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Evolutionary game theory assumes that players replicate a highly scored
player’s strategy through genetic inheritance. However, when learning
occurs culturally, it is often difficult to recognize someone’s strategy just
by observing the behaviour. In this work, we consider players with
memory-one stochastic strategies in the iterated Prisoner’s Dilemma, with
an assumption that they cannot directly access each other’s strategy but
only observe the actual moves for a certain number of rounds. Based on
the observation, the observer has to infer the resident strategy in a Bayesian
way and chooses his or her own strategy accordingly. By examining the best-
response relations, we argue that players can escape from full defection
into a cooperative equilibrium supported by Win-Stay-Lose-Shift in a self-
confirming manner, provided that the cost of cooperation is low and the
observational learning supplies sufficiently large uncertainty.
1. Introduction
Evolutionary game theorists often assume that behavioural traits can be geneti-
cally transmitted across generations [1]. Along this line, researchers have
investigated the genetic basis of cooperative behaviour [2,3]. However, humans
learn many culture-specific behavioural rules through observational learning
[4], and this mechanism mediates ‘cultural’ transmission that has been proved
to exist among a number of non-human animals as well [5,6]. The mirror
neuron research suggests that the primate brain may even have a specialized cir-
cuit for imitating each other’s behaviour, which facilitates social learning [7–9]. In
comparison with the direct genetic transmission, the non-genetic inheritance
through social learning can provide better adaptability by responding faster to
environmental changes [10].

In contrast with genetic inheritance, however, observational learning may
lead to imperfect mimicry if observation is not sufficiently informative or
involved with a systematic bias. The notion of self-confirming equilibrium
(SCE) has been proposed by incorporating such imperfectness of observation
in learning [11]: when an SCE strategy is played, some of the possible information
sets may not be reached, so the players do not have exact knowledge but only cer-
tain untested belief about what their co-players would do at those unreached
sets. It is nevertheless sustained as an equilibrium in the sense that no player
can expect a better payoff by unilaterally deviating from it once given such
belief, and that the beliefs do not conflict with observed moves. Dynamics of
learning based on a limited set of information has been investigated in the con-
text of the coordination game [12,13], in which the opponent’s observed decision
is assumed to be his or her strategy. However, the subtlety of cultural trans-
mission manifests itself clearly when a strategy is regarded as a decision rule,
hidden from the observer, rather than the decision itself.

In this work, we investigate the iterated Prisoner’s Dilemma (PD) game
among players with memory-one strategies, who infer the resident strategy
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from observation and optimizes their own strategies against it.
By memory-one, we mean that a player refers to the previous
round to choose a move between cooperation and defection
[14]. If we restrict ourselves to memory-one strategies, it is
already well known in evolutionary game theory that ‘Win-
Stay-Lose-Shift (WSLS)’ [15–17] can appear through mutation
and take over the population from defectors if the cost of
cooperation is low [14]. Compared with such an evolutionary
approach, wewill impose ‘less bounded’ rationality in that our
players are assumed to be capable of computing the best
response to a given strategy within the memory-one pure-
strategy space. We will identify the best-response dynamics
in this space and examine how the dynamics should be modi-
fied when observational learning introduces uncertainty in
Bayesian inference about strategies. If every player exactly
replicated each other’s strategy, full defection would be a
Nash equilibrium (NE) for any cost of cooperation. Under
uncertainty in observation, however, our finding is that defec-
tion is not always an SCE so that the population can move to a
cooperative equilibrium supported byWSLS, which is both an
SCE and an NE and can thus be called a SCENE.
1021
2. Method and result
(a) Best-response relations without observational

uncertainty
Let us define the one-shot PD game in the following form:

C D
C 1� c �c
D 1 0

0
@

1
A, (2:1)

where we abbreviate cooperation and defection as C and D,
respectively, and c is the cost of cooperation assumed to be
0 < c < 1. In this work, the game of equation (2.1) will be
repeated indefinitely. Furthermore, the environment is noisy:
Even if a player intends to cooperate, it can be misimple-
mented as defection, or vice versa, with probability e.
In the analysis below, we will take e as an arbitrarily small
positive number.

