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Abstract
Identifying the direction of signal flows in neural networks is important for understanding the intricate information dynamics of a
living brain. Using a dataset of 213 projection neurons distributed in more than 15 neuropils of aDrosophila brain, we develop a
powerful machine learning algorithm: node-based polarity identifier of neurons (NPIN). The proposed model is trained only by
information specific to nodes, the branch points on the skeleton, and includes both Soma Features (which contain spatial
information from a given node to a soma) and Local Features (which contain morphological information of a given node).
After including the spatial correlations between nodal polarities, our NPIN provided extremely high accuracy (>96.0%) for the
classification of neuronal polarity, even for complex neurons with more than two dendrite/axon clusters. Finally, we further apply
NPIN to classify the neuronal polarity of neurons in other species (Blowfly and Moth), which have much less neuronal data
available. Our results demonstrate the potential of NPIN as a powerful tool to identify the neuronal polarity of insects and to map
out the signal flows in the brain’s neural networks if more training data become available in the future.
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Introduction

Rapid technology advances in recent years have led to the
development of several connectomic projects and large-scale
databases for cellular-level neural images (Chiang et al. 2011;

Kuan et al. 2015; Milyaev et al. 2012; Parekh and Ascoli
2013; Peng et al. 2015; Shinomiya et al. 2011; Xu et al.,
2013; Xu et al. 2020). However, how to integrate and trans-
form the data to address scientific questions (Lo and Chiang
2016) remains a central challenge. Overall, these projects aim
to provide sufficient information for the analysis of informa-
tion flows in the brain. This goal is difficult to achieve in the
current stage, as many neural images do not provide informa-
tion on polarity (axons and dendrites). The axon-dendrite po-
larity of a neuron can be identified by experimental methods
(Craig and Banker 1994; Matus et al. 1981;Wang et al. 2004).
However, these methods are not practical for large-scale neu-
ral image projects and for the image datasets that were already
acquired. Morphology-based polarity identification at the
post-imaging stage is possible, but this is particularly chal-
lenging for insects because of their highly diverse neuronal
morphology (Cuntz et al. 2008; Lee et al. 2014).

To address this issue, the method of skeleton-based polarity
identification of neurons (SPIN) has been developed using sev-
eral classic machine-learning (ML) algorithms (Lee et al. 2014).
Although SPIN reaches a decent performance in neuronal polar-
ity identification for fruit flies, Drosophila melanogaster, with
84%–90% accuracy, the method suffers from the cluster-sorting
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problem. Most projection neurons (i.e., neurons that innervate
more than one neuropil) possess two or more clusters of neural
processes. Each cluster can be either axon or dendrite, but not
both. Using this observation, the SPINmethod first identifies the
clusters of processes in a neuron and then identifies the polarity
of each cluster. The strategy is highly efficient, but incorrect
sorting of clusters can lead to incorrect polarity classification of
a large number of terminal points at once. This is a major source
of errors in the SPIN method.

n the past decade, modern ML algorithms have been ap-
plied in many research fields and in daily life. The popularity
of modern ML grows because of rapid developments in com-
putational algorithms, high-speed processors, and big data
available from various resources (LeCun et al. 1998;
Krizhevsky et al. 2012; LeCun et al. 2015). Some widely
successful algorithms —for example, deep neural networks
(DNN) and extreme gradient boosting (XGB)— may recog-
nize hidden patterns more efficiently than human knowledge/
experience, after proper training on big data. Therefore, ML
opens a new era when precise classification and/or prediction
becomes possible even without full knowledge of the given
data. As a result, many applications of ML have recently ap-
peared in biological and medical research (Asri et al. 2016;
Malta et al. 2018; Mohsen et al. 2018). It is reasonable to
expect that one may apply modern ML for the identification
of neuronal polarity solely using optical images of the fruit
fly’s brain. For neurons of this insect, several tenths of thou-
sands of high-resolution optical images are already available,
which is the largest dataset among all species.

In the present work, we develop a new classifier: node-
based polarity identifier of neurons (NPIN). The proposed
model achieves much higher accuracy (>96%) than SPIN or
the human eye for the identification of neuronal polarity in
the Drosophila brain. Our NPIN is developed using a node-
based feature extraction method. Specifically, NPIN in-
cludes both Soma Features (spatial information between a
soma and a given node) and Local Features (morphological
information around a given node). Two state-of-the-art su-
pervised learning algorithms—XGB andDNN—are used as
two complementary classifiers, making the method applica-
ble to complex neurons (which have more than two axon/
dendrite clusters) with a competition between Soma
Features and Local Features. We find that NPIN provides
extremely good results for the classification of neuronal po-
larity, identifying important local features compared with
the known soma features.We further apply NPIN to classify
the neuronal polarity of other species of insects (in this case,
Blowfly and Moth), which may have insufficient data for
standard ML. These important achievements of NPIN are
all important steps toward the understanding of signal flow
dynamics in neural networks, and should speed up the
connectomic projects for the whole brain when more data
are available for training.

Method

Overview

The axon-dendrite polarity of a neuron is correlated with
certain aspects of its morphology, such as the distance (or
path length) from a terminal to the soma, the number of
nodes involved in a domain/cluster, and the thickness of
neurites (Craig and Banker 1994; Hanesch et al. 1989;
Rolls 2011; Squire et al. 2008). However, so far, very
few theoretical frameworks have systematically investi-
gated the relationship between these features and neuronal
polarity. These empirical conditions are loosely defined,
with many exceptions for different types of neurons.
Therefore, it is difficult to identify neuronal polarity by
traditional rule-based computational programs. SPIN (Lee
et al. 2014), which is developed using classical ML algo-
rithms, can be improved in many aspects.

In order to significantly improve the previous methods, here
we develop a new polarity identifier based on the morphologic
features, which are extracted from neuronal nodes and handled
by modern ML algorithms. Different from clusters, which are
usually ill-defined from computational point of view, nodes are
always well-defined by the bifurcation in a neuronal skeleton.
The whole process of polarity identification, therefore, is com-
posed by the following four major steps in our NPINmodel. It is
instructive to briefly describe them (see Fig. 1) before the further
explanation in the rest of this paper:

Step I. (Data Preparation and Reorganization): We in-
vent a diagrammatic method to map a 3D neural
skeleton structure of a given neuron onto 2D tree
diagrams, called level trees and reduced trees. This
effective representation makes it easy to extract rep-
resentative features for ML.

