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Abstract

Background

Rapid on-site evaluation (ROSE) can improve adequacy rates of fine-needle aspiration

biopsy (FNAB) but increases operational costs. The performance of ROSE relative to fixed

sampling depends on many factors. It is not clear when ROSE is less costly than sampling

with a fixed number of needle passes. The objective of this study was to determine the con-

ditions under which ROSE is less costly than fixed sampling.

Methods

Cost comparison of sampling with and without ROSE using mathematical modeling. Models

were based on a societal perspective and used a mechanistic, micro-costing approach.

Sampling policies (ROSE, fixed) were compared using the difference in total expected

costs per case. Scenarios were based on procedure complexity (palpation-guided or

image-guided), adequacy rates (low, high) and sampling protocols (stopping criteria for

ROSE and fixed sampling). One-way, probabilistic, and scenario-based sensitivity analysis

was performed to determine which variables had the greatest influence on the cost

difference.

Results

ROSE is favored relative to fixed sampling under the following conditions: (1) the cytologist

is accurate, (2) the total variable cost ($/hr) is low, (3) fixed costs ($/procedure) are high, (4)

the setup time is long, (5) the time between needle passes for ROSE is low, (6) when the

per-pass adequacy rate is low, and (7) ROSE stops after observing one adequate sample.

The model is most sensitive to variation in the fixed cost, the per-pass adequacy rate, and

the time per needle pass with ROSE.

Conclusions

Mathematical modeling can be used to predict the difference in cost between sampling with

and without ROSE.
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Introduction
Fine-needle aspiration biopsy (FNAB) is a widely used technique that is accurate and relatively
free of complications. While palpation-guided FNABs are relatively inexpensive, image-guided
and endoscopic techniques have increased the cost of FNAB sampling. In these settings there is
a strong economic incentive to improve the reliability of sampling.[1] Rapid on-site evaluation
(ROSE), or immediate cytologic assessment, can increase adequacy rates and reduce needle
passes.[2–4] ROSE has the potential to reduce costs and reduce the number of needle passes
because it can increase adequacy rates. In theory, ROSE should also reduce costs and morbidity
associated with complications because it requires fewer needle passes. As a result, the demand
for ROSE has increased, particularly for high-cost procedures such as Endobronchial ultra-
sound guided (EBUS) sampling and endoscopic ultrasound-guided (EUS) FNAB.

ROSE affects costs in several different ways. These effects act in opposite directions. ROSE
increases adequacy rates that reduces the need for repeat procedures.[2, 4] This, in turn,
reduces the costs as well as the morbidity and complications associated with repeat procedures.
ROSE also decreases needle passes that, reduces morbidity.[5, 6] On the other hand, ROSE
incurs additional costs because it requires additional personnel (cytologist) and increases pro-
cedure time. Thus, there is a trade-off between the cost savings and additional expenses.

Few cost-effectiveness studies exist on ROSE. Eedes, et al.[7] found that ROSE improved
thyroid sampling performance but cost 220 minutes of cytologist time per additional diagnostic
sample; however, this analysis did not account for the savings from fewer repeated samples.
Eedes et al. concluded that ROSE should only be used for repeat FNABs. Nasuti, et al. calcu-
lated that ROSE would save approximately $356 per case. [8] Although the results of the Nasuti
study (2002) were favorable, the study did not account for changes in procedure time resulting
from ROSE. Layfield, et al.[9] found that the cost to perform ROSE is greater than the compen-
sation received; however, this analysis only considered pathologist time and did not account
for the impact of ROSE on the complete cost of care. Zanocco, et al. performed a cost-effective-
ness analysis on ROSE for thyroid nodules.[10] Their model accounted for the competing
effects of increased adequacy (fewer repeat procedures) and increased costs but did not account
for the increase in procedure time. Several recent meta-analyses have shown that ROSE gener-
ally increases adequacy rates but these did not evaluate the cost-effectiveness of ROSE.[2–4, 11]
Overall, the results on cost effectiveness of ROSE have been contradictory (Table 1). No studies
have adequately accounted for the combined costs and benefits of ROSE.

Table 1. Summary of studies on the cost-effectiveness of rapid onsite evaluation (ROSE).

Study FNAB Procedure Setting Results and Conclusion

Bruno, 2013
[28]

Transbronchial needle aspiration Italy ROSE reduced costs by 19,400 euros over 60 cases (about $367 per case)
by reducing the frequency of medianoscopy

Burgess,
2013[31]

Ultrasound guided,Head and neck,
(thyroid, salivary glands, lymph nodes)

United
Kingdom

ROSE would save approximately $164 per case if ROSE increased the
adequacy rate to 100%.

Eedes, 2004
[7]

Thyroid USA, academic
center

ROSE increased the diagnostic rate at a cost of 220 minutes per diagnostic
sample. ROSE is only likely to be cost-effective in limited situations such as
for repeat procedures.

Layfield,
2001[9]

Wide range of procedures: both image
and palpation guided.

USA, academic
center.

Cost of pathologist time to perform ROSE exceeds compensation by about
$45 for image guided procedures. Compensation may be adequate only
when samples are taken and immediately interpreted by the pathologist.

Nasuti, 2002
[8]

5688 cases covering a wide range of
anatomic sites

USA, academic
center.

ROSE saved about $356 per case based on a total cost of $3096 per case.

Urquiza,
2007[32]

Endoscopic ultrasound guided FNA for
gastro-intestinal lesions

Spain Cost of sampling was $47 per correct diagnosis with ROSE and $49.5 per
correct diagnosis without. ROSE was cost effective

Zanocco,
2013[10]

US guided thyroid USA, academic
center

The cost per quality adjusted life year was approximately $639,000 per
case. ROSE is not cost effective.

doi:10.1371/journal.pone.0135466.t001
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The cost of ROSE depends on many factors. These factors include the skill of the aspirator,
the accuracy of the cytologist, the number of needle passes, the length of the procedure, and the
costs of personnel, equipment, and supplies. These factors will depend on the type of procedure
and anatomic site and vary by location. Thus, the number of variables is large. Most clinical
studies are limited because they only provide data on one or two variables at a time in a particu-
lar context. Thus, it would take a very large number of clinical studies to provide insight into
the cost effectiveness of ROSE.