Wewill restrict ourselves to the space of memory-one (M1)
pure strategies. By a M1 pure strategy, we mean that it chooses
a move between C and D as a function of the two players’
moves in the previous round.We thus describe such a strategy
as [ pCC, pCD, pDC, pDD], where pXY = 1 means that C is pre-
scribed when the players did X and Y, respectively, in the
previous round, and pXY = 0 ifD is prescribed in the same situ-
ation. Note that the initial move in the first round is irrelevant
to the long-term average payoff in the presence of error so that
it has been discarded in the description of a strategy. The set of
M1 pure strategies, denoted by Δ, contains 16 elements from
d0≡ [0, 0, 0, 0] to d15≡ [1, 1, 1, 1].

Let us assume that a player, say, Alice, takes a M1 pure
strategy da as her strategy. The noisy environment effectively
modifies her behaviour to

seA ; (1� e)da þ e(1� da) (2:2)

as if she were playing a mixed strategy, where 1≡ [1, 1, 1, 1].
Likewise, Alice’s co-player Bob chooses db, and his effective
behaviour is described by

seB ; (1� e)db þ e(1� db): (2:3)
The repeated interaction between Alice and Bob is Marko-
vian, and it is straightforward to obtain the stationary
probability distribution

v(da, db, e) ¼ (vCC, vCD, vDC, vDD), (2:4)

where vXY means the long-term average probability
to observe Alice and Bob choosing X and Y, respectively
[18–20] (see appendix A for more details). The presence of
e > 0 guarantees the uniqueness of v. Alice’s long-term
average payoff against Bob is then calculated as

P(da, db, e) ¼ v � P, (2:5)

where P≡ (1− c,− c, 1, 0) is a payoff vector corresponding to
equation (2.1). As long as Alice can exactly identify Bob’s
strategy db with no observational uncertainty, she can find
the best response to Bob within the set of M1 pure strategies
by applying every da [ D to equation (2.5).

In table 1, we list the best response to each strategy in Δ in
the limit of small e (see also figure 1 for its graphical represen-
tation). In most cases, the best-response dynamics ends
up with d0 = [0, 0, 0, 0], which is the best response to itself
and often called Always-Defect (AllD). For example, if we
start with Tit-for-Tat (TFT), represented as d10 = [1, 0, 1, 0],
table 1 shows that the best response to TFT within Δ is
Always-Cooperate (AllC), represented as d15 = [1, 1, 1, 1], to
which AllD is the best response for obvious reasons.

However, two exceptions exist: The first one is d8 = [1, 0, 0,
0], which we may call M1 Grim Trigger (GT1). If c > 1/3, this
strategy is the best response to itself, and it is an inefficient
equilibrium giving each player an average payoff of O(e).
The other exception is WSLS, represented by d9 = [1, 0,
0, 1], which is the best response to itself when c≤ 1/2. It is
an efficient NE, at which each player earns 1− c +O(e) per
round on average.
(b) Observational learning
Now, let us imagine a monomorphic population of players
who have adopted a strategy dg in common. The population
is in equilibrium in the sense that a large ensemble of their
states XY∈ {CC, CD, DC, DD} can represent the stationary
probability distribution v(dg, dg, e). We have an observer,
say, Alice, with a potential strategy da. As we learn social
norms in childhood, it is assumed that Alice does not yet par-
ticipate in the game but has a learning period to observe M
(≫1) pairs of players, all of whom have used the resident
strategy dg. How their mind works is a black box to her:
Just by observing their states XY and subsequent moves,
Alice has to form belief about dg, based on which she chooses
her own strategy da to maximize the expected payoff.
If Alice’s optimal strategy turns out to be identical to the
resident strategy dg, it constitutes an SCE.