Step II. (Node-Based Feature Extraction): We determine
the nodal polarity using the features of each node.
Specifically, we identify and extract both Soma
Features and Local Features for each node.

Step III. (ML Models): In NPIN, we apply two powerful
ML algorithms—XGB and DNN—together. They
provide two different but complementary ap-
proaches for the classification of axons and
dendrites.

Step IV. (Implementation of Spatial Correlation): The spa-
tial correlation of the nodal polarity in the nearby
region is implemented by relabeling the nodal polar-
ity suggested by ML models. This approach can sig-
nificantly enhance the accuracy of the final output.

Typical MLmethods concentrate on the algorithms in Step
III. Instead, we put more emphasis on the other three steps in a

670 Neuroinform (2021) 19:669–684



way specifically useful for the determination of neuronal po-
larity. Figure 1 shows the flowchart of the whole calculations.
We will explain these strategies in the rest of this section.

Dataset

Our main dataset represents 213 neurons with experimental
ground truth from the Drosophila brain, which are available
from the FlyCircuit database (http://www.flycircuit.tw/)
(Chiang et al. 2011). These 213 neurons are ALL projection
neurons selected from various regions across the brain to rep-
resent the diversity of neuronal morphology as much as pos-
sible (Fig. 1(a)). Local neurons with axon/dendrite coexis-
tence in the same branch/cluster are not included in our re-
search. These projection neurons innervate 15 neuropils: AL,
AOTU, CAL, CCP, DMP, EB, FB, IDFP, LH, LOB, MED,
NO, PB, VLP, and VMP. Among these 213 neurons, 107
neurons have been included in the dataset used in the devel-
opment of the previous model, SPIN, and we have 106 addi-
tional neurons for the present work. As wewill show later, due
to the improvement of feature extraction and the ML algo-
rithm, our model, NPIN, substantially outperforms SPIN,
not only in the overall precision and recall but also in the
applicability in more brain regions as well as more types of
complex structures. In Appendix E, we list these 213 neurons

with information including the brain regions innervated by the
dendrites and axons of each neuron, the numbers of axon/
dendrite terminals, and precision/recall obtained by our
model.

We divide the neurons in our dataset into two types: (i)
simple neurons, which have two clusters of terminals (one
dendrite and one axon); (ii) complex neurons, which have
more than two clusters of terminals. In Figs. 2(b1)–(b3) and
(c1)–(c4), we show some typical skeleton structures of these
two types of neurons. In our dataset, we have 89 simple neu-
rons and 124 complex neurons with previously reported po-
larity. Among complex neurons, most complex neurons have
three clusters (two dendrites and one axon, or one dendrite and
two axons). Only a few neurons have more than three clusters.
The reason to classify these neurons is to investigate how the
distance to soma and the number of clusters can influence the
identification of neuronal polarity. Moreover, we can examine
how well NPIN performs even when the polarity is difficult to
be identified by the human eyes in the case of three or more
terminal clusters. This is one of the most important criteria for
a polarity identifier to be practically applicable for the deter-
mination of signal flow in neuronal networks of the insect
brain. There are, of course, some other types of projection or
local neurons, which may not be easily classified by the num-
ber of clusters or by their polarity distribution. We do not

Fig. 1 Flowchart of the NPIN model. NPIN includes four major steps, as
described in the text. The dataset contains 213 neurons with labeled
polarity as the ground truth. We randomly choose 100/25/50 neurons
from the datasets for training/validation/test sets. Every neuron in the
training/validation sets is mapped to a level tree and a reduced tree. We
then extract Soma Features and Local Features from these neuronal data
for training. Preliminary results are obtained by XGB and DNN

algorithms after validation.We then relabel the classification by including
spatial correlations of nodal polarities before comparing them with the
test data with known polarities. The whole process is repeated 20 times to
cover all 213 neurons in the original dataset. As a result, each neuron
could be selected to be a test sample and classified by a model trained on
other neurons
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include them in the dataset of this study because of a lack of
data with confirmed polarity to be used for training. Our ap-
proach developed here, however, may still be applicable to
these neurons when more data are available in the future.

Standardized Representation: Level Trees and
Reduced Trees

To improve the accuracy of our ML model, we first need to
define how to “standardize” the morphological information of
these neurons, which are so different from each other in their
original 3D structures. Figures 3(a1) and (b1) show two ex-
amples of a simple neuron and a complex neuron. First, we
start with the 3D skeleton structures (see Figs. 3(a2) and (b2))
extracted from the raw images, where the width information of
the trunks or branches are ignored temporarily in order to
make our model more generally applicable. In our work, we
further map the 3D skeleton structure onto a level tree (see
Figs. 3(a3) and (b3)), which keeps all information on the po-
sition of each node (including soma, terminals, and cross
points between branches) and the path length between them,
but it ignores the trunk and branch information, such as width

or shapes. To express this information in a 2D diagram, we
introduce the level structure according to the generation of
nodes: a soma is placed in the top-level (level 0), and the next
two nodes are placed in the lower level (level 1), and so on for
their offsprings, until all the ending nodes (terminals) are
properly placed. We take the convention that the branches
with more successive non-empty levels are placed in the
left-hand side and the branches with less successive non-
empty levels in the right-hand side (Figs. 3(a3) and (b3)).
We believe that most morphological features of the neuronal
cluster are still extractable from such standardized representa-
tion because the spatial positions of all nodes (including soma
and terminals) are still available. The only missing informa-
tion in the level tree (compared with the 3D skeleton image of
neurons) is the shapes and widths of neuronal branches that
connect neighboring nodes. As we will see below, this miss-
ing information seems not crucial for the determination of
neuronal polarity in NPIN.