Mathematical modeling provides an alternative to clinical studies. Mathematical modeling
is widely used to explain the relationships between sampling methods and costs.[12–15] Unlike
clinical studies, mathematical models can explore a wide range of case scenarios and provide
insight into the relationships between many variables. In these situations, mathematical model-
ing can provide insights that would be very difficult to obtain by clinical studies.

Two mathematical models have been developed that use simple sampling statistics to pre-
dict the impact of ROSE on FNAB sampling performance (adequacy rates, number of needle
passes).[16, 17] In this study, we use these mathematical models to predict the impact of ROSE
on costs. The overall objective of this study is to determine the conditions under which ROSE
is cost effective.

Methods
Mathematical models have been developed to predict the sampling performance of ROSE.[16,
17] Here, we build on those sampling models and develop a cost model to estimate the cost of
sampling with and without ROSE. We then conduct computer experiments in which we use
the model to determine under what conditions ROSE is cost effective.

Overview
Our strategy is mechanistic (i.e., bottom-up). Our overall goal is to estimate the total cost per
case. We did this in several steps. First, we estimated the total cost per procedure by estimating
the variable and fixed costs for each sampling protocol (ROSE, no ROSE). (Italicized terms are
defined in the Glossary, S2 Text). We estimated the variable cost by determining the time
required to obtain an adequate sample and the resources consumed per hour. The total proce-
dure time depends on the sampling method (time per needle pass and the expected number of
needle passes). The total procedure time is composed of a set-up period and a sampling period.
We estimated the total cost per procedure based on the duration for each period (setup, sam-
pling) and the resource requirements ($/hr) for each period. We assumed that unsuccessful
procedures (inadequate) are repeated. Thus, the total cost per case is given by the total cost per
procedure multiplied by the expected number of procedures (see Fig 1). As shown below, the
cost per procedure and the expected number of procedures depends on the sampling protocol.
The model is described in detail in the Results Section under the heading “Theory: Model
Development.”

Computer Experiments
Scenarios. Our objective was to compare the performance of sampling with and without

ROSE in common FNAB situations. We classified FNAB procedures into two generic proce-
dure types: simple and complex. The simple procedure type was intended to represent FNAB
procedures that would be performed in a physician’s office (e.g., palpation-guided FNAB or
US-guided FNAB of thyroid) and require limited personnel and a short set-up time. The com-
plex procedure represents procedures such as EUS-FNAB and CT-guided FNA that require
more personnel and a longer setup time. The procedure type is designed to capture differences

Cost-Effectiveness of Rapid On-Site Evaluation

PLOS ONE | DOI:10.1371/journal.pone.0135466 August 28, 2015 3 / 20



in the cost structure of different types of FNAB procedures. The scenarios are described in
Table 2.

The adequacy rate represents the per-pass probability, p, of obtaining an adequate
sample. The per-pass adequacy rate would vary on a wide range of factors such the lesion

Fig 1. Sampling Algorithm. The case starts with a setup period. Setup costs depend on the length of time, personnel and other resources used during
setup. The length of the sampling period depends on the sampling protocol. Each sampling protocol depends on a stopping condition. For fixed sampling,
sampling stops after a fixed number of needle passes. In ROSE sampling, sampling stops after the cytologist observes a required number of adequate
samples. The length of the sample period depends on the number of needle passes and the time per needle pass. Two kinds of costs are incurred during
sampling: costs related to time (personnel costs) and costs related to needle passes (supplies, adverse events). After sampling, the samples are processed
and evaluated. The case ends if the samples are adequate for diagnostic assessment. Otherwise, the procedure is repeated.

doi:10.1371/journal.pone.0135466.g001
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characteristics (size, solid vs cystic, anatomic location) and operator characteristics. The overall
adequacy rate depends on the per-pass adequacy rate as well as the number of needle passes.
Our model explicitly separates these two factors (per-pass adequacy, number of passes) to
study the impact of different sampling protocols. We used two different per-pass adequacy
rates (low vs high) to capture the impact of lesion and operator characteristics on sampling
performance.

Sampling protocols are defined by a stopping rule. For sampling without ROSE, sampling
stops after a fixed number of needle passes, nF. With ROSE, sampling stops after the cytologist

Table 2. Design of Computer Experiments. We investigated 32 scenarios which are described in the table below. Each scenario is a combination of a pro-
cedure type (simple or complex), a per-pass adequacy rate (low or high), and a set of sampling protocols (one for ROSE and one for fixed sampling). Proce-
dure types are categorized as simple (palpation guided) or as complex (image guided). Simple procedures have shorter setup times and require fewer
resources than complex procedures. Variable definitions are provided in Appendix (S1 Text). Sampling protocols are defined by stopping rules (number of
needle passes for fixed sampling, and number of adequate samples for ROSE). Please see the text for additional explanation of procedure types, adequacy
rates and sampling protocols. In the simple procedure: tsetup = 4 min, cvar,o = $30/hr, cvar,c = $100/hr, cnp = $0/pass and cpat = $20/hr. In the complex proce-
dure: tsetup = 30 min, cvar,o = $260/hr, cvar,c = $100/hr, cnp = $30/pass and cpat = $20/hr.