To see how Alice can specify dg [ D from observation, let
us consider an example that the observed probability distri-
bution over states XY is best described as v≈ (0, 1/4, 1/4,
1/2). If Alice has computed v for every strategy in Δ as
listed in table 2, the observation suggests that the resident
strategy is unlikely to be TFT (d10 = [1, 0, 1, 0]) because the
corresponding stationary distribution would be v = (1/4, 1/
4, 1/4, 1/4). She finds that dg can be either d2 = [0, 0, 1, 0]
or d4 = [0, 1, 0, 0]. To distinguish between them, she has to
check how people react to CD or DC. According to table 2,
these states will be observed frequently because vCD = vDC =
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Figure 1. Graphical representation of best-response relations in table 1. If dm is the best response to dn, we represent it as an arrow from dn to dm. The blue node
(Win-Stay-Lose-Shift) means an efficient NE with 1− vCC∼ O(e), whereas the red nodes (Always-Defect and M1 Grim Trigger) mean inefficient ones with
vCC & O(e) as shown in table 2. (Online version in colour.)

Table 1. Best response among M1 pure strategies. Against each strategy in the first column, we obtain the best response (the second column), and the
resulting average payoff (equation (2.5)) earned by the best response is given as a power series of e in the third column. In the second column, we have
placed a dagger next to a strategy when it is the best response to itself.

opponent best payoff of the best response

strategy response to the opponent strategy Misc.

d 0 dy0 (1− c)e AllD

d1 d0 1/2− (1/4 + c)e + O(e2)

d2 d11 (1− c)/2− (1 + c)e/2 + O(e2)

d3 d0 1/2− ce + O(e3)

d4 d0 1/3 + (2/9− c)e + O(e2)

d5 d0 1− (2 + c)e + O(e2)

d6 d9 1− 3(1 + c)e + O(e2)

d7 d0 1− (2 + c)e + 4e2 + O(e3)

d8
dy8 , c . 1=3
d15, c , 1=3

� �
3(1� c)e=2þ O(e2)
1=3� c þ O(e)

� �
GT1

d9
d0, c . 1=2

dy9 , c , 1=2

� �
1=2þ O(e)
1� c þ O(e)

� �
WSLS

d10 d15 (1− c)− (2− c)e + O(e2) TFT

d11
d0, c . 1=2
d13, c , 1=2

� �
1=2þ (1=4� c)eþ O(e2)
(1� c)� (2� c)eþ O(e2)

� �
d12 d0 1/2 + O(e)

d13 d0 1− (1 + c)e + O(e2)

d14 d1 1− 2(1 + c)e + O(e2)

d15 d0 1− (1 + c)e + O(e3) AllC

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20211021

3

1/4. Thus, in this example, Alice succeeds in identifying dg as
long as M≫ 1. Eight strategies have this property, constitut-
ing Category I in Δ (table 2). As another example, if v≈ (1/
2, 0, 0, 1/2), Alice sees that dg must be either d1 = [0, 0, 0,
1] or d7 = [0, 1, 1, 1]. To resolve the uncertainty, she has to
further check how people react to CD or DC, but she may
actually save this effort because the best response turns out
to be d0 in either case (table 1). This is the case of Category
II in Δ (table 2).

In general, the first important piece of information to infer
dg is the stationary distribution v because it heavily depends
on dg (table 2). However, the information of v may be insuffi-
cient to single out the answer: Suppose that v gives multiple
candidate strategies which prescribe different moves at a



Table 2. Stationary probability distribution v(dg, dg, e), where we have
retained only the leading-order term in the e-expansion for each vXY.
When we describe a strategy in binary, the boldface digits are the ones
that are frequently observed with vXY∼ O(1) and thus readily identifiable
as long as M≫ 1. In this table, the eight strategies in Category I have
three or four such digits, so if the population is using one of these
strategies, Alice can tell which one is being played after M (≫ 1)
observations. As for Category II, the member strategies d1 and d7 would be
indistinguishable if M≪ e−1 because they differ at their non-boldface
digits. Still, Alice can find the best response d0 which is common to both
of them (table 1). In Category III, each member strategy has just one
boldface digit, so the strategies as well as the best responses can be
identified only if M≫ e−1.