In addition to the level tree representation for a neuronal
structure, in this work, we further define a reduced tree for
each neuron. The reduced tree aims to retain the major
branches of the skeleton structure to identify an axon or

Fig. 2 Drosophila melanogaster
(fruit fly) neurons used in the
present study. (a) All 213
neurons in our dataset, shown in
their actual locations in the
standard fly brain. (b1)–(b3)
Skeleton structures for several
simple neurons. (c1)–(c4)
Skeleton structures for several
complex neurons. Black dots
represent somas. Black lines are
the main trunks of neurons. Blue
or red lines indicate the axonal or
dendritic clusters, respectively.
Each neuron is labeled by its ID in
the FlyCircuit database
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dendrite cluster. This information is important for the deter-
mination of cluster curvature and aspect ratio for nodal fea-
tures within each cluster (explained below). The reduced tree
of a neuron can be obtained by repeatedly removing the end-
ing nodes with the branches shorter than a characteristic length
determined by the branch distribution, until it stops automat-
ically or only five levels are left (see Figs. 3(a4) and (b4)). The
basic assumption behind this procedure is that the major
branch of a neuron skeleton structure is contained in the “in-
ner” (closer to the soma) and “longer” branches. Shorter and
outsider branches are minor or unimportant for determining
the clusters. See Appendix A for the detailed procedure of
producing the reduced tree from a level tree.

Nodal Polarity

The polarity of the neurons in our dataset are all predetermined
using the presynaptic (Syt: :HA) or postsynaptic
(Dscam17.1::GFP) markers (C.-Y. Lin et al. 2013) or using
the morphological features described in previous studies
(Fischbach and Dittrich 1989; Hanesch et al. 1989; Wu et al.
2016). There are 7142 terminals identified as dendrites and
2310 as axons. However, because the axon-dendrite polarity
of these terminals is highly correlated to the morphological

structure of their neurons, in this study, we extend the defini-
tion of polarity from terminals to nodes, and we use this infor-
mation to extract features in NPIN. In other words, we use a
bottom up method to assign the polarity for a node to be the
axon/dendrite class, if its offspring branches are connected to
pure axon/dendrite terminals or nodes. See below for more
detail.

We emphasize that using features extracted from nodes has
several important advantages over using features extracted
from terminals or clusters for the training process of ML.
First, the number of nodes is much larger than the number of
clusters in each neuron. Therefore, the polarity identification
has significantly higher accuracy due to the larger training
data. Second, nodes are well-defined in the skeleton structure
(compared with clusters) and could include more morpholog-
ical features (compared with terminals). Finally, these nodes
can also be systematically labeled in the skeleton structure or
in our level tree diagram, making it easy to include their cor-
related features in the spatial distribution. This node-based
feature extraction is crucial in NPIN, making an accurate iden-
tification of neuronal polarity possible.

To extend the polarity definition from terminals, as provid-
ed in the dataset, to nodes on the skeleton of a neuron, we
apply the following series of rules to define the nodal polarity

Fig. 3 Encoding 3D optical images of neurons into level trees and
reduced trees. First, the volume image of a neuron (a1) is converted into
the skeleton (a2), and then a level tree (a3), which is a 2D plot with a
standardized method to label most features of the original neurons. Red,
blue, and yellow dots represent dendrites, axons, and dividing nodes
(including terminals), respectively. (a4) represents the reduced tree of
the same neuron cell. (b1)–(b4) show the same reduction for a complex

neuron. Because a complex neuron has more than two clusters, there can
be more than one dividing node that separates axon clusters from den-
drites. In (c), we graphically show the rules to define the nodal polarity
based on the polarity of terminals in the level tree (see the text). Upward
arrows indicate that the nodal polarity in the upper level is defined by the
nodal polarities of the two nodes/terminals in the lower level
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according to the polarity of terminals (Fig. 3. (c)): (1) If two
child nodes (or terminals) are both axons (or dendrites), their
parent node (the node that directly connects to them in the
upper level) is also defined as an axon (or dendrite). (2) If
one of the child nodes (or terminals) is an axon, and the other
is a dendrite, their parent node is defined as a “dividing node.”
(3) If one of the child nodes is an axon (or dendrite), and the
other is a dividing node, their parent node is defined as an
axon (or dendrite). Finally, (4) if two child nodes are both
dividing nodes, their parent node is also defined as a dividing
node (however, we do not have such a case in our dataset).
The definition of diving nodes is just for the convenience and
consistency of nodal polarity. These dividing nodes are very
few (mostly none or at most two in each neuron of our dataset)
and therefore not included in our training data. If not defining
dividing points in such a way, we could not properly identify
the polarity of a node connecting to both dendrite and axon
nodes.

After applying these rules, we can label the polarity of all
nodes of any neuron using the polarity information of their
terminals. Note that this expansion of nodal polarity should
not be misunderstood as introducing any artifacts or uncon-
firmed polarity labeling, because the morphological features
of terminals should be directly related to the nearby nodes by
definition. The introduced nodal polarity is just for the conve-
nience of feature extraction and for data augmentation in ma-
chine learning language, and will not be shown in the evalu-
ation of NPIN performance. In other words, the precision of
NPIN is still calculated based on terminal polarity rather than
nodal polarity, and will show (see below) a significant en-
hancement of prediction accuracy compared to the results
using terminal information only. Finally, we note that the di-
viding node is defined to mark the position to separate axon
and dendrite clusters, and it should be important in the nerve
cell development. Since the number of dividing points is much
less (one or at most two points in each neuron) than the num-
ber of axon or dendrite nodes, we do not include them in the
training and testing processes. Figures 3(a3) and (b3) show
some representative level trees, where all nodes are properly
labeled.

Feature Extraction for Nodal Polarity

In principle, the level tree representation defined above con-
tains all information of a 3D neuron and can be used for the
identification of neuronal polarity. We test more than a dozen
of features, including (1) path length to its parent node, (2)
normalized path length to its parent node, (3) path length to
soma, (4) normalized path length to soma, (5) direct distance
to soma, (6) normalized direct distance to soma, (7) Strahler
number, (8) angle between branches to the children nodes, (9)
ratio of path lengths to the children nodes, (10) layer number
in the cluster, (11) number of terminals in the clusters, (12)

eigenvalues of moment of inertia of the cluster, (13) curvature
(varicosities) of the cluster, (14) aspect ratio of the cluster, (15)
volume of the cluster, etc. We do not include arbor thickness
because not all neurons have such information in their optical
images.