Procedure Type Per-Pass Adequacy Rate Sampling Protocol Scenario

ROSE, nR No ROSE, nF

Simple Low (p = 0.3) 1 1 2

2 3

3 4

4 5

2 5 2

6 3

7 4

8 5

High (p = 0.6) 1 9 2

10 3

11 4

12 5

2 13 2

14 3

15 4

16 5

Complex Low (p = 0.3) 1 17 2

18 3

19 4

20 5

2 21 2

22 3

23 4

24 5

High (p = 0.6) 1 25 2

26 3

27 4

28 5

2 29 2

30 3

31 4

32 5

doi:10.1371/journal.pone.0135466.t002
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observes a required number of adequate samples, nR. The relative performance of ROSE
depends on the stopping rules. For that reason, we surveyed a wide combination of stopping
rules. We compared sampling policies in which nR varied from one to two adequate samples
and nF varied from two to five needle passes. This provided a total of eight sampling protocols
which provided a comparison of particular combination of ROSE vs fixed sampling.

We defined a scenario as a comparison of ROSE vs fixed sampling with a specific combina-
tion of stopping rules (stopping rule for ROSE, stopping rule for fixed), per-pass adequacy rate
(low vs high), and procedure type (simple vs complex). For example, a scenario might involve
a comparison of ROSE (stopping after first adequate sample) and fixed sampling (three passes)
in a simple procedure with a high per-pass adequacy rate. This created a total of 32 scenarios (4
fixed sampling stopping rules x 2 ROSE stopping rules x 2 per-pass adequacy rates x 2 proce-
dure types). The scenarios are described in Table 2.

Sensitivity analysis. We conducted one-way and probabilistic sensitivity analysis (see
Glossary, S2 Text) One way sensitivity analysis captures the impact of changing a single vari-
able at a time. Probabilistic sensitivity analysis varies all variables and is able to capture the
impact of interactions. For one-way analysis, we selected a base-case sampling protocol (nF = 3,
nR = 1) and determined the impact of variation of input parameters (see Glossary, S2 Text) on
the total cost. We performed one-way analysis on each of the four case-types. The input param-
eters for each case-type and the range over which each parameter was varied are presented in
Table 3. One-way analysis was performed using @RISK (Palisade Corp, Ithaca, NY).

We used probabilistic sensitivity analysis to study the overall variability in outcomes due to
variation in all the inputs. We used Monte Carlo simulation to generate 100,000 samples for
each of the 32 case scenarios (see Glossary, S2 Text). Each sample was obtained by randomly
drawing input values from the ranges shown in Table 3. Using this method, we were able to
determine the variation in outcome that would be obtained using a particular sampling proto-
col on a particular case-type. Probabilistic sensitivity analysis was performed using Stata (Stata
Corp, College Station, TX).

Table 3. Assumptions for Procedure Types. Procedure types were categorized as simple (palpation guided) or as complex (image guided). Simple proce-
dures have shorter setup times and require fewer resources than complex procedures. Variable definitions are provided in Appendix (S1 Text).Each cell
shows the base value and the range used for sensitivity analysis. Cells that span both columns indicate values that are the same for both types of procedures.
Please refer to the Methods and Glossary (S2 Text) for a more detailed description of procedure types.

Parameter Parameter Value—Mean (range)

Simple Procedure Complex Procedure

Stopping point, ROSE nR 1 adequate sample (1, 2)

Stopping point, fixed nF 3 needle passes (2–5)

Sensitivity of cytologist sn 0.95 (0.90–1.00)

Specificity of cytologist sp 0.975 (0.95–1.00)

Per-pass adequacy rate p Low: 0.3 (0.2–0.4) High: 0.6 (0.5–0.7)

Time per needle pass, fixed tFpass 2 min (1–3)

Time per needle pass, ROSE tRpass 9 min (6–12)

Setup time tsetup 4 min (3–5) 30 min (20–30)

Variable cost, other cvar,o $30/ hr (20–40) $260/ hr (190–330)

Variable cost, cytologist cvar,c $100/hr (75–125) $100/hr (75–125)

Total variable cost, fixed cF
var $130/hr (20–40) $260/hr (190–330)

Total variable cost, ROSE cR
var $130/hr (95–165) $360/hr (290–440)

Cost per needle pass cnp $0/pass $30/pass (15–45)

Fixed cost per procedure cfixed $150(100–200) $300 (150–450)

Cost to patient cpat $20/hr (15–25)

doi:10.1371/journal.pone.0135466.t003
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Theoretical Results: Model Development
Overview. Our model has three components: a sampling model, an operational model,

and a cost model (Fig 2). The samplingmodel estimates the number of needle passes and the
number of repeat procedures based on a set of technical inputs. The operationalmodel esti-
mates the total time per procedure. Finally, the costmodel takes the outputs from the opera-
tional model and estimates the overall cost to obtain a diagnosis. Each component of the model
is described in separate sections below.

Notation. Input variables (parameters) are indicated with lower case letters (e.g., a) and
outcomes (random variables) are indicated with upper case letters (e.g., A). Expected values of
outcome variables are indicated by a bar over the symbol (e.g., �A). Values for inputs and out-
comes may be associated with a particular sampling protocol. We use a superscript to designate
the sampling protocol: F for fixed sampling (i.e., non-ROSE) and R for ROSE (e.g., �AF or �AR).
We use the symbol, π, to indicate a generic sampling protocol (e.g., �Ap) Thus, �AF designates the
expected value of outcome A with fixed sampling, �AR designates the expected value of outcome
A with ROSE sampling, and �Ap designates the expected value of outcome A for any sampling
protocol. All variables are defined in the Appendix (S1 Text).

Sampling model: Number of Needle Passes and Adequacy Rate. The sampling model
estimates the number of needle passes and the number of repeat procedures as a function of
parameters that specify the sampling protocol. Overall, the sampling performance depends on
five inputs: sn, sp, p, nF and nR (defined below). Collectively, we refer to these inputs as the
technical inputs to the model. The technical inputs determine the sampling performance. Sam-
pling performance is described in terms of two outcomes: the number of needle passes and the
adequacy rate (via Eqs 2–6). These technical outcomes are used to estimate the operational per-
formance of FNAB (Fig 2).

