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Somatic mutations are DNA variants that occur after the fertilization of zygotes and
accumulate during the developmental and aging processes in the human lifespan.
Somatic mutations have long been known to cause cancer, and more recently have
been implicated in a variety of non-cancer diseases. The patterns of somatic mutations, or
mutational signatures, also shed light on the underlying mechanisms of the mutational
process. Advances in next-generation sequencing over the decades have enabled
genome-wide profiling of DNA variants in a high-throughput manner; however, unlike
germline mutations, somatic mutations are carried only by a subset of the cell population.
Thus, sensitive bioinformatic methods are required to distinguish mutant alleles from
sequencing and base calling errors in bulk tissue samples. An alternative way to study
somatic mutations, especially those present in an extremely small number of cells or even
in a single cell, is to sequence single-cell genomes after whole-genome amplification
(WGA); however, it is critical and technically challenging to exclude numerous technical
artifacts arising during error-prone and uneven genome amplification in current WGA
methods. To address these challenges, multiple bioinformatic tools have been developed.
In this review, we summarize the latest progress in methods for identification of somatic
mutations and the challenges that remain to be addressed in the future.
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INTRODUCTION

The human body consists of more than 1013 cells developed from a single fertilized zygote and
experiences about 1016 cell divisions throughout its lifespan (Sender et al., 2016). Previously, all the
cells from a single individual were thought to carry an identical genome, but this has been proven
wrong due to the widespread occurrence of somatic mutations even in healthy individuals (Evrony
et al., 2012; Lupski, 2013; Huang et al., 2014). Somatic mutations occur postzygotically as a result of
errors in DNA replication and exposure to exogenous and endogenous mutagenic factors (Vijg and
Dong, 2020). Once fixed in the genome, somatic mutations can be inherited from parental cells to
daughter cells through cell division; when somatic mutations occasionally affect lines of germ cells,
the mutations may be transmitted to offspring (Ye et al., 2018). The scale of somatic mutation varies
from single-nucleotide variant and short indel to structural variation and chromosomal anomaly,
and the somatic single-nucleotide variant (sSNV) is the most common mutation type in the human
genome (De, 2011).
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Somatic mutations have increasingly been implicated in
various diseases. Somatic mutations in oncogenes and tumor-
suppressor genes are the major cause of cancer (Watson et al.,
2013). Accumulation of somatic mutations in cancer driver genes
has also been reported in precancerous and apparently normal
samples of blood and epithelial tissues, and is associated with
increased cancer risks (Kakiuchi andOgawa, 2021). In addition to
cancer, somatic mutations have been found to play a critical role
in an increasing list of non-cancer overgrowth diseases, such as
Proteus syndrome (Lindhurst et al., 2011), arteriovenous
malformation (Couto et al., 2017), and brain malformation
(Jamuar et al., 2014). As a previously overlooked genetic
factor, somatic mutation has been implicated in more and
more non-Mendelian, complex diseases including autism (Dou
et al., 2017; Lim et al., 2017), schizophrenia (Fullard et al., 2019),
and congenital heart disease (Hsieh et al., 2020). Using single-cell
sequencing, an increased genome-wide burden of somatic

mutation in neurons was found to be associated with aging
and neurodegenerative conditions (Lodato et al., 2018).

Different mutational processes generate distinct profiles of
mutational genomic contexts, termed “mutational signatures,”
and the landscape of somatic mutations observed in tissue
samples or single cells often reflects the combined impact of
multiple mutational processes (Helleday et al., 2014). The large
collection of somatic mutations from cancer samples has enabled
the decomposition of mutational profiles from different cancer
types into mutational signatures. By using non-negative matrix
factorization (Lee and Seung, 1999), Alexandrov et al. analyzed
the tri-nucleotide sSNV profiles across 30 cancer types and
successfully identified 27 mutational signatures (Alexandrov
et al., 2013). The catalogue of mutational signatures has then
been extended by incorporating more cancer data and other
mutation types including short indels and double-nucleotide
variants (Alexandrov et al., 2020). A similar analysis strategy

FIGURE 1 | Occurrence of somatic mutations and their identification in next-generation sequencing data. (A) Somatic mutations that occur postzygotically after
fertilization. Mutations arising during embryogenesis or under clonal expansion (green and blue) are shared in a fraction of the cell population, whereas mutations
accumulating during the aging process (purple) may only be present in a single cell. (B) Identification of somatic mutations using bulk or single-cell sequencing. Bulk
sequencing is suitable for detecting somatic mutations shared across multiple cells, though mutations with low allele fractions are difficult to distinguish from
sequencing errors. Private somatic mutations can be detected with single-cell sequencing, but the whole-genome amplification before sequencing may introduce
additional artifacts resulting from amplification errors.
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has also been widely applied to somatic mutations identified from
healthy human tissues or cells (Lodato et al., 2018; Martincorena
et al., 2018) as well as from cultured cell lines (Kucab et al., 2019).