category strategy vCC vCD vDC vDD

I d3 ¼ [0, 0, 1, 1] 1
4

1
4

1
4

1
4

d5 ¼ [0, 1, 0, 1]

d10 ¼ [1, 0, 1, 0]

d12 ¼ [1, 1, 0, 0]

d2 ¼ [0, 0, 1, 0] 1
2 e

1
4

1
4

1
2

d4 ¼ [0, 1, 0, 0]

d11 ¼ [1, 0, 1, 1] 1
2

1
4

1
4

1
2 e

d13 ¼ [1, 1, 0, 1]

II d1 ¼ [0, 0, 0, 1] 1
2 e e 1

2

d7 ¼ [0, 1, 1, 1]

III d0 ¼ [0, 0, 0, 0] e2 e e 1

d6 ¼ [0, 1, 1, 0] 2e e e 1

d8 ¼ [1, 0, 0, 0] 1
2 e e e 1

d9 ¼ [1, 0, 0, 1] 1 e e 2e

d14 ¼ [1, 1, 1, 0] 1 e e 1
2 e

d15 ¼ [1, 1, 1, 1] 1 e e e2
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certain state XY and thus have different best responses. Alice
then needs to observe what players actually choose at XY, and
such observations should be performed sufficiently many
times, i.e. M vXY≫ 1, for the sake of statistical power. If we
check every dg [ D one by one in this way, we see that the
best response to the resident strategy can readily be identified
as long as M≫ e−1, in which case the result of observational
learning would be the same as that of exact identification of
strategies.

If M≪ e−1, on the other hand, Alice cannot fully resolve
such uncertainty through observation. Still, note that M
should be taken as far greater thanO(1) for statistical inference
to be meaningful. Furthermore, e has been introduced as a
regularization parameter whose exact magnitude is irrelevant,
so we look at the behaviour in the limit of small e. When 1≪
M≪ e−1, uncertainty in the best response remains only when
v≈ (0, 0, 0, 1) or (1, 0, 0, 0), both of which are characteristic of
Category III in table 2. In the former case, d0, d6 and d8 are the
candidate strategies for dg, whereas in the latter case, the can-
didates are d9, d14 and d15. From the Bayesian perspective, it is
reasonable to assign equal probability to each of the candidate
strategies. However, if Me≪ 1, the number of observations
cannot be enough to update this prior probability (see appen-
dix B for a detailed discussion). Therefore, when v≈ (0, 0, 0, 1),
yielding dg ¼ d0 or d6 or d8, Alice tries to maximize the
expected payoff

Pa ¼ P(da, d0, e)þP(da, d6, e)þP(da, d8, e)
3

, (2:6)

and the calculation shows that it can be achieved by playing

d8, if c . 16
33

d9, if c , 16
33

(
(2:7)

in the limit of e→ 0. Likewise, when v≈ (1, 0, 0, 0), yielding
dg ¼ d9 or d14 or d15, Alice tries to maximize her expected
payoff from the three possibilities, which is achieved when
she plays

d1, if c . 2
9

d9, if c , 2
9

(
(2:8)

as e→ 0. Now, AllD ceases to be the best-looking response to
itself (figure 2): The expected payoff against AllD will be
higher when WSLS is played, if c < 16/33. On the other
hand, if we consider aWSLS population with c < 2/9, its coop-
erative equilibrium is protected from invasion of defectors
because Alice under observational uncertainty will keep
choosing WSLS, which is truly the best response to itself.