After systematic studies and comparison of the prediction
results, we eventually find out the nine most relevant features,
which can be classified into 2 groups: Soma Features (SF) and
Local Features (LF). Soma Features contain spatial informa-
tion from a given node to a soma, including the path length
along the neuronal branches and the direct distance in 3D
space. Local Features contain certain information on the local
morphology of a given node, including the curvature and as-
pect ratio of the cluster it belongs to. Hence, Local Features do
not include any information about the soma, while Soma
Features do not include any information about the local mor-
phology. Let i be the index of a given node. Soma Features of
node i can be expressed as a four-component vector: SF = [lsi,
nlsi, dsi, ndsi], which are the path length to soma, normalized
path length to soma, distance to soma and normalized distance
to soma, respectively. Local Features of node i can be
expressed as a five-component vector: LF = [lpi, nlpi, ci, ari,
rli], which are the path length to the parent node, the normal-
ized path length to the parent node, curvature of the cluster,
aspect ratio of the cluster, and the ratio of path lengths to the
children nodes, respectively. If a children node does not exist,
its features are replaced by the number, −1. We then train
different ML models on various combinations of features to
identify their roles in the identification of neuronal polarity. In
Appendix B, we explain how to identify and calculate soma
features and local features (from the level trees and reduced
trees defined above).

Machine Learning Models

We train our model by supervised learning using the training
data extracted from the dataset. We implement several ML
algorithms: random forest, gradient boosting decision tree,
XGB, support vector machines, and DNN. We find that, in
general, XGB and DNN provide the best and complementary
results from the features we selected. Therefore, we use them
in our NPIN. In Appendix C, we explain the details of how to
implement these two algorithms in the present study.

In addition to the algorithms, an ML model also depends
on the features used during the training process. To investigate
the effects of different morphological features on the identifi-
cation of nodal polarity, we develop three models by using
three types of features in NPIN: Model I (using both Soma
Features and Local Features), Model II (using Soma Features
only), and Model III (using Local Features only). As we will
see later, we can gain insight into the relationship between
morphological features and polarity by systematically
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comparing the polarity identification results between different
models and different types of neurons.

Implementation of Spatial Correlation of Nodal
Polarity

In the standard application of supervised learning for classifi-
cation, one usually obtains the results from the output proba-
bilities directly when the model is well-trained on the training
data. The training aims to minimize the cross-entropy between
the output results and the known answers by backpropagation.
However, this ML process does not guarantee reasonable re-
sults all the time without violating some necessary conditions,
which could not be included in the input features of training
data. For the task of nodal polarity identification in our present
work, for example, the polarities of nodes are highly depen-
dent on its neighboring nodes: nodes in the same cluster (and,
therefore, close in space) are usually of the same type (a den-
drite or axon), but such loosely defined necessary condition
cannot be implemented in the loss function if the polarity of
each node is identified individually. Therefore, we have to
include such a spatial correlation of polarity by adding other
methods in the ML model.

In this work, spatial correlations between nodal polarities
can be included by the modification of the polarity provided
by XGB or DNN, if the probability for axon or dendrite is
below a certain threshold.More precisely, such a modification
process contains three steps: (1) we perform the ML process
for the test data and obtain the polarity and its probability for
each node. (2) Next, we accept the result of a given node if the
probability is higher than a threshold, and we reject the result
otherwise by changing it to be unidentified. (3) Finally, we
relabel these rejected/unidentified nodes according to the po-
larity of its neighboring nodes. As a result, we identify spatial
correlations between nodal polarities. More details of such
polarity modification and its effects on the NPIN performance
are described in Appendix D.

Results

Our dataset includes 213 neurons with verified polarities as
the ground truth. In our training procedures (Fig. 1), we ran-
domly select 100 neurons from the dataset for training, 25 for
validation, and 50 for testing. This process is repeated for 20
rounds, so that each neuron can be tested (by different models
trained by other neurons) for 4–5 times on average. We then
average these probabilities for their nodal polarity and make
the final comparison with the ground truth. Using this method,
the obtained results for the nodal polarity of each neuron can
be much more stable because the fluctuations due to the
dataset selection are reduced. In our training data and in com-
parison with the ground truth, the dividing points are not

included because their numbers are too few to be statistically
relevant. In the testing neurons, they could be recovered using
the predicted polarities of other nodes (see Appendix D).

In the following sections, we will first present the distribu-
tion of nodal features, including both soma features and local
features, obtained from all neurons in our dataset. This pro-
vides a deep understanding of neuronal morphology and its
relationship with other results. Next, we show the results of
polarity identification provided by Model I (with both Soma
Features and Local Features) for our whole neuron dataset,
followed by results usingModel II (with Soma Features only).
We then focus on the results obtained by using complex neu-
rons as training data for comparison. As an example of appli-
cation in other species, we apply NPIN to test the blowfly.
Finally, we summarize these calculation results and our
findings.

Feature Distribution and Importance Ranking

Before presenting the results of neuronal polarity by NPIN,
we investigate the distribution of different features (Soma
Features or Local Features) for different types of neurons
(simple neurons or complex neurons). This provides a better
picture which helps to understand and explain the results of
the present algorithm. In Fig. 4, we show the distribution of
axon nodes and dendrite nodes (including terminals) of all
neurons as a function of the normalized path length (relative
to the largest length to the soma). Results of simple neurons
(a1) and complex neurons (a2) are shown together for com-
parison. As expected, most axons have a longer path length to
soma compared with most dendrites in simple neurons, but the
distribution of dendrite is certainly wider than the distribution
of axons. A wider distribution pattern for dendrites in simple
neurons directly implies that it is easier to correctly classify a
node to be a dendrite, while it is more difficult to include all
dendrite nodes by the same classifier. Hence, this explains
why the precision is higher (or lower) than the recall for den-
drites (or axons) of simple neurons (Fig. 5(a1) and (b1)). On
the other hand, in Fig. 4(a2), axon nodes have a wider distri-
bution than dendrite nodes in complex neurons, explaining
why the precision is lower (or higher) than the recall for den-
drites (or axons) of complex neurons (see Fig. 5(a2) and (b2)).

In addition to the path length to the soma, we have also
included the direct distance from a node to a soma as a feature
(Appendix B and Fig. S2(b)). Besides, the ratio of direct dis-
tance to the path length reflects a global morphological feature
of a given node: if the distance to a soma is close to the path
length to a soma, the neuron branches are more straight in the
real space. The path is more curved if this ratio is much small-
er than one. This implied that the node is close to the soma in
space with a long and curved neuronal branch in between. In
Figs. 4(b1) and (b2), we show the distribution of axon and
dendrite nodes in the space of normalized length to the soma
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and normalized direct distance to the soma. The distribution
clearly indicates that most nodes are well-separated in such
2D space. In fact, feature ranking by XGB also reveals these
two features as the most important features for the identifica-
tion of nodal polarity.