We assume a sampling process in which there is a constant per-pass probability, p, of suc-
cess. A success is defined as an adequate sample (i.e., one with sufficient material for diagnostic
assessment). The parameter, p, depends on many factors such as the experience and skill of the
aspirator, the anatomic site, and the characteristic of the lesion (size, solid vs. cystic, etc). The
overall sampling process consists of multiple needle passes and is considered successful if at
least one needle pass produces an adequate sample. We use the term “per-procedure probabil-
ity of success,” P(S), to designate the overall probability of success of multiple (as distinct from
the per-pass probability, p). The per-pass probability, p, is a parameter of the model (i.e., an
input) whereas the per-procedure probability of success, P(S), is a random outcome that
depends on p. Importantly, the per-procedure success rate is equivalent to the adequacy rate.

In a fixed sampling protocol, sampling stops after a fixed number of needle passes, nF. Each
needle pass can be viewed as a Bernoulli trial that has a probability, p, of producing an adequate
sample. Let X be the total number of adequate samples obtained in nF needle passes. In any
procedure, the outcome, X can range from 0 to nF. The probability that X takes on some partic-
ular value, k, is given by the binomial distribution:

f ðkjnF ; pÞ ¼ PðX ¼ kÞ ¼ ð nF

k
Þpkð1� pkÞ ð1Þ

A procedure is considered successful if at least if at least one sample is adequate. The ade-
quacy rate is the probability, P(S), that a procedure is successful. Thus, the expected adequacy
rate is given by

�AF ¼ PðSÞ ¼ PðX > 0Þ ¼ 1� PðX ¼ 0Þ ¼ 1� ð1� pÞnF ð2Þ

Cost-Effectiveness of Rapid On-Site Evaluation
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Fig 2. Explanation of cost analysis. The mathematical model estimates sampling performance (number of needle passes, number of procedures) based
on a combination of controlled inputs (decision variables) and uncontrolled inputs (technical inputs). The operational model estimates operational
performance (sampling time, setup time) based on the sampling performance and operational inputs. Finally, the cost model estimates the overall cost based
on the operational performance and cost inputs.

doi:10.1371/journal.pone.0135466.g002
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where �AF is the expected adequacy rate of a fixed sampling protocol. The adequacy rate, �AF; is
the success rate of the overall procedure (result of multiple needle passes) whereas p represents
the success rate of an individual needle pass.

We can verify the result in Eq 2. The procedure fails only if all nF needle passes fail to pro-
duce an adequate sample. The probability that a single needle pass fails is (1 − p). Because each
needle pass is independent, the probability that all nF samples are inadequate is the product of
the probability of failure of each individual needle pass, ð1� pÞnF : The overall procedure has
two possible outcomes: success or failure. Therefore, the probability of success is one minus the
probability of failure: 1� ð1� pÞnF .

In a fixed sampling protocol, there is no variation in the number of needle passes. The
expected number of needle passes is:

�NF
pass ¼ nF ð3Þ

The binomial distribution is based on the assumption that the per-pass probability of suc-
cess, p, is constant and is unaffected by the number of passes. This assumption is probably not
strictly true in FNAB sampling because each needle pass disrupts the tissue and affects the
probability of success of subsequent samples; however, the assumption that the per-pass proba-
bility of success is constant is a useful approximation and has been shown to be robust to devia-
tions in which the probability of success declines with each needle pass.[18]

With ROSE, the number of needle passes varies. Each sample is assessed by a cytologist, and
sampling stops when the cytologist observes a stopping point, nR. Most commonly, sampling
stops after observing one adequate sample (i.e. nR = 1) but the stopping point, nR, could vary
depending on the type of case or the risk tolerance of the cytologist. We assume that nR is set
prior to sampling and could depend on physical characteristics of the lesion, clinical informa-
tion, imaging studies, etc. In practice the stopping point, nR, might be adjusted during the pro-
cedure in light of the information obtained in prior samples. We regard nR as the average
number of adequate samples that a particular cytologist would require to cease sampling. For
example, one cytologist may usually be able to render a decision after the first adequate sample
(nR = 1) whereas another cytologist may only feel comfortable after the second adequate sam-
ple (nR = 1). Our model is flexible because it enables us to investigate the cost implications of
these choices.

The accuracy of the cytologist is determined by the sensitivity (sn) and specificity (sp) of the
adequacy assessment (sn and sp of the cytologist are judged relative to the final cytological
assessment after processing). We assume that the sensitivity and specificity are known or esti-
mated. In general, the sensitivity and specificity of the cytologist, sn and sp, could depend on a
number of factors such as experience level, the anatomic site, etc. Under these circumstances,
the overall probability of success depends on the per-pass probability of success as well as the
accuracy (sn and sp) of the cytologist. For example, a false positive assessment would terminate
sampling and could lead to sampling failure. False negative assessments would result in unnec-
essary needle passes. The expected adequacy rate and expected number of needle passes for
variable sampling (ROSE) with assessment by an imperfect cytologist are given by:[16]

�AR ¼ PðSÞ ¼ 1� PðfailureÞ ¼¼ 1� ð1� spÞð1� pÞ
1� spð1� pÞ

� �nR

ð4Þ

�NR
pass ¼

nR

ð1� spÞð1� pÞ þ p � sn ð5Þ

Cost-Effectiveness of Rapid On-Site Evaluation
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We assume that the FNAB procedure is repeated if it fails. The expected number of required
procedures is:

�N p
proc ¼

1
�Ap

ð6Þ

where π indicates the type of sampling protocol (fixed or ROSE). We provide evidence that our
model can predict clinical outcomes in the Supporting Material (S4 Text).

Operational Model: Time per procedure. The operational model estimates the total time
required for each procedure using estimates of the number of needle passes obtained from the
sampling model.

Our general strategy is to divide the procedure into different time periods and to estimate
the resource consumption in each time period. Resource use may vary during the procedure
and, in principle, one could divide the procedure into many different time periods to account
for pattern of resource use.[19] Thus, the cost for each period would be the length of the period
times the sum of the hourly cost of the resources used in each period, ti ∑j cij. The total variable
(i.e. time-based) cost would be the sum of the costs in all periods: ∑i(ti ∑j cij).