The above analysis concerns the uniform prior among
three candidate strategies in each case. Let fi denote the frac-
tion of di. For an observer who almost always sees defection
from the population, the prior in equation (2.6) can be written
as ( f0, f6, f8) = (1/3, 1/3, 1/3). For a general prior ( f0, f6, f8)
with 0 < fi < 1 and f8 = 1− f0− f6, the condition for WSLS
to give the highest expected payoff is summarized as the
intersection of the following two inequalities (figure 3a):

f6 .
1
3
f8 � 5c

4þ 3c

� �
(2:9)

and

f6 .
3c

2þ 3c

� �
� 3
5

2� c
2þ 3c

� �
f8: (2:10)

The above inequalities are written for f6 because it is d6 that
has WSLS as the best response (table 1). If c > 1/3, the
former inequality becomes trivial because of the positivity
of f6. Note that WSLS still gives the highest expected payoff
for a significant part of the simplex even when the cost of
cooperation is as high as c = 0.9 (figure 3b).

Similarly, we can check what an observer would conclude
after observing nearly cooperation only, although it is of less
importance compared with the above case of a defecting
population (figure 2). For a general prior represented by ( f9,
f14, f15), where f14 = 1− f9− f15, WSLS gives the highest
expected payoff when

f9 .
c

1� c

� �
1þ f15

2

� �
, (2:11)

as can be seen in figure 3c. This inequality can be satisfied
only if c≤ 1/2: Otherwise, it is better to be a defector by
playing d0 or d1 (figure 3d ).
3. Summary and discussion
In summary, we have investigated the iterated PD game
in terms of best-response relations and checked how it is modi-
fied by observational learning. Thereby we have addressed a
question about how cooperation is affected by cultural



Always-Defect

M1 Grim Trigger
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Figure 2. Best-looking responses to maximize the expected payoff under uncertainty in observation, when 1≪ M≪ e−1. Compared with figure 1, the first
difference is that Alice uses equation (2.7) against d0, d6 and d8. In addition, she will use equation (2.8) against d9, d14 and d15. (Online version in colour.)

c = 0.1 d6
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d13
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Figure 3. Effect of the prior on the observer’s choice. A point in the triangle represents three fractions, which sum up to one, and its distance to an edge is
proportional to the fraction of the strategy at the opposite vertex [21]. (a) When the observer sees nearly defection only, the prior takes the form of ( f0, f6,
f8), for which we can find the strategy that gives the best expected payoff as written in each region. When c is low, d9 (WSLS) gives the highest expected
payoff for most of the prior. (b) Even when the cost increases to c = 0.9, the observer should choose WSLS if the prior contains a sufficiently high fraction of
d6. (c) If the observer sees cooperation almost all the time, the prior can be expressed as ( f9, f14, f15). If c is low, WSLS can be the observer’s choice when
f9 is high enough. (d ) The region of WSLS disappears as c exceeds 1/2, and the only possible choice is between d1 and d0 (AllD).
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transmission, which may be systematically involved with
observational uncertainty. The notion of SCE takes this sys-
tematic uncertainty into account, and its intersection with
NE can be an equilibrium refinement. It is worth pointing
out the following: If everyone plays a certain strategy di with
belief that everyone else does the same, the whole situation
is self-consistent in the sense that observation will always con-
firm the belief, which in turn agrees with the actual behaviour.
The importance of SCENE becomes clear when someone hap-
pens to play a different strategy or begins to doubt the belief: If
di is not an NE, the player will benefit from the deviant behav-
iour and reinforce it. If di is not an SCE, the player may fail to
dispel the doubt, whichwill undermine the prevailing culture.
Therefore, the strategy has to be a SCENE for being transmitted
in a stable manner through observational learning.
As a reference point, we have startedwith the conventional
assumption that one can identify a strategy without uncer-
tainty, and checked the best-response relations within the set
of M1 pure strategies. Our finding is that a symmetric NE is
possible if one uses one of the following three strategies:
AllD, GT1 and WSLS (figure 1). Only the last one is efficient.
Although we have restricted ourselves to pure strategies, we
can discuss the idea behind it as follows: Let us consider a
monomorphic population playing a mixed strategy q = [qCC,
qCD, qDC, qDD], where each element means the probability to
cooperate in a given circumstance. Such a mixed strategy can
be represented as a point inside a four-dimensional unit
hypercube. The observer seeks the best response to it, say,
p = [ pCC, pCD, pDC, pDD]. Suppose that p also turns out to be
amixed strategy, say, containing dk and dlwith k≠ l. According
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to the Bishop–Cannings theorem [22], it implies that