Apart from the two soma features mentioned above, in Fig.
4(c1) and (c2), we also present the distribution of nodal po-
larity in the space of normalized length to the soma and the
cluster curvature near a given node. We suggest that the po-
larity classification can be effectively enhanced by including

Fig. 4 Feature distributions of axons and dendrites for all neurons in
our dataset. (a1) and (a2) show the distribution of axon and dendrite
nodes along the normalized path length to soma, for simple and complex
neurons, respectively. (b1) and (b2) display the nodal distribution in terms
of the normalized path length and the normalized distance to the soma.

(c1) and (c3) show the nodal distribution in terms of the normalized path
length to the soma and the curvature of the associated cluster. Blue and
red dots represent axon and dendrite nodes, respectively. Details of cur-
vature calculations are described in Appendix B

Fig. 5 Performance of NPIN with Model I, where both Soma
Features and Local Features are used. (a1)–(a3) are the confusion
matrix and precision/recall table of the terminal polarity, based on the
XGB algorithm for simple, complex, and all neurons, respectively.
(b1)–(b3) are the same as in (a1)–(a3) but calculated by the DNN

algorithm. (c) defines the confusion matrices shown in this figure. In
the upper part of the table, each row indicates the actual polarity, and
each column indicates the polarity predicted by NPIN. The lower part of
the table displays the precision and recall of axonal and dendritic termi-
nals. Precision and recall are defined in the equations below (c)
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curvature as one of the local features because visual inspection
reveals that typically more dendrites (compared to the axon
nodes) can be found in the regime of larger curvatures. Such
effects look more significant in simple neurons than in com-
plex neurons. However, if we use curvature or other local
features alone, the performance of polarity classification can-
not be as good as using the path length to the soma.

The importance of each feature can also be obtained from
the feature ranking calculation of XGB (however, this func-
tion is not available in DNN). This can also be obtained by
comparing the overall accuracy after systematically removing
certain features during the training. Our result suggests the top
six features for the determination of nodal polarity: (1)
unnormalized path length to the soma, (2) normalized path
length to the soma, (3) unnormalized distance to the soma,
(4) normalized distance to the soma, (5) curvature of the as-
sociated cluster, and (6) aspect ratio of the associated cluster.
Other features are less important but can still contribute to the
overall performance of NPIN. These results also confirm that
local features are secondary factors for the determination of
nodal polarity.

Identification Results of Model I: Using both Soma
Features and Local Features

To present the results of polarity identification by NPIN, we
start from Model I by using both soma features and local
features for the whole dataset (with both simple and complex
neurons). Figures 5(a1)–(a3) show the confusion matrix of
Model I based on XGB and the associated precision/recall
table for the polarity of terminals in simple neurons, complex
neurons, and all neurons, respectively. Figures 5(b1)–(b3)
show the results of Model I but based on DNN for compari-
son. Figure 5(c) presents the definition of the confusionmatrix
and explains how the precision and recall are calculated for
axons and dendrites. Because the final result is a binary clas-
sification of terminal polarity, the dividing nodes are not in-
cluded either in the training data or in the test data.

From results shown in Figs. 5(a3) and 5(b3), we discover
that NPIN is a very powerful classifier with an overall accu-
racy of 96%. This is achieved by including both Soma
Features and Local Features. The model is trained and applied
on both simple and complex neurons. According to our re-
sults, in general, the precision and recall for the polarity iden-
tification of dendritic terminals are better than those of axons
by 3%–8%. One possible reason is that the total number of
dendrite terminals is approximately three times more than the
number of axon terminals, providing more training data that
may increase the precision.

Comparing the confusion matrices for simple neurons
(Figs. 5(a1) and 5(b1)) and complex neurons (Figs. 5(a2)
and 5(b2)), we can observe similar performance of XGB and
DNN on simple and complex neurons: The accuracy for

simple neurons is higher than that of complex neurons by
1.2% for XGB (compare Figs. 5(a1) and 5(a2)), while it be-
comes 0.8% if calculated by DNN (compare Figs. 5(b1) and
5(b2)).

However, such similar accuracy of polarity identification
for simple and complex neurons is surprising, because com-
plex neurons have more than two clusters. Therefore, the po-
larity of middle clusters cannot be easily identified according
to its relative distance to soma. There are also various kinds of
complex neurons (see Fig. 2, for example), which may also
have an axon cluster close to the soma. As a result, a naïve
comparison of the path length to the soma should not work
well for a complex neuron. Hence, it is reasonable to believe
that, in our NPIN, the contribution of soma features to simple
and complex neurons should be different from the contribu-
tion of local features. To understand how this result is related
to the feature selection in various types of neurons, in the
following section, we demonstrate the performance of NPIN
with different feature selections.

Identification Results of Model II: Using Soma
Features Only

To clarify the role of Soma Features and Local Features in the
identification of neuronal polarity, we additionally use Model
II, which is trained by using Soma Features only. Themodel is
trained using the same protocol as in the previous section. The
results are shown in Fig. 6.

According to Fig. 6, when using Soma Features only, we
find that the overall accuracy drops to 95.5% (94.7%) for
simple neurons, and 93.1% (90.0%) for complex neurons,
respectively, if using XGB(DNN) algorithms. The perfor-
mance on all neurons, as shown in Fig. 6(a3) and (b3), is
between those of the simple and complex neurons, as
expected.

