
1Scientific Reports |         (2019) 9:16969  | https://doi.org/10.1038/s41598-019-53236-9

www.nature.com/scientificreports

Precise determination of surface 
band bending in Ga-polar n-GaN 
films by angular dependent X-Ray 
photoemission spectroscopy
Yanfei Zhao1*, Hongwei Gao2, Rong Huang1, Zengli Huang1, Fangsen Li1, Jiagui Feng1, 
Qian Sun2, An Dingsun1* & Hui Yang1,2

We present a systematic study of surface band bending in Ga-polar n-GaN with different Si doping 
concentrations by angular dependent X-ray photoelectron spectroscopy (ADXPS). The binding energies 
of Ga 3d and N 1 s core levels in n-GaN films increase with increasing the emission angle, i. e., the 
probing depth, suggesting an upward surface band bending. By fitting the Ga 3d core level spectra at 
different emission angles and considering the integrated effect of electrostatic potential, the core level 
energy at the topmost surface layer is well corrected, therefore, the surface band bending is precisely 
evaluated. For moderately doped GaN, the electrostatic potential can be reflected by the simply linear 
potential approximation. However, for highly doped GaN samples, in which the photoelectron depth is 
comparable to the width of the space charge region, quadratic depletion approximation was used for 
the electrostatic potential to better understand the surface band bending effect. Our work improves the 
knowledge of surface band bending determination by ADXPS and also paves the way for studying the 
band bending effect in the interface of GaN based heterostructures.

Group III-nitrides and related alloys have received considerable research interests in recent years mainly due to 
their advantages in high power/high speed device applications1–4. Large spontaneous and piezoelectric polariza-
tion effects in Gallium Nitride (GaN) induce large band bending in surface layer and also across the interface of 
the heterojunction5. Surface band bending plays an important role in semiconductor devices by modifying the 
basic electronic properties and efficiency of them6. The effective electron surface band bending results from the 
complex superposition of contributions from localized surface state charges and polarization charges in wurtzite 
GaN crystal, and directly affects the device performance7. It has been reported that heavily Si doped GaN ohmic 
layers, in lateral contact to two-dimensional electron gas in the GaN channel, could dramatically improve the DC 
and RF characteristics in GaN-high electron mobility transistors (GaN-HEMT)8. However, there have been few 
reports on studying the surface band bending in GaN with different doping density, especially in highly doped 
GaN films. Therefore, it is highly desirable to precisely determine the surface band bending in different doped 
GaN, to reveal the complication in physics of semiconductor device.

Angular dependent X-ray photoelectron spectroscopy (ADXPS) has been used as a surface sensitive method 
to determine the surface band bending9–11. By decreasing the photoelectron emission angle θ respected to the 
sample surface, the surface sensitivity of the photoelectron spectroscopy can be increased since the detection 
depth of photoelectron reduces by a factor of sin(θ)12. Thus, the magnitude of surface band bending can be 
obtained by measuring the change of photoelectron spectra at different emission angles. However, when con-
sidering the real situation of a surface with band bending, the collected core level photoelectron peak is actually 
an integration of photoelectrons coming from several subsurface atomic layers, instead of the topmost surface 
layer. In the band bending assessment, the magnitude of surface band bending is determined by the difference 
in core level energies at the topmost atomic layer and the corresponding value in the bulk, while, the measured 
photoelectron peak without deconvolution function at the topmost surface layer is expected to be shifted due to 
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the integral effect, which may lead an underestimate or overestimate of the band bending extent13–15. To improve 
the accuracy of analysis, we derive the actual photoelectron peak from different detection depth by performing a 
method of peak deconvolution to eliminate the integrating effect caused by electrostatic potential. After decon-
volution function correction, the actual core level binding energy dependence on the detection depth can be 
obtained, improving the accuracy of the band bending assessment. In this paper, Ga-polar n-GaN samples with 
different Si doping densities have been studied by using ADXPS. Ga 3d core level spectra were evaluated correctly 
by considering the band bending due to the electrostatic potential affected by the doping density combined with 
localized charges on the surface. In the case of moderate Si doping GaN films, the electrostatic potential can be 
evaluated simply by a linear relationship to the depth by deconvolution correction. While, in heavily Si doped 
case, due to the steep space charge potential, the quadratic depletion approximation is more reasonable than 
linear potential approximation in the surface band bending deconvolution calculation. With deconvolution cor-
rection, the surface band bending in different doping density GaN films are precisely determined.

