungal

invasion (Karkowska-Kuleta et al., 2021). Recent studies have

found that NETs can promote macrophage polarization and

pyroptosis, which induces inflammation following infections

(Chen et al., 2018; Song et al., 2019). In turn, different

polarized macrophages are responsible for modulating NET

degradation (Haider et al., 2020). Therefore, several available

agents, such as DNase1 and histone and MPO inhibitors can be

applied to prevent NETs-associated damage (Block and

Zarbock, 2021).

Perspectives and conclusion

Releasing extracellular traps is a common phenomenon

among mononuclear cells and granulocytes (Daniel et al.,

2019; Conceição-Silva et al., 2021). Monocytes extracellular

traps and macrophage extracellular traps (MoETs and METs,

respectively) are observed when cocultured with C. albicans and

also have fungicidal effects (Liu et al., 2014; Halder et al., 2016;

Loureiro et al., 2019a; Loureiro et al., 2019b). Eosinophils

extracellular traps (EETs) are found in the bronchial secreta of
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allergic bronchopulmonary aspergillosis (ABPA) patients and

lead to an increase in the viscosity of eosinophilic mucus leading

to mucus plugging in ABPA and damage to nearby epithelia

(Omokawa et al., 2018; Ueki et al., 2018; Barroso et al., 2021). As

for mast cells, C. albicans can induce mast cells extracellular

traps (MSETs), which can only capture fungi cells rather than

killing them (Lopes et al., 2015).

NETosis is one form of programmed cell death, and together

with apoptosis, necroptosis, and pyroptosis acts as a defense

against microorganisms (Jorgensen et al., 2017). Different cell

death pathways have mutual effects and form a complicated

network (Rosazza et al., 2021). GSDMD used to be considered

the central factor of pyroptosis, while it has been found that

GSDMD takes part in NETosis. Different proteases, such as NE

and caspase-1, are involved in cleavage of GSDMD (Sollberger

et al., 2018; Chen et al., 2018). Autophagy assists in chromosome

decondensation of NETosis and is required in C. albican

induced-NETosis (Remijsen et al., 2011; Kenno et al., 2016).

The role of cell death in fungal infection and their cross-talk

remain to be studied.

Taken together, the mutual effects between fungi and NETs

play a vital role in fungal pathogenesis (Table 1). Fungi can

trigger release of NETs by neutrophils, which shows different
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killing effects facing different types of fungi. At the same time,

fungi can in turn avoid the fungicidal activity of NETs using

multiple avoidance mechanisms. The ubiquity of extracellular

reticular structure among innate immune cells exhibits a new

extracellular mechanism for resisting microbes. This fierce fight

between microbes and the immune system shows tremendous

opportunities for development of therapeutic agents to treat

fungal infections.
Author contributions

CL designed and wrote the manuscript, and finished the

illustrations. NL and ML contributed to the specific sub-titles

and modification work. All authors contributed to the article and

approved the submitted version.
Funding

This work was supported by the CAMS Innovation Fund for

Medical Science (2017-I2M-1-017), the National Natural

Science Foundation of China (81773338), and the Nanjing
TABLE 1 Summary of different fungi interactions with neutrophil extracellular traps (NETs).

Fungal species Receptors Pathway Susceptibility
to NETs

Escape
mechanism

Refs

Candida albican CR3,
Dectin-1,
Dectin-2,
TLRs, CD14,
CD16

mixed ++ Biofilm,
DNase, Saps

(Zawrotniak et al., 2019; Urban et al., 2006; Urban et al., 2009; Metzler et al.,
2011; Byrd et al., 2013; Romao et al., 2015; Gabrielli et al., 2016; Kenno et al.,
2016; Gogol et al., 2016; Johnson et al., 2016; Kenny et al., 2017; Zawrotniak
et al., 2017; Wu et al., 2017; Johnson et al., 2017; Guiducci et al., 2018; Padder
et al., 2018; Khandagale et al., 2018; Hoyer et al., 2018; Wu et al., 2019;
Campos-Garcia et al., 2019; Negoro et al., 2020; Kasperkiewicz et al., 2020;
Thiam et al., 2020; Shankar et al., 2020; Kernien et al., 2020; Smolarz et al.,
2021; Afonso et al., 2021; Sprenkeler et al., 2022)

Candida auris No NETs were induced + ND (Johnson et al., 2018)

Candida glabrata ND mixed + Biofilm, DNase (Johnson et al., 2017)

Aspergillus
fumigatus

CR3 mixed + Modulate cell
wall
components

(Bianchi et al., 2009; McCormick et al., 2010; Bruns et al., 2010; Lee et al.,
2015; Clark et al., 2016; Gazendam et al., 2016)

Aspergillus nidulans ND ND ++ Modulate cell
wall
components

(Lee et al., 2015)

Histoplasma
capsulatum

CR3 ROS
dependent

++ ND (Thompson-Souza et al., 2020)

Paracoccidioides
brasiliensi

Dectin-1 ND controversial DNAase (Della Coletta et al., 2015; Bachiega et al., 2016)

Phialophora
verrucosa

ND ND ++ ND (Liu et al., 2021)

Scedosporium
apiospermum

ND ND + (erly stage) ND (Luna-Rodrıǵuez et al., 2020)

Capsular neoformans ND ROS
dependent

++ Polysaccharide
capsule

(Rocha et al., 2015)
CR3, complement receptor 3; TLRs, Toll-like receptors; ND, not determined; ROS, reactive oxygen species.
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