For simplicity, we divided the procedure time into two periods: setup and sampling. Let
tsetup be the time required for set up. Let tppass be the time required per needle pass under sam-

pling protocol, π. (The symbol, π, is used to designate any sampling protocol. We use the sym-
bols F and R to designate a specific sampling protocol). The time per needle pass depends on
the sampling protocol. In general, the time per needle pass is longer for ROSE sampling. For
example, the time per pass for fixed sampling, tFpass;might be 3 minutes and the time per pass

for ROSE sampling, tRpass 4, might be 8 minutes. We refer to the time per needle pass and setup

time as operational inputs (Fig 2). The total sampling time is given by the time per needle pass
times the expected number of needle passes:

�T p
samp ¼ �N p

pass t
p
pass ð7Þ

Eq 7 shows that the sampling protocol has two effects on the total sampling time. First, it
affects the expected number of needle passes, �N p

pass: Second, the time per needle pass, tppass; also

depends on the sampling protocol. ROSE tends to decrease the number of needle passes but
increases the time per needle pass. The total procedure time would be the sum of the setup
time and the sampling time:

�T p
proc ¼ tsetup þ �T p

samp ¼ tsetup þ �N p
pass t

p
pass ð8Þ

We assume that the setup time is independent of the sampling protocol
(tsetup ¼ tFsetup ¼ tRsetupÞ: For example, the setup time for an EUS-FNAB does not depend on

whether or not ROSE is used. In our model, the variation in total procedure time is driven by
the variation in sampling time which, in turn, is determined by the expected number of needle
passes, �N p

pass; and the time per pass, tppass: Both of these quantities depend on the sampling pro-

tocol as indicated by the superscript, π.
Cost Model. We use a societal perspective as recommended by current guidelines.[20, 21]

The societal view includes all medical costs, costs to the patient, and costs to society such as
lost productivity. The societal perspective is preferred because it incorporates more limited per-
spectives such as the government, medical, or payer perspectives. It is easy to modify a model
based on the societal perspective to create a model based on more limited perspective (e.g. gov-
ernment, medical or payer perspectives).

Cost-Effectiveness of Rapid On-Site Evaluation
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We categorized costs as time-dependent (variable) and procedure-dependent (fixed). Time-
dependent costs include personnel as well as items such as equipment and space that incur an
opportunity cost as a function of time. (The opportunity cost is the cost of the forgone alterna-
tive. For example, the opportunity cost of endoscopy suite time is the profit that would be
obtained if that time could be used to schedule an additional procedure). For convenience, we
distinguish variable costs that are incurred by the cytologist from all other variable costs (the
cost of the cytologist is the major difference between the hourly cost of ROSE and fixed sam-
pling). The overall hourly variable cost for each policy is:

cFvar ¼ cvar;c þ cpat ð9AÞ

cRvar ¼ cvar;c þ cvar;o þ cpat ð9BÞ

where
cvar,c = Variable cost of the cytologist, $/hr.
cvar,o = All other variable costs aside those associated with cytologists, $/hr.
cpat = Hourly wage of the patient (only included in societal perspective)
The cost of the cytologist would vary depending on whether the procedure is performed by

an on-site cytopathologist, on-site cytotechnologist, or a combination of telcytology cytopa-
thologist and an anciallary staff person. Our model can account for all these contingencies by
adjusting the variable cost parameters, cvar,c and cvar,o.

Variable costs are incurred in two different time periods: setup and sampling. For simplicity,
we will assume that the variable costs are approximately the same during setup and sampling
periods. We also assume that cothervar is the same for both fixed and ROSE sampling. Thus, the
total variable costs of fixed and ROSE policies differ by the cost of the cytologist. The expected
total variable cost is the product of the variable cost and the time required for each period.

TCp
var ¼ ðtsetup þ �T p

sampÞcpvar ð10Þ

Fixed costs are defined as costs that are independent of time and are incurred as a function
of a procedure. Most commonly, the fixed costs would be supplies. For simplicity, we assume
that the fixed costs, cfixed, are independent of the sampling protocol (cfixed ¼ cFfixed ¼ cRfixed).

Our model uses the number of needle passes to estimate the time of the sampling period.
Each needle pass not only consumes time but is also associated with morbidity. Let �cnp be the

expected cost of a needle pass. This quantity includes the weighted average of the probability of
each type of adverse event and its associated cost.

The expected total cost per-procedure associated with a particular sampling protocol is
given by the sum of the variable (time dependent), fixed (procedure dependent) and the costs
associated with needle passes.

TCp
proc ¼ TCp

var þ cfixed ¼ ðTsetup þ �T p
sampÞcpvar þ cfixed þ �N p

pass�cnp ð11Þ

We assume that a procedure is repeated if it fails to obtain at least one adequate sample. The
total overall expected cost per case is given by the cost per procedure times the expected num-
ber of procedures:

TCp ¼ TCp
proc

�N p
proc ¼ ðtsetup þ �T p

sampÞcpvar þ cfixed þ �N p
pass�cnp

Ap
ð12Þ

After substituting equations, we obtain the following estimates for the expected cost of
FNAB sampling with and without ROSE. The expected cost of fixed sampling (i.e. without
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ROSE) is given by:

TCF ¼ ðtsetup þ tFpassnFÞ ðcvar;o þ cpatÞ þ cfixed þ �NF
pass�cnp

1� ð1� pÞnF ð13AÞ

The expected cost of sampling with ROSE is given by:

TCR ¼ ¼
tsetup þ ðtRpass þ

�cnp
cRvar

nR
ð1�spÞð1�pÞþp�sn

� �� �
cRvar þ cfixed

1� ðð1�spÞð1�pÞÞ
ð1�spð1�pÞÞ

h inR� � ð13BÞ

where cRvar = cvar;c þ cvar;o þ cpat .