Results and Discussion
A schematic band diagram for the surface band bending measurement is outlined in Fig. 1(a). The surface band 
bending (BB) in GaN can be determined from core level binding energy, such as, Ga 3d or N 1 s, and other inher-
ent properties of GaN, as described in the following6,9:

= − + − − −E E E E E EBand bending(BB) ( ) ( ) (1)CL V g C CL Vbulk surface

where, (ECL − EV)bulk is the binding energy difference between core level and valance band maxima in GaN bulk 
which is a material constant, Eg is the band gap of GaN (3.45 eV16), EC is the position of conduction band with 
respect to the Fermi level, and depends on doping concentration, (ECL − EV)surface is the core level energy refer-
enced to the Fermi level energy on GaN surface, which would change with the doping density and the surface 
states. For comparison, three kinds of Si doped GaN films were studied, with doping level of 9 × 1017 cm−3 (sam-
ple 1), 4 × 1018 cm−3 (sample 2) and 1.4 × 1019 cm−3 (sample 3), respectively. The doping densities are verified by 
secondary ion mass spectroscopy (SIMS) measurements. For sample 1 (S1), Ec is calculated to be 0.03 eV above 
the Fermi level. When the doping density increases, the Fermi level moves to a higher level. Ec is calculated to be 
0.03 eV and 0.1 eV below the Fermi level for sample 2 (S2) and sample 3 (S3).

Figure 1(b) shows the XPS spectra of the Ga 3d core level spectra, as well as the valance band of S2, collected 
at emission angle of θ = 85° and represented as black dots and lines. By taking Shirley background subtraction 
and a combination of Gaussian and Lorentzian line shapes, the Ga 3d spectrum can be fitted into four peaks, 
corresponding to the Ga-N, Ga-O, Ga-Ga bonds and N2s. The fitted highest peak at 19.48 eV originates from 
Ga-N bond. The valance band maximum (VBM) is determined by the intercept of the slope at the leading edge of 
the valance band spectrum with the base line, shown by the blue solid line in Fig. 1(b). The energy difference of 
(ECL − EV)bulk is calculated to be 17.48 eV, which is consistent with the values reported for bulk GaN17–20.

Figure 2(a–c) show the Ga 3d core level spectra at different emission angles in different Si doped GaN samples. 
As displayed in Fig. 2(a), the characteristic Ga 3d(Ga-N) peak in S1 shifts toward higher energy with increasing the 
emission angle θ. Actually, the photoelectron escape depth depends on the emission angle (θ) in a simple relation 
of λ sin(θ), where λ is the inelastic mean free path of photoelectrons. The value of λ is 2.6 nm for photoelectrons 
of Ga 3d in GaN, as calculated by TPP-2M method21 in NIST’s database22. Thus, the binding energy of Ga 3d(Ga-N) 
peak increases monotonically with the increase of detection depth (about 3λ), as shown in the insert of Fig. 2, 
implying a sharp upward band bending exists in the GaN surface layer. The similar upward band bending phe-
nomena can also be clearly observed in the Ga 3d (Ga-N) peaks in S2 and S3, as shown in Fig. 2(b,c), respectively. 