Theoretically, sequencing reads from reference and mutant
alleles of a given mutation should follow a binomial sampling
process, where the expected number of mutant reads is positively
correlated with total depth andmutant allele fraction. Themutant
allele fraction is one of the key variables for somatic mutation
detection, which is largely determined by the timing of the
occurrence of the mutation and the selective pressure acting
on the cell carrying the mutation (Figure 1). Somatic
mutations occurring during embryogenesis or subjected to
clonal expansion can achieve high allele fractions (>1%) in the
cell population so that such mutations can be detected when
sequencing bulk samples at high depth (Huang et al., 2018).
However, next-generation sequencing (NGS) is not perfect: the
error-prone processes of base-calling and alignment can produce
ubiquitous technical artifacts that resemble true somatic
mutations (Ma et al., 2019). Random variation and systemic
bias in sequencing cause the deviation of allele fractions of
heterozygous germline mutations from the expected 50%,
which can also lead to false calls of somatic mutation. More
recently, single-cell sequencing has been developed as a powerful
strategy to enable identification of somatic mutations that are
carried by a very small number of cells or that are even restricted
to a single cell (Baslan and Hicks, 2017). Due to the low DNA
content in every single cell, various methods have been applied to
amplify genomic DNA before sequencing (Gundry et al., 2012;
Chen et al., 2017; Gonzalez-Pena et al., 2021), but they also
introduce numerous amplification errors and severe coverage
unevenness that need to be addressed for somatic mutation
calling.

Calling Somatic Mutations From Bulk DNA
Sequencing Data
Early attempts on somatic mutation calling were made in cancer
studies, where the sequencing data from a tumor sample were
typically compared to a matched normal control sample
obtained from the same donor. Strelka (Saunders et al.,
2012) and VarScan2 (Koboldt et al., 2012) compared mutant
allele fractions between tumor and normal samples to test
whether any given site showed a significantly higher fraction
in the tumor sample. JointSNVMix (Roth et al., 2012) further
considered the base-quality information and deployed a
Bayesian model to jointly analyze tumor and normal
samples, in which germline mutations could be ruled out if
they were predicted to be present in both samples. Moreover,
MuTect (Cibulskis et al., 2013) generated a probabilistic model
to calculate the likelihood of the presence of a mutant allele that
could not be explained by base-calling error or sample
contamination, and then utilized a panel of normal samples
to reduce false positives and filter out germline mutations. In
addition to these statistical models, these somatic mutation
callers also incorporated a series of error filters to further
remove technical artifacts based on aberrant read alignment
patterns, such as strand bias or poor mapping scores.

Although clonal expansion events led by driver mutations are
not rare in healthy tissues, they usually involve relatively small
clones, making it hard to attain high allele fractions in bulk tissue
sequencing (Martincorena and Campbell, 2015). Moreover, the
lack of matched control samples in non-cancer studies poses
further challenges to somatic mutation identification in healthy
individuals. MosaicHunter (Huang et al., 2014) addressed these
difficulties by introducing a mosaic genotype into the Bayesian
model to identify sSNVs without the need for control samples; it
also designed more stringent empirical filters to achieve high
precision when the signal-to-noise ratio is lower in non-cancer
tissues. For whole-exome sequencing data, the additional exome
enrichment steps in library preparation could result in over-
dispersed distribution of mutant allele fractions when compared
to binomial expectation (Huang et al., 2017); MosaicHunter and
EM-mosaic (Hsieh et al., 2020) introduced beta-binomial models
to capture the over-dispersion estimated from each whole-exome
sample. MosaicForecast (Dou et al., 2020) leveraged machine-
learning methods to incorporate multiple classifiers to distinguish
somatic mutations from false positives, and demonstrated a better
balance of sensitivity and specificity than previous methods where
error filters had been empirically defined.

Targeted ultra-deep sequencing has been widely used as a cost-
efficient strategy to increase sequencing depth and thus improve
sensitivity in detecting somatic mutations, especially for screening
mutations in cancer-related genes (Martincorena et al., 2015;
Keogh et al., 2018). However, conventional somatic mutation
callers designed for whole-genome or whole-exome sequencing
usually cannot produce high-confidence calls of somatic candidates
with lower allele fractions (<1%), because a large number of
technical artifacts can reach allele fractions of 0.1–1% in ultra-
deep sequencing data (Fox et al., 2014). To address this, RareVar
(Hao et al., 2017) built a position-specific error model considering
genomic contexts including mutation type and GC content,
enabling identification of sSNVs with a 0.5% allele fraction.
RePlow (Kim et al., 2019) utilized technical replicates of the
same sequenced sample to estimate the background error rate
during library preparation and sequencing, which greatly reduced
false positives in ultra-deep sequencing data.