The overall difference in the expected cost per case is:

DTC ¼ TCR � TCF ð14Þ

Eqs 13A and 13B show how the cost per diagnosis can be estimated from decision variables
(type of sampling: fixed or ROSE, the number of required samples or stopping point, nF or nR),
technical parameters (p, sn, sp), operational parameters (tsetup; t

F
pass; t

R
pass), and cost parameters

ðccytovar ; c
other
var ; cfixed; cnpÞ as shown in Fig 2. Our model (Eq 13) is based on several simplifying

assumptions. We provide a general model in the Supporting Material (S3 Text).
Input Assumptions. As noted in the overview, our model depends on three types of

inputs: technical inputs, operational inputs, and cost inputs. We assumed values for each of
these inputs. The assumptions are listed in Table 2 and are described below.

Technical inputs. The technical inputs include the sampling protocol (nF, nR), the per-
pass success rate (p), and the accuracy of the cytologist (sn, sp). We assumed that nF varied
between two and five passes and nR varied between one and two adequate samples. For the
base-case sampling protocol (used in one-way analysis), we assumed that fixed sampling uses
three passes (nF = 3) and that ROSE sampling stops after observing one adequate sample (nR =
1). We assumed that the cytologist has a sensitivity of 0.95 and a sensitivity of 0.99 for sample
accuracy.[22–26] Previous studies have shown that the benefits of ROSE depend on the per-
pass probability of success. We compared two different levels of sampling success: low per-pass
success rate (p = 0.3) and high per-pass success rate (p = 0.6). With a fixed sampling policy
using three passes, the per-case probability of success would be 66% and 94%, respectively for
low and high per-pass probability of success. These per-case probabilities of success represent
the low and high values typically reported in adequacy studies.[11]

Operational inputs. We assumed that the setup time was three minutes for simple proce-
dures and 20 minutes for complex procedures (please refer to the section on Scenarios for defi-
nition of simple and complex procedures). The time per needle pass depends on the sampling
protocol. [9, 27] We assumed that the time per needle pass was 2 minutes for fixed sampling
and 9 minutes for ROSE sampling.

Cost inputs. We used amicro-costing approach to estimate costs. We assumed that all pro-
cedures incurred a fixed cost of $150 for final cytopathological diagnosis. [10] We assumed
that complex procedures require additional supplies (e.g., anesthesia, special needles) that add
$150 to the fixed costs. So, the total fixed cost, cfixed, was $150 for simple procedures and $300
for complex procedures. We assumed that simple procedures required a technician and either
a physician or cytologist. We assumed technician time cost $30 per hour and physician/cytolo-
gist time cost $100 per hour. Thus, the variable cost for a simple procedure was $130 per hour.
We assumed that complex procedures required a specialist (radiologist or endoscopist) and
two assistants (technicians, nurses) at $30 per hour. We assumed specialist time cost $200 per
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hour. Thus, the baseline variable cost (cvar,o) for complex procedures was $260 per hour. With
ROSE sampling, the cost of the cytologist added an additional $100 per hour so the total vari-
able cost for a complex procedure with ROSE was $310 per hour. We assumed the cost per nee-
dle pass, cnp, was zero for simple procedures and $30 per pass for complex procedures
(accounting for morbidity, special needles, etc).

Experimental Results
As shown in Eqs 13 and 14, the expected cost difference between ROSE and fixed sampling,

DTC ; depends on 11 parameters: �cnp; cfixed; cpat; cvar;c; cvar;o; nF ; nR; p; t
F
pass; ; t

R
pass; tsetup.

The precise impact of each parameter depends on the value of the other parameters; how-
ever, several trends are apparent. We conducted a one-way sensitivity analysis by varying the
value of each parameter in Eqs 13A and 13B. ROSE is favored when (group by parameter
type):

Technical factors

• the per-pass probability of success, p, is low

• the number of passes, nF, in fixed sampling is low

• the accuracy of the cytologist, sp and sn, is high.

Operational factors

• the setup time, tsetup, is long

• the difference between the times per pass, tRpass� tFpass; is low

Cost factors

• the fixed costs, cfixed, are high

• the total variable cost, cpvar ¼ cvar;o þ cvar;c þ cpat , is low

• The cost per needle pass, cnp, is high

• ROSE stops after observing one adequate sample (nR = 1)

We compared fixed and ROSE sampling in four different case scenarios using the base-case
sampling protocol (nF = 3, nR = 1). We found that ROSE was most advantageous when the per-
pass success rate was low (Table 4). On average, sampling with ROSE saved $37 per case in
complex procedures when the per-pass probability of success was low. When the per-pass
probability of success was high, ROSE cost $53 more than fixed sampling in complex proce-
dures. ROSE was more costly when used in simple procedures, irrespective of the per-pass
probability of success.

We conducted a more detailed analysis in which we conducted a probabilistic sensitivity
analysis for all 32 combinations of case- and sampling protocols (Fig 3). In general, ROSE was
more costly than fixed sampling when the per-pass success rate was high or when the fixed
sampling protocol used a high number of needle passes (nF = 5). ROSE was less costly only
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when the per-pass success rate was low. The fixed sampling protocol used two passes (nF = 2),
and ROSE sampling stopped after the first adequate sample (nR = 1). There were two condi-
tions were there was no significant cost difference: 1) when the fixed sampling protocol used
three needle passes, or 2) if ROSE stopped after two samples (nR = 2) and fixed sampling
stopped after two needle passes. In general, the variance in the cost difference was smaller for
simple procedures than for complex procedures and when the per-pass success rate was high
(Fig 3).