Figure 1.  Surface band bending calculation in Ga-polar n-GaN films. (a) Schematic surface band bending in 
Ga-polar n-GaN. (b) The measured Ga 3d core level and valance band spectrum of S2 at θ = 85° are shown 
by black dots and lines. The Ga 3d spectrum can be fitted into four peaks. The Ga-N, Ga-O, Ga-Ga bonds and 
N2s peaks are displayed by the yellow, green, blue, magenta lines respectively. The red line represents the fitting 
envelope. The magenta dashed lines are eye-guides to show the peak position of the Ga-N bond and VBM. The 
inset shows the definition of emission angle θ .
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Moreover, the peak shift extent of the highly doped sample (S3) is larger than that of S1 and S2, indicating a larger 
equivalent internal electric filed exists in S3. It is noted that similar binding energy shift can be also observed in 
the spectra of N 1 s peaks of different Si doped GaN samples, as shown in Fig. 2(d–f).

As reported previously5, an internal potential gradient exists in GaN material due to its large spontaneous 
polarization. The spontaneous polarization of Ga-polar n-GaN would lead to negative surface bound charges, 
while the positive donor charges formed in n-GaN compensate the polarization-induced negative surface charge 
and form an electron accumulation layer, which induces an upward band bending6. As shown in Fig. 1(a), the 
core level (ECL), the VBM (Ev) and the conduction band minimum (Ec) all bent upward in the Ga-polar n-GaN 
surface layer. It is known that a core level spectrum obtained by ADXPS is an integration of photoelectrons emit-
ter within the detection depth of the topmost surface. As schematically outlined in Fig. 3, the measured spectrum 
without deconvolution shown by the solid black line is an integration of the actual spectrum at each depth point 
along the bend core level displayed by the dash dot color lines. Namely, the dash dot color lines performed the 
deconvoluted spectra at different depth point. Due to the exponential decay of the XPS intensity, it is educible that 
the contribution of photoelectrons emitted from a deeper layer is overwhelmed by the contribution of photoelec-
trons from a shallower layer, leading the peak energy position shifts away from the original binding energy due 
to the effect of integration. In other words, for an electronic band structure with upward bending, the measured 
maximum of the integrated photoelectron peak without deconvolution is expected to be shifted away from the 
deconvoluted binding energy at that depth, guided by the dashed black lines in Fig. 3, and thus gives an under- or 
overestimation on the band bending magnitude from the values on the very surface.

Based on the ADXPS core level peaks collected at different emission angles, we derive the dependence of 
photoelectron binding energy on depth in the undersurface layer by taking a method of peak deconvolution for 
eliminating the integrated effect caused by electrostatic potential. Briefly, a measured core level spectrum as a 
function of the binding energy, is given as follows23:
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where, z is the depth from the surface of the bulk, I0(E) refers to the typical core level spectrum with a peak energy 
of E. ψ(z) stands for the assumed electrostatic potential. λ is the inelastic mean free path of photoelectrons. Here, 
I0(E − ψ(z)) can be expressed by the pseudo-Voigt function24:
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Figure 2.  Measured core level spectra of different Si doped GaN samples. (a–c) Ga 3d core level spectra 
measured at different emission angle θ  for S1, S2 and S3. The inset displays the binding energy of Ga 3d(Ga-N) 
peak as a function of detection depth. (d–f) N 1 s core level spectra measured at different detection angle θ  for 
S1, S2 and S3, respectively. The inset displays the binding energy of N 1 s(N-Ga) peak as a function of detection 
depth. The green dashed lines are eye-guides to highlight the variation of peak position.
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where, I00, α, and F are the core level spectrum intensity, the ratio of Gaussian function, and the full width at half 
maximum (FWHM) of the core level spectrum, respectively. As shown in Fig. 4, the measured binding energies 
of Ga 3d (Ga-N) peak are plotted by black solid circles as a function of detection depth. The blue dashed lines are 
eye-guides to show the peak positions of the binding energies that shift with the detection depth in a linear way, 
indicating the surface band bending existing in all three samples. However, the peak position of each spectrum 
collected at different emission angles actually represent the integrated contribution of photoelectrons from dif-
ferent detection depth to sample surface. To figure out the actual binding energy of photoelectron emitted from 
a certain depth, it is necessary to deintegrate the measured peak according to Eqs (2, 3). First, we consider a 
uniform internal potential gradient on the surface of Ga-polar n-GaN and ψ(z) is a linear relationship to z. By 
deconvolution of the spectra measured at different emission angles, we obtained the dependence of the actual 
core level binding energy on the detection depth, shown by the red dashed lines in Fig. 4. The calculated binding 
energy at surface E0, is summarized in Table I. For comparison, the binding energy at the topmost surface layer by 
the linear fitting of the measured data without deconvolution is expressed by Es.