Several important conclusions can be made. First, the over-
all accuracy of Model II is lower than for Model I (compare
Fig. 6(a3) with Fig. 5(a3) for XGB and compare Fig. 6(b3)
with Fig. 5(b3) for DNN). However, the difference is only
1.6% for XGB, while it is 3.5% for DNN. This means that
the contribution of local features, which exists in Model I but
not in Model II, is more significant for DNN than XGB.
Second, if we compare the results for simple and complex
neurons, we can see that the influence of local features is much
more significant for complex neurons than for simple neurons.
For example, for XGB, we find that the accuracy decreases by
1% only in simple neurons (compare Fig. 5(a1) and
Fig. 6(a1)), while it decreases by 2.3% for complex neurons
(compare Fig. 5(a2) and Fig. 6(a2)). These two values become
2.2% and 5.7%, respectively, for DNN. This clearly implies
that Local Features which are included in Model I are more
important for complex neurons compared to simple neurons.
The most obvious reason is that complex neurons have more
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than two clusters and, therefore, the simple application of
soma features could not provide enough information for the
identification of polarity. As an example, Fig. 6(c) shows two
types of complex neurons, where the middle clusters have
different polarities. These middle clusters are difficult to clas-
sify by Soma Features only. As a result, we conclude that local
features are crucial for the polarity identification of the middle
clusters in complex neurons and the DNN algorithm may be
more sensitive to these differences than XGB.

Comparison of Models I, II, and III for Complex
Neurons

In this experiment, to investigate how NPIN works with com-
plex neurons and to examine its relationship with local fea-
tures, we focus on complex neurons only: no simple neurons
are included in either training data or test data. Three models
are used for comparison: Model I (with both Soma Features
and Local Features), Model II (with Soma Features only), and
Model III (with Local Features only). Because the influence of
Local Features is more significant in DNN than in XGB (see
above), here we will apply the DNN algorithm only for
simplicity.

According to the results shown in Fig. 7(a1)–(a3), the ac-
curacy of classification is the best for Model I and slightly
reduces for Model II, but it significantly drops for Model III
(which uses Local Features only). This result indicates that,
without any information on its relative distance to the soma,
Local Features alone for a given node perform poorly in po-
larity identification but are not completely useless (with 71%
accuracy, see Fig. 7(a3)). Indeed, we find that the inclusion of

local features plays a complementary role in polarity identifi-
cation, especially for the middle clusters of complex neurons.
More precisely, by comparing Fig. 7(a2) to Fig. 7(a1), we find
that local features can significantly reduce the number of in-
correct identification for axons (upper right corner of the con-
fusion table, from 150 to 66); hence, the number of correctly
identified axons is increased.

In Fig. 7 (b1)–(b3), (c1)–(c3), and (d1)–(d3), we show
three representative complex neurons with three or more clus-
ters of terminals. Figure 7 (b1), (b2), and (b3) show the same
neuron with polarities identified by Model I, Model II, and
Model III, respectively. Figure 7 (c1)–(c3) and (d1)–(d3)
show similar information but for another two neurons. The
results obtained by using Local Features alone (Model III)
are not satisfactory: some axon clusters with larger curvatures
may be incorrectly classified as dendrites (see, for example,
two axon clusters in Fig. 7(c3)). Moreover, some dendrite
clusters with divergent branches may be incorrectly classified
as axons (see, for example, the dendrite cluster in Fig. 7(d3)).
Using Soma Features only (Model II), on the other hand,
provides a much better result (with an accuracy of 95.8%),
because clusters that are closest to or farthest from the soma
are identified as dendrites or axons, respectively. However, as
we see in Fig. 7(c2), (d2), and (e2), the middle clusters (de-
fined from their distance to soma) of these complex neurons
cannot be identified easily by Model II (with Soma Features
only), because their relative distance to the soma is not well-
defined compared to the other clusters.

As a summary, we find that the accuracy to classify the po-
larity of middle clusters in a complex neuron can be significantly
enhanced after combining Soma Features and Local Features in

Fig. 6 Performance of NPIN using Model II, where only Soma
Features are included. (a1)–(a3) show the results for simple neurons,
complex neurons, and all neurons, respectively, using the XGB

algorithm. (b1)-(b3) are the same as (a1)–(a3) but for the DNN
algorithm. (c) shows two similar complex neurons, where middle clusters
have opposite polarities. The cluster labeled by A/D is axons/dendrites
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Model I. More examples of complex neurons with correct polar-
ity identification by Model I are shown in Fig. 7(e1)–(e4).

Application to Other Species of Insects: Blowfly and
Moth

In principle, our NPIN, trained on the Drosophila brain neu-
rons, can also be applied to the polarity identification of other
species, if the training data is replaced by the neurons of that
species. However, the number of publicly available neuronal
data samples of other species with identified polarity is much
less than that of Drosophila. Therefore, such an application
may not be practical. However, it is still instructive to see how

our NPIN, trained byDrosophila neurons, can be directly used
for other species of insects, which should have similar mor-
phological features as Drosophila. Here, we take the neuron
images of the blowfly and the moth from the Neuromorpho
database (http://neuromorpho.org/) as an example. The
database lists 19 blowfly neurons and 3 moth neurons with
labeled polarity.1 These data were generated by different labs

1 The IDs of 19 Blowfly neurons are HSE-fluoro05, HSE-fluoro11, HSE-
fluoro15, HSN-cobalt, HSN-fluoro04, HSN-fluoro06, HSN-fluoro08, HSS-
cobalt, VS1-cobalt, VS2-fluoro01, VS2-fluoro03, VS2-fluoro10, VS3-cobalt,
VS4-cobalt, VS4-fluoro02, VS4-fluoro07, VS4-fluoro09, VS5-cobalt, VS9-
cobalt. The IDs of 3 Moth neurons are Nevron-komplett-08-02-28-2a,
Nevron-komplett-08-03-13-2a, Nevron-komplett-08-08-28-1a-A.

Fig. 7 Performance of NPIN with DNN algorithm for complex
neurons in three different models. (a1)–(a3) are the confusion matrix
and precision-recall table for the terminal polarity for Model I (with both
Soma Features and Local Features), Model II (with Soma Features only),
and Model III (with Local Features only), respectively. (b1)–(b3) display
the same complex neuron with polarity classification using Model I,

Model II, and Model III, respectively. Filled gray circles indicate the
terminals of incorrect classification. (c1)–(c3) and (d1)–(d3) are the same
as in (b1)–(b3) but with two different complex neurons. (e1)–(e4) are four
different complex neurons, where polarities are classified byModel I with
100% accuracy by DNN algorithm
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using different reconstruction methods from that of our
Drosophila dataset. To save space, below we just present
NPIN results of the blowfly in detail and mention the results
of the moth data in brief.