P(dk, q, e) ¼ P(dl, q, e), (3:1)

and this equality imposes a set of constraints on q, rendering
the dimensionality of the solution manifold lower than four.
Therefore, to almost all q in the four-dimensional hypercube,
only one pure strategy will be found as the best response.
In appendix C, we provide an explicit proof for this argument
in case of reactive strategies.

Even if our theoretical framework of Bayesian best-
response dynamics is an idealization, we believe that it
captures certain aspects of animal behaviour. For example,
although the best-response dynamics per se shows poor per-
formance in explaining learning behaviour because of its
deterministic character [23], its modified versions can provide
reasonable description for experimental results [24,25]. In
addition, some studies show that Bayesian updating yields
consistent results with observed behaviour of animals, includ-
ing mammals, birds, a fish and an insect, in the foraging and
reproduction activities [26]. These studies support the Baye-
sian brain hypothesis, which argues that the brain has to
successfully simulate the external world in which Bayes’ theo-
rem holds [27]. We also point out that the posterior can be
calculated correctly even if the observer has short-term
memory as implied by the M1 assumption: As long as input
observations are exchangeable with each other, Bayesian
updating can be done in a sequential manner (i.e. by modify-
ing the prior little by little every time a new observation
arrives), and it is mathematically equivalent to a batch
update that uses all the observations at once.

To conclude, if we take observational learning into con-
sideration, our result suggests that WSLS can be a SCENE
to a Bayesian observer, whereas AllD cannot under observa-
tional uncertainty. That is, if the number of observations is
too small to see how to behave after error, the uncertainty
provides a way to escape from full defection, whereas
WSLS can still maintain cooperation: The point is that AllD
is not easy to learn by observing defectors because it is diffi-
cult to tell what they would choose if someone actually
cooperated. WSLS is also difficult to learn, but the uncer-
tainty works in an asymmetric way because one can expect
more from mutual cooperation than from full defection by
the very definition of the PD game.
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Appendix A. Stationary distribution
Let us consider two players, Alice and Bob, playing the PD
game repeatedly. As written in equation (2.2), Alice’s effective
behaviour in the noisy environment is described by a mixed
strategy seA ¼ (qCC, qCD, qDC, qDD), where qXY∈ {e, 1− e}
denotes Alice’s probability of cooperation when she and Bob
did X and Y, respectively, in the previous round. In the same
manner, another mixed strategy seB ¼ (rCC, rCD, rDC, rDD)
applies to Bob’s effective behaviour (equation (2.3)), where
rXY∈ {e, 1− e} denotes Bob’s probability of cooperation
when he and Alice did X and Y, respectively, in the previous
round. Let v(t)XY be the probability to seeAlice and Bob choosing
X and Y, respectively, in round t. The condition
v(t)CC þ v(t)CD þ v(t)DC þ v(t)DD ¼ 1 is satisfied all the time. The
probability distribution v(t) ; ðv(t)CC, v(t)CD, v(t)DC, v

(t)
DDÞ evolves as

v (t+1) =Wv (t) with

W ¼
qCCrCC qCDrDC qDCrCD qDDrDD
qCC�rCC qCD�rDC qDC�rCD qDD�rDD
�qCCrCC �qCDrDC �qDCrCD �qDDrDD
�qCC�rCC �qCD�rDC �qDC�rCD �qDD�rDD