As shown in Table I, by assuming a linear surface potential ψ(z) in GaN, the discrepancy between E0 and Es 
values are small for S1 and S2, which is consistent with the XPS theory that the major photoemission contribution 
origins from the topmost atomic layers and the deconvolution affects little at the topmost surface. However, in S3 
with higher doping density, Es shifts away from E0, indicating the inaccuracy of linear potential approximation. 
For S1 and S2, the space charge region width is dozens of nanometer, which is much larger than the  detection 
depth, so we adopt the linear potential approximation at the surface (details are shown in the supplementary 
information). Owing to the high doping level in S3, the width of the space charge region is reduced to be compa-
rable with the photoelectron depth, thus the realistic quadratic depletion approximation should be more suitable.

To gain further insights in highly doped GaN sample, the quadratic depletion approximation correction was 

considered. In the depletion approximation, ψ(z) was treated as ψ ψ≈
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face potential at z = 0, q is the electronic charge, Nd is the doping density, and εGaN is the dielectric constant of 
GaN25. As shown in Fig. 5(a), the experimentally observed Ga 3d spectra measured at different emission angles 
were quantitatively in agreement with the quadratic depletion approximation fitting (black dashed lines). The 
extracted binding energy at topmost surface, E0, is 19.30 eV. The actual core level binding energy as a function of 
detection depth after considering the effect of quadratic depletion approximation by Eqs (2, 3) is shown by the 
green dashed line in Fig. 5(b). Compared with the linear potential approximation (red dashed line in Fig. 5(b)), 
the deviation between E0 and Es becomes smaller. The quadratic depletion approximation is closer to the experi-
mental results in surface layers.

To sum up, for the moderately doped GaN, due to the larger depletion width, the effective electron surface 
potential can be reflected by the simply linear approximation, while in highly doped GaN, the quadratic deple-
tion approximation is more applicable. Moreover, by calculating the surface band bending, according to Eq. (1), 
the surface band bending for three different doping densities after deconvolution correction are calculated to be 
1.53 eV, 1.72 eV, and 1.73 eV for S1, S2 and S3 respectively.

Figure 3.  Schematic explaining the deconvolution of the spectra by ADXPS. The shifted core level peak refers 
to the discrepancy between the measured and actual peak energy position due to the effect of band bending.
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Conclusion
In summary, we performed a systematic study on the surface band bending of Ga-polar n-GaN with different 
Si doping density via ADXPS. The binding energies for Ga 3d and N 1 s in GaN films increase with increasing 
the detection depth, implying an upward surface band bending. Considering the effect of integration caused by 
internal electric field in band bending samples, we corrected the core level binding energies by subtracting the 
integrated effect and correctly determined the value of surface band bending. Our study confirms the major 
contributions come from the surface layers. For moderately doped GaN, the effective electron surface potential 
can be represented by a simply linear approximation. For highly doped GaN, where the photoelectron emission 

Figure 4.  The binding energy of Ga 3d (Ga-N) peak as a function of detection depth with carrier concentration of 
(a) 9 × 1017 cm−3 (S1), (b) 4 × 1018 cm−3 (S2) and (c) 1.4 × 1019 cm−3 (S3). The blue dashed lines are eye-guides to 
show the linear fitting of the measured binding energy. The red dashed lines exhibit the actual core level binding 
energy as a function of detection depth after considering the effect of linear electrostatic potential by Eqs (2, 3).