Calling Somatic Mutations From Single-Cell
DNA Sequencing Data
Somatic mutation in single-cell data has emerged as a powerful
endogenous marker to comprehend underlying mutational
mechanisms across different cell types (Brazhnik et al., 2020),
and to reconstruct developmental lineage during embryogenesis
(Bizzotto et al., 2021). Theoretically, somatic and germline
heterozygous mutations should appear similarly at the single-
cell level, both following a binomial distribution for allele fraction
with an expected probability of 0.5; therefore, a bulk sample from
the same individual is usually necessary to facilitate
distinguishing the two types of mutations. Current whole-
genome amplification (WGA) methods in single-cell
sequencing can result in widespread amplification errors
arising during multiple rounds of PCR, highly variable read
coverage across the genome, and severe allelic dropout events
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when one allele of a genomic locus completely failed to be
captured and amplified (Gawad et al., 2016).

Early pioneering works have demonstrated success in applying
bulk-sequencing-based methods to sSNV calling in single cells
(Wang et al., 2014; Lodato et al., 2015), despite potentially high
false positive rates with the lack of refined modeling of single-cell-
sequencing-specific features. Monovar (Zafar et al., 2016) derived
the conventional binomial model by considering global allelic
dropout and amplification error rates for every single cell
estimated by using heterozygous germline mutations. SCcaller
(Dong et al., 2017) further applied a kernel smoothing method
which enabled the estimation of local allelic dropout across
different genomic loci, and achieved better performance. To
eliminate false positives arising during amplification, LiRA
(Bohrson et al., 2019) and Conbase (Hard et al., 2019) utilized
the read phasing information between somatic mutation
candidates and adjacent germline heterozygous mutations,
where only true mutations but not artifacts would be
completely linked to one of the two alleles of a germline

heterozygous mutation. Moreover, SCAN-SNV (Luquette et al.,
2019) estimated genome-wide allelic imbalance using germline
heterozygous mutations and then checked whether a somatic
candidate had a similar level of allelic fraction to local expectation.

Single cells may share some somatic mutations if those
mutations occurred in their common ancestral cell
(Woodworth et al., 2017). Compared to mutations that are
present in only a single cell, shared mutations can be more
reliably called and distinguished from random amplification
errors if somatic mutation callers can jointly consider
sequencing data from multiple single cells or bulk cell
populations. Monovar and Conbase applied a similar set
intersection strategy, in which somatic mutations from every
single cell were called independently and then only mutations
recurrently called in multiple cells were considered as true clonal
events, although Conbase showed a much lower false positive rate
due to its usage of read phasing information. With the
consideration of single-cell-specific allelic dropout and
amplification error rates, single-cell MosaicHunter (Huang

TABLE 1 | A selected list of tools for somatic mutation calling.

Tool Reference Sequencing
type

Detectable
mutation

type

Optimized
for non-
cancer
data

Built-in
genotyper

Matched
control
required

Base-quality-
aware

in genotyper

Joint
analysis

of multiple
samples

Strelka Saunders et al. (2012) bulk DNA Shared No Yes Yes No Yes, with matched
control

VarScan2 Koboldt et al. (2012) bulk DNA Shared No Yes Yes No Yes, with matched
control

JointSNVMix Roth et al. (2012) bulk DNA Shared No Yes Yes Yes Yes, with matched
control

MuTect Cibulskis et al. (2013) bulk DNA Shared Noa Yes Yesa Yes Yes, with matched
control

MosaicHunter Huang et al. (2014)
Huang et al. (2017)

bulk DNA Shared Yes Yes No Yes Yes, with matched
control or parents

SomVarIUS Smith et al. (2016) bulk DNA Shared No Yes No Yes No
EM-mosaic Hsieh et al. (2020) bulk DNA Shared Yes Yes No No No
MosaicForecast Dou et al. (2020) bulk DNA Shared Yes No No NA No
Shearwater Gerstung et al. (2014) bulk DNA, ultra-

deep
Shared No Yes Yes No No

RareVar Hao et al. (2017) bulk DNA, ultra-
deep

Shared No Yes No No No

RePlow Kim et al. (2019) bulk DNA, ultra-
deep

Shared Yes Yes No Yes No

Monovar Zafar et al. (2016) single-cell DNA Shared and
private

No Yes Yes No Yes, with other single
cells

SCcaller Dong et al. (2017) single-cell DNA Shared and
private

Yes Yes Yes Yes No

LiRA Bohrson et al. (2019) single-cell DNA Shared and
private

Yes No Yes NA No

Conbase Hard et al. (2019) single-cell DNA Shared Yes Yes Yes No Yes, with other single
cells