Figure 8 shows the results of polarity identification for 19
blowfly neurons obtained byModel I, Model II, andModel III
of NPIN, which is trained on 213 Drosophila neurons in our
dataset with the DNNmodel.We find that Model I, using both
soma features and local features, still provides a decent level
of accuracy (83.4%). The main error stems from the pretty low
precision and recall of the axons, which have much fewer
terminal numbers than dendrites (dendrites: axons ratio =
22.8:1). Similar results are also observed for Model II, as
shown in Fig. 8(a2).

However, a surprising result is obtained when using Model
III, where only local features are included for the training on
Drosophila neurons. The overall accuracy, as well as the pre-
cision and recall for both dendrites and axons, are very high
(accuracy = 98.98%). This result is even better than that ob-
tained by using the blowfly data for the training process
(Fig. 8(b)). The results clearly indicate that, unlike
Drosophila, where Local Features are only secondary factors
compared with Soma Features, Local Features are the primary
factors for the identification of neuronal polarity for blowfly
neurons that we tested in the present study. This can also be
observed from the skeleton structure of dendrite clusters in
Fig. 8(c1)–(c4). Therefore, to apply NPIN (trained on
Drosophila neurons) to neurons of other insects, it is neces-
sary to provide not onlyModel I, but alsoModel II andModel
III, to maximize the range of applications. However, we have
to emphasize that since the 19 blowfly neurons are all collect-
ed from the visual system, and therefore we could not exclude
the possibility that the success of NPIN may be due to their
special morphology. More analysis on other types of neurons
in the blowfly should be carried out in the future when more
neurons with known polarity are available.

In addition to the blowfly, we also collected 3 moth neu-
rons with known polarities from the Neuromorpho database.
Among the 194 dendrite terminals and 358 axon terminals, the
overall accuracy of the polarity identification by NPIN
(trained by the 213Drosophila neurons with the DNNmodel)
is 98.2%, 99.0% and 65.6% for Model I, II, and III respective-
ly. This result reflects the fact that the polarity of these three
neurons could be much easily identified by Soma Features
only. This could be a complementary example of the blowfly
and show the importance of including both Soma Features and
Local Features for a general application of NPIN.

Summary of Results

We summarize the results of the present study in Fig. 9 by
showing the accuracy of NPIN in all test conditions including

three models (Model I: all features, Model II: Soma Features
only, Model III: Local Features only) and three types of test
data (simple neurons, complex neurons, and all neurons). For
simplicity, we only display the results using the DNN
algorithm.

As explained above, the overall accuracy cannot reflect the
complete information on model performance, especially when
the numbers of dendrites and axons are highly imbalanced. To
generate a reliable ML model, we suggest that the precision
and recall for both axons and dendrites have to be larger than
50%, or, in other words, we have more correctly identified
terminals than incorrect ones. We put stars “*” in Fig. 9 to
mark those results that do not meet these criteria.

Discussion

Comparison of NPIN and SPIN

A previously developed machine-learning-based method,
SPIN (described in the introduction), has identified the polar-
ity of insect’s neurons with an overall accuracy 84%–90%
(Lee et al. 2014). SPIN starts by identifying clusters of neu-
ronal arbors in each neuron and then classifies the polarity of
each cluster according to its geometric structure and distance
to the soma. As a result, terminals in a cluster are all classified
as having the same polarity. However, this approach has two
challenges. First, a cluster might not be easily identified for
neurons with complex morphology, and incorrect clustering
could lead to a large number of incorrectly classified termi-
nals, for example, 14 of 213 neurons used in the present study
were not processable by SPIN. Second, the number of avail-
able clusters may not be sufficient to achieve good training
results because each neuron has only a few clusters. Due to
these issues, SPIN often failed to classify part of or even all
terminals of a neuron if its arbors were not clustered correctly.

The proposed NPIN avoids these issues by adopting node-
based rather than cluster-based classification. To compare the
performance of SPIN and NPIN, we examine the results of the
polarity identification by SPIN on the same 213 neurons we
used here (Huang et al. 2019). We find that, among these 213
neurons, only 79 neurons are fully identified (i.e., without any
“non-classified” terminals), 120 neurons are partially predict-
ed (i.e., some clusters cannot be identified), and 14 neurons
cannot be predicted. Among 9452 terminals of these 213 neu-
rons, there are 1207 unclassified terminals and 8247 classified
terminals. Within the SPIN-classified terminals, 8038 termi-
nals are correctly identified for their polarities. Therefore, the
overall accuracy of SPIN is 85.04% only if we consider all
terminals in the dataset, while it could be 97.49% if we con-
sidered only classified terminals.

We emphasize that, in the present study, we develop a
completely different approach by identifying the polarity of
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each node, which can be unambiguously defined in the skel-
eton structure of each neuron, with a nodal polarity also well-
defined through the polarity of terminals (see Fig. 3). Such
node-based feature extraction, therefore, takes advantage of
the fact that the number of nodes is much larger than the
number of clusters in each neuron. It can achieve a much
higher accuracy (>96%) for the whole dataset (213 neurons
and 9452 terminals) after including the spatial correlation.
Therefore, we conclude that NPIN outperforms SPIN in the
polarity identification, showing an important step toward the
reconstruction of the connectome. We expect to analyze the
information flow of the brain in much finer scales in the near
future, revealing more detailed functional relationships be-
tween subregions of the Drosophila brain.

Neurons Not in the Dataset

As described in the flowchart of NPIN in Fig. 1, the neuronal
polarity predicted by NPIN for the 213 Drosophila neurons is

obtained by randomly selecting 100 neurons for training, 25 for
validation and 50 for test. In other words, each neuron shown in
Tables S1 and S2 of Appendix E is tested by models, trained on
other neurons in the dataset, and therefore there is no overlap
between the test data and training data in all the results presented
above.