Doping density 
(cm−3)

−(E E )CL F surface

Band bending (eV)
w/o 
deconvolution Es

Linear 
approximation E0

Quadratic 
approximation E0

S1 9 × 1017 19.32 19.37 / 1.53 (Linear)

S2 4 × 1018 19.22 19.24 / 1.72 (Linear)

S3 1.4 × 1019 19.21 19.38 19.30 1.73 (Quadratic)

Table I.  The values of (ECL − EV)surface without (w/o) deconvolution and deconvolution by linear approximation 
as well as the quadratic depletion approximation, and band bending of different doping density GaN samples.

Figure 5.  Quadratic depletion approximation correction in highly Si doped GaN films (S3). (a) The 
experimentally observed Ga 3d spectra of S3 at different emission angles are shown by solid symbol- lines. The 
black dashed lines are the fittings using the quadratic depletion approximation by Eqs (2, 3). (b) The binding 
energy of Ga 3d (Ga-N) peak as a function of detection depth with carrier concentration of 1.4 × 1019 cm−3 (S3). 
The blue dashed lines are the linear fitting of the measured binding energy peak without deconvolution. The 
red dashed line performed the deconvolution of the spectra by linear approximation and the green dashed lines 
show the deconvolution of the spectra by quadratic depletion approximation.
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depth is comparable to the width of the space charge region, a quadratic depletion approximation should be adapt 
to simulate the internal potential distribution with band bending effect.

Methods
Sample Preparation.  Three different Si doped Ga-polar n-GaN films with thickness of 1μm were grown on 
2-inch p-type Si (111) substrates with undoped GaN buffer layers of 1.5 μm in between by metal organic chemical 
vapor deposition. The carrier concentrations of the three samples are in the range of (8.5–9.5) × 1017 cm−3 for 
Sample 1, 4 × 1018 cm−3 for Sample 2, and 1.4 × 1019 cm−3 for Sample 3, as characterized by using Hall measure-
ment and verified by secondary ion mass spectroscopy (SIMS).

ADXPS characterization.  ADXPS was carried out by using a PHI 5000 Versaprobe II system equipped with 
a monochromatic Al Kα (1486.6 eV) X-ray source, to obtain the core level and valance band structure spectra 
of all samples. The core level spectra were subtracted by a Shirley-type background and fitted using combined 
Gaussian and Lorentzian line shapes. The valance band maxima were determined by extrapolating a linear fit 
of the leading edge of the valance band photoemission to the baseline. The binding energy calibration was per-
formed by using gold (Au), silver (Ag), and copper (Cu) standard samples by setting Au 4f7/2, Ag 3d5/2, Cu 2p3/2 
peaks at binding energies of 83.96 ± 0.1 eV, 368.21 ± 0.1 eV and 932.62 ± 0.1 eV, respectively. The XPS spectra 
were performed at different emission angles θ from 10° to 85°, with respect to the sample surface, ranging. The 
Fermi edge was calibrated using a pure and in-situ cleaned silver (Ag) standard sample and setting the binding 
energy at 0.00 eV. To further calibrate the charging effect, the spectra were referenced to the peak position of C1s 
core levels to 284.8 eV for each sample.

TOF-SIMS characterization.  The concentration of doped Si in n-GaN were verified by a TOF-SIMS depth 
profile technique, using a Bi+ ion beam with energy of 30 keV and pulsed current of 3.5 pA for analysis. Depth 
sputtering was performed using a Cs+ beam of 2 keV and 75 nA to produce a crater of 200 × 200 μm. The analysis 
area was 50 × 50 μm in the center of the crater. Si- ions were collected at negative ion detection mode.
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