SCAN-SNV Luquette et al. (2019) single-cell DNA Shared and
private

Yes No Yes NA No

single-cell
MosaicHunter

Huang et al. (2020) single-cell DNA Shared Yes Yes No Yes Yes, with bulk or
other single cells

RNA-MuTect Yizhak et al. (2019) bulk RNA Shared Yes Yes Yes Yes Yes, with
matched DNA

SCmut Vu et al. (2019) single-cell RNA Shared No No Yes NA Yes, with
matched DNA

aLater versions of MuTect, with dramatic improvement from themethod described in the original paper, allow somaticmutation calling in non-cancer samples andwithoutmatched control.

Frontiers in Aging | www.frontiersin.org January 2022 | Volume 2 | Article 8003804

Huang and Lee Detecting Somatic Mutation in Sequencing

https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


et al., 2020) incorporated the genotype probability of single-cell
and bulk sequencing data into a single Bayesian graphical model
where bulk data was generated either from the actual bulk cell
population or an in silico mixture of multiple single cells, and
outperformed other tools on calling clonal mutations.

Calling Somatic Mutations From Non-DNA
Sequencing Data
Somatic mutations can also be called from other types of
sequencing data beyond DNA sequencing data. RNA-MuTect
identified exonic somatic mutations from bulk RNA-seq data by
comparing mutation calls against DNA sequencing of a matched
control sample (Yizhak et al., 2019). Somatic mutation candidates
from RNA-seq data need to be distinguished from RNA editing
sites and germline mutations with allelic expression bias There
are successful attempts on calling somatic mutations from single-
cell RNA-seq (Vu et al., 2019) and ATAC-seq (Bizzotto et al.,
2021) data, but these analyses were limited to re-capture
mutations that had been identified by other DNA-based
methods. Mitochondrial DNA is known to have a higher
mutation rate than the nuclear counterpart, likely due to the
abundant mutagenic oxidative radicals and lack of DNA repair
machinery (Schon et al., 2012). A recent study demonstrated the
possibility of calling mitochondrial somatic mutations in single-
cell RNA-seq and ATAC-seq data and using the mutations as
lineage markers (Ludwig et al., 2019).

Conclusion and Future Perspectives
Many bioinformatic methods have been developed to study
somatic mutation in healthy and diseased human samples
using bulk or single-cell sequencing (Table 1). In bulk-
sequencing-based methods, the detectable allele fraction of
somatic mutation is largely restricted by the intrinsic base-
calling error rate of ∼0.01–0.1% in current sequencing
technologies. Molecular barcoding has been suggested as a
promising solution since it generates a consensus sequence
from multiple sequencing reads derived from the same DNA
fragment and dramatically reduces the base-calling error rate
(Hiatt et al., 2013; Hoang et al., 2016; Abascal et al., 2021);
however, the requirement of high sequencing depth and efficient

tools for consensus sequence calling currently prevents its broad
application. On the other hand, alternative experimental methods
have recently emerged to bypass the WGA step in single-cell
DNA sequencing, including cell culture of isolated single cells
into clones (Bae et al., 2018) or organoids (Behjati et al., 2014;
Nanki et al., 2020), micro-dissection of monoclonal cells from
tissue sections (Martincorena et al., 2015; Li et al., 2020), and even
direct sequencing without pre-amplification (Zahn et al., 2017).

In the past decade, genomic studies have benefited from the
development of single-molecule sequencing technologies that can
directly read nucleotide sequences from DNA or RNA molecules
and deliver much longer reads than previously available NGS
technologies (Logsdon et al., 2020). Long sequencing reads
unlock the possibility of exploring repetitive genomic regions
that are generally inaccessible with short-read sequencing and
characterizing large and complex genetic variants involving copy
number variation or structural variation (Ameur et al., 2019).
New bioinformatic tools specialized for long-read sequencing
have emerged for read alignment (Li, 2018) and variant calling
(Sedlazeck et al., 2018) that have been successfully implemented
in cancer studies (Nattestad et al., 2018; Aganezov et al., 2020).
However, the relatively high cost of single-molecule sequencing
limits its broad application to genome-wide detection of somatic
mutations with low allele fractions since such detection requires
high sequencing depth. Rapid advances in sequencing
technologies and bioinformatic methods will allow more
comprehensive identification and deeper understanding of
somatic mutations in healthy and diseased human genomes in
the future.
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