However, in order to show how well NPIN can be applied
for neurons not in the same dataset, we find another 22 neu-
rons with distinct connection types (mostly from AOTU to
BU, and from MED to VMP) from those in the NPIN dataset
for the test. The polarities of these neurons are determined by
our experimental collaborators and therefore are not published
before (and also not in the original dataset either). 12 of them
have dendrites located in AOTU, 9 in MED and 1 complex
neuron in MB, see Table S3 of Appendix E. The predicted
results by NPIN (trained by the 213 neurons together) show
that NPIN could still provide very high accuracy. More pre-
cisely, for these 12 neurons in AOTU, 11 of them are 100%
correct and only one is of 75% accuracy. For the 9 neurons

Fig. 8 Performance of NPIN on blowfly brain neurons. (a1)–(a3) are
the confusion matrices and precision-recall tables for Model I, Model II,
and Model III, respectively. The models are trained on 213 fruit-fly

neurons in our dataset. (b) is the result for Model I but trained on blowfly
neurons directly. (c1)–(c4) display four example skeleton structures of the
blowfly neurons used in this test

Fig. 9 Summary of NPIN accuracies in all test conditions using the
DNN algorithm. (a) shows the results for Model I (with both Soma
Features and Local Features), Model II (with Soma Features only), and
Model III (with Local Features only), for three types of test data: simple

neurons, complex neurons, and all neurons, respectively. (b) shows the
results for the same models but with the blowfly neurons (trained by our
Drosophila dataset). Results with precision or recall of less than 50% are
indicated by “*” (see the text)
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with dendrites in MED, 7 of them are 100% correct and the
other two are of 94.3% and 80.6% accuracy. The complex
neuron with dendrites in MB (also not shown in the dataset
of NPIN) is predicted with 100% accuracy. These results
show that our NPIN should be applicable to neurons in other
brain regions. Although like all machine learning algorithms,
NPIN is trained by labeled data with similar features (neuronal
morphology) to those of unlabeled data, we found that NPIN
is still able to successfully classify polarity for neurons that are
morphologically distinct from the training neurons.

Nevertheless, we have to acknowledge that the number of
neurons in our dataset is far less than the total number of
neurons (approximately 135 K) in the Drosophila brain.
There must be other types of neurons with polarity-specific
morphological features, which can be very different from
what we have addressed in this study. For example, the den-
drites and axons of some local neurons are co-localized in the
same cluster of arbors, and some projection neurons develop
axonal clusters that are closer to the soma than the dendritic
ones. We will include more morphologically distinct neurons
into the training set, once their experimentally verified polar-
ities are available. Therefore, although more training data are
necessary when applying our NPIN for the polarity identifica-
tion of the whole Drosophila brain, the present work at least
demonstrates the possibilities to have a high precision identi-
fication through the node-based feature extraction in NPIN.
We believe that the future versions of NPIN, after including
more types of neurons in the training data, will provide a much
wider range of applications.

Neurons with Low Accuracy

To examine the performance of our NPIN, we investigate those
neurons not identified well in their polarity. As described in the
Results section, we could obtain this information by randomly
selecting 150 neurons (100 for training, 25 for validation, and 50
for testing) out of the 213 neurons in the dataset for each training/
test process and then repeating it for 20 rounds. As a result, each
neuron can be tested (by different models trained by other neu-
rons) for 4–5 times on average, and their polarity identification
results can be obtained by averaging their probabilities before
relabeling. The final results calculated by the DNN model are
shown in Appendix E. Within these 213 neurons, the terminal
polarity of 166 neurons is identified with 100% accuracy. Only
14 simple neurons and 33 complex neurons are not fully identi-
fied. Concentrating on those neurons with a lower accuracy (say
below 85%), we find only 5 simple neurons and 24 complex
neurons left.

When looking into the skeleton structures of these neurons
with a lower accuracy, we find the following features of these
neurons: Simple neurons have a very similar distance for axon
clusters and dendrite clusters to the soma, and the number of
dendrite terminals is much larger than the number of axon

terminals. The former makes it difficult to distinguish axons
from dendrites, while the latter could confuse NPIN by
mispredicting all terminals to be dendrites (as a result, the
precision and recall of axons are both small). For complex
neurons, the incorrectly identified terminals usually appear
in the middle clusters, as one may expect. However, the most
complex neurons have been correctly predicted by NPIN with
a very high accuracy (91 of the 124 complex neurons are
identified with 100% accuracy). In our node-based feature
extraction, it is challenging to correctly identify the clusters
of fewer terminals or nodes, because their local features are
less representative of their local morphology. Therefore, find-
ing a better way to define local features (less dependent on the
number of terminals in the same clusters) could enhance po-
larity identification in future work.

Comparison with Results of Electronic-Microscopy
Images

Finally, a large set of electronic-microscopy images (the EM
dataset) of the Drosophila brain has recently been released (C.
S. Xu et al. 2020). This dataset includes identified polarities, and
hence can be potentially used as the training data for NPIN or be
comparedwith the results predicted byNPIN on the fluorescence
images. However, after careful examination of that dataset, we
discovered two major differences in the morphological charac-
teristics between the two datasets: (1) the neuronal skeletons in
the EM dataset exhibit much more details, e.g., a larger number
of short terminal branches than what have been found in the
fluorescent images in the present study. (2) Some neurons in
the EM dataset have incomplete tracing or discontinuous
branches. These issues prevent us from directly using the EM
dataset. For future work, we suggest that heavy preprocessing,
containing the reconstruction of the connectome and the algo-
rithm of matching terminals of the same neuron from two image
types, is required, before NPIN can utilize the EM dataset.
Moreover, we have to emphasize that the current hemi-brain
EM database is from ONE fly only, but neural images from
light-microscopy based databases are often accumulated from
multiple individuals. Although this database serves as crucial
reference data for the fly community, it is unlikely that full-
brain or hemi-brain EM data from many more flies or from flies
with different genetic manipulation will become available in the
near future. By contrast, data from optical images are continu-
ously generated by a large number of labs in the world. We
therefore believe that our NPIN will have its impact and be
widely used by many fly labs in the future.

Conclusion

In this study, we have developed NPIN, a completely newML
model to identify the polarity of projection neurons in a
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Drosophila brain with high precision (>96%). This result was
achieved due to three major contributions: node-based feature
extraction, separation of Local Features from Soma Features,
and implementation of spatial correlations between nodal po-
larities. In the experiments, we systematically compare the
results of different models for various types of neurons. We
demonstrate that, apart from Soma Features, Local Features
are the secondary factors to determine the neuronal polarity.
Local Features can significantly improve the polarity identifi-
cation, especially for the middle clusters of complex neurons,
which cannot be well-identified by using Soma Features only.
Besides the Drosophila neurons, we show that NPIN can also
be applied to identify the neuronal polarity of other insects,
such as the blowfly. As a result, we believe that the develop-
ment of NPIN and its applications is an important step toward
the determination of signal flows in complex neural networks.
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