The total cost per procedure, TCp
proc; was greater for ROSE than for fixed sampling

(Table 4). The increased cost per procedure was due to the increase in sample time, �T p
samp, asso-

ciated with ROSE. �TR
samp was 9.6 minutes longer than �TF

samp when the per-pass success rate was

high and was 24.6 minutes longer when the per-pass success rate was low. The cost-increasing
effects were counter-balanced by the impact of ROSE on repeat procedures, �N p

proc. The number

of repeat procedures with ROSE was approximately 60% of the repeat procedures with fixed
sampling ( �NR

proc ¼ 1:06; �NF
proc ¼ 1:57Þ when the per-pass probability of success was low.

One-way sensitivity analysis showed that difference in total cost per diagnosis was most sen-
sitive to the fixed cost, cfixed, the per-pass probability of success, p, and the time per needle pass
for ROSE sampling, tRpass (Fig 4). The total cost difference (ROSE–fixed) was positive over the

entire plausible range of each input variable when the per-pass success rate, p, was high. The
cost difference was most sensitive to the input parameters when the per-pass probability of suc-
cess was low and when the procedure type was complex.

Table 4. Comparison of ROSE vs fixed sampling for four case types using the baseline sampling protocol. (Stopping rules: 3 needle passes for fixed
sampling, 1 adequate sample for ROSE). Case types correspond to the procedure type (simple vs complex) and the per-pass probability of an adequate sam-
ple (low vs high).

Outcome Symbol Scenario

Complex High
Success

Complex Low
Success

Simple High
Success

Simple Low
Success

Expected Total Cost Rose TCR $652 $836 $203 $251

Fixed TCF $599 $874 $170 $248

Difference difference $53 -$37 $33 $3

Needle Passes per Procedure Rose NR
pass

1.7 3.4 1.7 3.4

Fixed NF
pass

3.0 3.0 3.0 3.0

Difference difference -1.3 0.4 -1.3 0.4

Adequacy Rate Rose AR 0.98 0.94 0.98 0.94

Fixed AF 0.93 0.65 0.93 0.65

Difference difference 0.05 0.29 0.05 0.29

Number of Procedures Per
Diagnosis

Rose NR
proc

1.02 1.06 1.02 1.06

Fixed NF

proc
1.07 1.57 1.07 1.57

Difference difference -0.05 -0.51 -0.05 -0.51

Cost Per Procedure Rose TCR

proc
$641 $787 $199 $237

Fixed TCF

proc
$558 $558 $158 $158

Difference difference $83 $229 $41 $79

Duration Of Sample Period Rose TR
sample

(min)
15.6 30.6 15.6 30.6

Fixed TF
sample

(min)
6.0 6.0 6.0 6.0

Difference difference 9.6 24.6 9.6 24.6

doi:10.1371/journal.pone.0135466.t004
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Discussion
We identified 10 parameters that affect the overall cost of sampling and developed a mechanis-
tic model that shows how these factors affect the cost of sampling. We divided these into tech-
nical, operational, and cost parameters. We were able to identify general case scenarios in
which ROSE is less costly than fixed sampling policies. Overall, our model captures the tradeoff
between the extra time and expense required for ROSE and the reduction in repeat procedures.

Further, our model explains findings that have been observed in clinical studies. For exam-
ple, clinical studies have shown that ROSE improves the adequacy rate only when the

Fig 3. Probabilistic sensitivity analysis of cost difference of ROSE and fixed sampling by scenario. The graph shows the distribution of the difference
in expected cost (ROSE–fixed) for 32 different scenarios. Scenarios consist of a procedure type (simple or complex), a per-pass success rate (low or high)
and stopping rules for sampling (fixed sampling stops after nF needle passes, ROSE stops after nR adequate samples are obtained). For each scenario, the
input parameters were varied over the range shown in Table 2 using Monte Carlo simulation. Values less than zero favor ROSE. For example, ROSE is
generally less costly than fixed sampling in the scenario in the upper left panel (simple procedure, low per-pass success rate, nR = 1, nF = 2).

doi:10.1371/journal.pone.0135466.g003
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probability of success is low. Our model explains this in terms of a binomial sampling process
that depends on the number of needle passes and the per-pass success rate of each pass. In

Fig 4. One-way sensitivity analysis. Each input parameter was varied over its range (shown in Table 2) and the difference in total cost per case (ROSE–
fixed) was calculated for each value of the input parameter. The total cost difference is given by Eq 14 in the text. Negative values indicate that ROSE is less
costly. Each bar shows the range of the difference in total cost as a function of variation in a particular variable. For example, the top bar in each panel shows
the sensitivity of the difference in total cost to variation in the fixed cost. Each panel shows the one-way sensitivity of a particular scenario to variation in the
input parameters. Wide bars indicate the cost difference is relatively sensitive to variation in the parameter. Narrow bars indicate low sensitivity. Each
scenario consists of a procedure type (simple or complex), a per-pass success rate (low or high) and a set of stopping rules. Each scenario used the same
set of stopping rules (three needle passes for fixed sampling, ROSE stops after observing the first adequate sample). Please refer to the Glossary (S2 Text)
or the text for definitions of procedure types, and scenarios. Variables are defined in Appendix (S1 Text) and in the text.

doi:10.1371/journal.pone.0135466.g004
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ROSE sampling, the number of needle passes depends on the specificity and the stopping rule
(number of adequate samples required to stop sampling). The stopping rule, nR, can be viewed
as an indicator of confidence. A confident cytologist might be willing to stop sampling after
observing a single adequate ample (nR = 1) where a less confident cytologist might wish to
observe two adequate samples before stopping. Our analysis shows (Fig 3) that the advantages
of ROSE are negated when additional samples are required.

In general, the cost differences between ROSE and fixed sampling were small (less than $50
per case) when we used base case stopping rules (nF = 3, nR = 1) (see Table 4). We may have
observed smaller differences because we assumed that the procedure was repeated. Bruno, et al.
assumed patients would be referred for medianoscopy following a failed transbronchial FNAB
(TBNA) procedure and attributed a savings of $267 per case to ROSE due to the reduced rate
of medianoscopies.[28] ROSE reduces the inadequacy rate and therefore provides greater sav-
ings if failed procedures are followed by more expensive procedures such as medianoscopy.
Our assumption (FNAB was repeated following an inadequate procedure) was conservative
and the estimated savings for complex procedures ($37) may represent a lower bound.