2
664

3
775, (A 1)

where �qXY ; 1� qXY and �rXY ; 1� rXY. Note that it is a
positive stochastic matrix for e > 0. According to the Perron–
Frobenius theorem, it has a unique largest eigenvalue 1, and
the corresponding eigenvector can be chosen to have positive
entries. Thus, by solving Wv = v, we can obtain the stationary
distribution v = (vCC, vCD, vDC, vDD). Each element vXY can be
interpreted as the long-time average frequency of XY, and it
can readily be expandedas aTaylor series in termsof e. Todeter-
mine the best response todb as shown in table 1,we calculate the
long-term average payoff of da against it for every α∈ {0,…, 15}
(equation (2.5)) and compare the Taylor-expanded expressions
order by order. As for table 2, we set α = β and retain only the
leading order terms in the Taylor series for v.
Appendix B. Bayesian inference
To illustrate the inference procedure, let us assume that v≈ (0,
0, 0, 1) is given to Alice. She has a set of candidate strategies
L ; {d0, d6, d8} for the resident strategy q. Alice assigns
equal prior probability to each of these candidate strategies.
In a certain round t, she observes interaction between Eve
and Frank both of whom use q. Let Et and Ft denote Eve’s
and Frank’s moves, respectively, in round t. If Alice sees
Eve cooperate (i.e. Et =C) after St−1≡ (Et−1, Ft−1) = (C, C ),
she may use this additional information in a Bayesian way
to calculate the posterior probability of q = d0 as follows:

P(q ¼ d0jEt, St�1) ¼ P(EtjSt�1, d0)P(St�1jd0)P(d0)P
di[L P(EtjSt�1, di)P(St�1jdi)P(di)

(B 1)

¼ e � e2 � (1=3)
e � e2 � (1=3)þ e � (2e� 5e2 þ 4e3) � (1=3)þ e � e=2 � (1=3) ,

(B 2)

where P(Et|St−1, di) is directly obtained from di, and P(St−1|
di) is taken from the stationary probability distribution v. This
posterior probability is used as prior probability for the next
observation. If q is actually d6, the average number of times to
observe Et =C after St−1 = (C, C ) will be

MP(Et, St�1jq ¼ d6) ¼ MP(EtjSt�1, d6)P(St�1jd6): (B 3)

In this way, Alice obtains the final posterior probability of q =
d0 after observing interaction between M pairs of players,
when their actual strategy is d6. If e is fixed as a small positive
value, this inference procedure approaches the correct answer
as M→∞. The effect of observational uncertainty manifests

https://doi.org/10.5061/dryad.n02v6wwwz
https://doi.org/10.5061/dryad.n02v6wwwz
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itself whenMe≪ 1. For example, we may chooseM≈ e−1/2 as
a representative value for 1≪M≪ e−1 and check various
values of e from 10−2 to 10−6. Then, the above calculation con-
firms that the posterior probabilities should remain identical
to the prior ones due to the lack of observation.
publishing.org/journal/rs
Appendix C. Best-response relations among
reactive strategies
Let us consider two reactive strategies p ¼ [pC , pD , pC , pD ] and
q ¼ [qC , qD , qC , qD ]. The long-term average payoff of p against
q is

P ¼ (pDqC � pDqD þ qD )� c(pD þ pCqD � pDqD )
1� (pC � pD )(qC � qD )

(C 1)

in the limit of e→ 0. After some algebra, we find the
following: First, if qC− qD > c, both @P=@pC and @P=@pD
are positive, so the best response is given by pC ¼ pD ¼ 1.
Or, if qC− qD < c, both @P=@pC and @P=@pD are negative,
so the best response is given by pC ¼ pD ¼ 0. Note
that we have neglected the measure-zero line defined by
qC− qD = c, on which the best response is not uniquely
determined.
 pb
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