ROSE can reduce the costs associated with repeat procedures. Repeat procedures incur
unnecessary costs associated with repeat setups. Thus, ROSE is most advantageous when the
setup costs are relatively high. This occurs in complex procedures because the setup time is lon-
ger and the cost per hour is higher than in simple procedures. Repeat procedures are also more
likely when the per-case adequacy rate is low. For a fixed sampling protocol, the per-case ade-
quacy rate increases with the per-case adequacy rate and the number of needle passes. Thus,
ROSE is advantageous when compared to fixed sampling policies using a low number of needle
passes and when the per-pass adequacy rate is low. Overall, our results suggest that ROSE only
provides a cost advantage when compared against fixed sampling policies with relatively low
adequacy rates in procedures with relatively high setup costs (i.e. complex procedures).

ROSE also reduces needle passes which reduces the morbidity and costs. Thus, ROSE would
be favored in situations with relatively high rates of adverse events. For example, CT-guided
FNAB of the lung can cause pneumothorax which can require insertion of a chest tube and
hospital admission. Our model accounts for adverse events by including a cost per needle pass.
ROSE would be favored in circumstances where the cost per needle pass is relatively high.

Our model rests on several assumptions. First, it relies on a simple binomial sampling
model that may not provide an accurate representation of actual FNAB sampling. In particular,
the binomial sampling model assumes that the per-pass probability of success is constant and
does not vary with the number of needle passes. This assumption is probably not true because
each needle pass affects the target so that the probability of success decreases with the number
of needle passes. While this scenario seems plausible, no studies have shown that the per-pass
probability of success depends on the number of needle passes. On the other hand, we are
aware of two studies that show that the binomial sampling model provides a very good fit for
FNAB sampling.[29, 30] In addition, predictions of the binomial model have been shown to be
relatively robust to deviations from the constant-probability assumption.[18] Second, our
model assumes idealized behavior in which the cytologist picks the stopping rules (nR, nF)
prior to the procedure and never deviates from this rule. This assumption was necessary
because we wanted to compare the performance of specific variants of ROSE and fixed sam-
pling (e.g. fixed sampling with nF = 3 against ROSE with nR = 1. In practice, sampling is less
rigid and the stopping rule is sometimes determined by information gained from prior sam-
ples. For example, one might initially plan to use three needle passes in a fixed sampling policy
but then decide to take additional passes On the other hand, our model is flexible and could be
extended to predict the impact of deviations from idealized policies that would be likely to
occur in practice. Finally, our model assumes that the costs can be adequately modeled by
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dividing the total time into a setup time and a sampling time, and by determining the cost
(resource use) per hour. We made the simplifying assumption that the variable cost was the
same for both periods (setup and sampling); however, our model is flexible and could be modi-
fied to account for resources that varied by period (setup vs sampling). Additional periods
(e.g., cleanup, stepdown) could also be added. Costs and procedures vary by institution so it is
impossible to cover every possible variation. Our objective was to illustrate a flexible approach
that can be easily adapted to provide estimates in a wide range of settings.

Our calculations were also based on many assumptions for the input parameters. We con-
ducted extensive sensitivity analyses (one-way, probabilistic, and scenario based) to determine
the impact of uncertainty in the inputs. We also varied the input variables over wide plausible
ranges. The sensitivity analysis shows that our findings are most sensitive to the assumptions
about fixed costs, per-pass probability of success, and the time per needle pass for ROSE. This
implies that institutions should obtain good estimates of these parameters to select the best
sampling protocol. Some parameters may be difficult to estimate (e.g., the cost per needle
pass); however, our sensitivity analysis suggests that many of the input variables have relatively
little impact on the outcome.

All of the inputs are likely to vary by context. We selected four scenarios which were
designed to be illustrative rather than exact. Thus, each institution would need to obtain esti-
mates of the input parameters to determine the best sampling protocol in their particular con-
text. Our model can help guide the collection of this information. One can use approximate
estimates and use these to determine the inputs which have the greatest impact on the cost dif-
ference at their institution. They could then obtain refined estimates for the key parameters.
Our sensitivity analysis suggests that the economics are driven by three to four variables.

Our model has several limitations. For example, ROSE provides qualitative benefits that are
not captured by our quantitative model. For example, ROSE can lead to faster diagnosis. Also,
ROSE can triage samples to appropriate ancillary testing such as immunohistochemistry, flow
cytometry, molecular diagnostics and microbial culture. Thus, our model may underestimate
the overall value of ROSE.

Our model has several strengths. First, our model is very general. Clinical studies have lim-
ited generality because technical inputs, operational inputs, and costs vary between institutions.
For example, the probability of the success per case, P(S), depends on the number of needle
passes and the per-pass probability of success, p. The per-pass probability of success can
depend on the case-mix (anatomic location, tumor size, referral pattern), and the number of
needle passes can depend on the sampling procedures or confidence of the pathologist at a par-
ticular institution. Similarly, operational factors (e.g., time per needle pass, set-up time) and
costs (resource use, wages) will also vary between institutions. Our model is very flexible and
can be used to predict the performance of a very wide range of sampling scenarios. Second,
unlike clinical studies, our model is not subject to sampling error. Thus, we can predict small
differences in performance that would be difficult to identify in clinical studies. Finally, model-
ing is much less costly than clinical studies. Of course, predictions from models must be veri-
fied by clinical studies; however, models can be used to guide clinical studies so that they are
targeted at the most critical sources of uncertainty.

In summary, we developed a method to estimate the relative cost of ROSE and fixed sam-
pling policies. Neither policy was universally superior in the scenarios we examined. The exact
cost difference will depend on the context and will vary by institution. Our method provides a
way to identify the most important factors and predict the cost difference in a particular con-
text and can be individualized for a particular institution.
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