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Identifying a glucose metabolic 
brain pattern in an adeno-
associated viral vector based rat 
model for Parkinson’s disease using 
18F-FDG PET imaging
Martijn Devrome1, Cindy Casteels1, Anke Van der Perren2, Koen Van Laere1, 
Veerle Baekelandt2 & Michel Koole1

We investigated the glucose metabolism in an adeno-associated viral vector based alpha-synuclein 
rat model for Parkinson’s disease (PD) using longitudinal 18F-FDG PET imaging, which resulted in an 
improved characterization of this animal model. We generated a PD specific pattern (PDSP) based on 
a multivariate classification approach to differentiate between a PD and control group at a late disease 
stage, where the neurodegeneration is considered nearly complete. In particular, we applied a principal 
component analysis prior to classification by a support vector machine (SVM). Moreover, by using a 
SVM for regression to predict corresponding motor scores, a PD motor pattern (PDMP) was derived as 
well. The PDSP mainly corresponds to the PDMP and overlaps to a large extent with the human pattern. 
We were able to quantify disease expression at previous time points by projecting onto the PDSP and 
PDMP. While a univariate analysis indicated metabolic changes which did not persist through time, both 
PDSP and PDMP were able to differentiate significantly (p-value < 0.05) between the PD and control 
group at week 4, 6 and 9 post injection, while no significant differences were obtained at baseline and at 
week 3, which is in accordance with the animal model.

Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder that typically occurs in elderly 
people and affects about one percent of persons older than 60 years1. Clinical motor symptoms are characterized 
by tremor, bradykinesia, and muscle rigidity along with impaired gait and posture, while other clinical manifes-
tations also observed at the time of diagnosis and referred to as the non-motor symptoms, include autonomic 
dysfunction, cognitive disorders, and sensory and sleep abnormalities2. The pathological hallmark of PD is rep-
resented by progressive dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc), resulting in 
striatal depletion of dopamine transmission3. Although the exact mechanism of dopaminergic (DA) neuronal loss 
in the SN is not well understood, protein misfolding of alpha-synuclein and subsequent intracellular accumula-
tion has become a leading hypothesis4,5.

In order to identify preclinical nigrostriatal dysfunction and to quantify DA terminal functionality to deter-
mine the stage of DA degeneration, PET imaging of the DA pathway can be considered6. However, the motor 
and cognitive symptoms of PD cannot be attributed merely to striatal dopaminergic dysfunction. Therefore, 
functional imaging approaches such as 18F-FDG PET are considered to reveal functional abnormalities in neu-
ronal circuits such as the cortico-striato-pallido-thalamocortical (CSPTC) loops and related pathways7,8 which 
could be affected by presynaptic nigrostriatal DA cell loss9,10. Based on 18F-FDG brain PET imaging, a human 
Parkinson’s disease-related pattern (PDRP), representing PD specific brain regions of hyper- and hypometabo-
lism, was derived by using the Scaled Subprofile Model (SSM)11 which is based on a principal component anal-
ysis prior to classification by logistic regression between PD patients and healthy controls12. Besides the PDSP, 
other specific PDRPs were identified, such as the Parkinson disease Tremor-Related Pattern (PDTP)13 and the 
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Cognition-Related Pattern (PDCP)14,15. Hence, 18F-FDG brain PET imaging provides PD related metabolic sig-
natures, or imaging biomarkers, representing brain regions which become less or more metabolic active as a 
consequence of dopaminergic neurodegeneration in the SN16,17.

The aim of this study was to use longitudinal small animal 18F-FDG PET imaging to determine a PD specific 
glucose metabolic brain pattern for a PD rat model. Today, no preclinical PD specific glucose metabolic brain 
pattern has been identified, only aberrant regional metabolism in PD-associated brain regions has been described 
in acute models18. PD rat models that closely resemble the neuropathology, physiology and motor symptoms of 
human PD are essential to further investigate the molecular pathophysiology of PD and to develop novel ther-
apeutic strategies. For this study, we focused on a rat model for Parkinson’s disease based on overexpression of 
alpha-synuclein with adeno-associated viral vectors19. This rat model is based on a direct stereotactic injection of 
adeno-associated viral vectors serotype 2/7 (rAAV2/7) encoding for the human A53T α-synuclein (α-SYN) in the 
substantia nigra (SN). This resulted in a progressive PD animal model with reproducible nigrostriatal pathology 
and behavioral deficits within four weeks and nearly complete dopaminergic cell loss within an acceptable time 
frame of five weeks, while L-DOPA treatment was found to reverse the behavioral phenotype. The validity of the 
α-SYN rAAV2/7 PD rat model has been demonstrated by extensive histopathological and biochemical analysis, 
motor behavior testing and in vivo microdialysis, including non-invasive longitudinal monitoring of neurodegen-
eration using PET imaging of the dopamine transporter (DAT) and magnetic resonance spectroscopy (MRS)19.

A univariate analysis was applied on the same longitudinal PD rat model to investigate the glucose metabolism 
with 18F-FDG PET imaging. However, the observed metabolic changes did not persist through time at late disease 
stages as would be expected in degenerative diseases. Therefore, we considered a machine learning approach, 
which is fundamentally different from mass univariate analysis techniques. More specifically, when the PD rat 
model was at a late disease state, 18F-FDG PET and motor behavioral data were used to generate a glucose meta-
bolic brain pattern either by classification between the PD and control group (discriminative PD specific pattern) 
or by applying machine learning regression to predict the motor scores (motor-related PD pattern). The meta-
bolic brain patterns were compared with human PDRPs of glucose hyper- and hypometabolism. Additionally, 
pattern expression scores were determined at different stages of the PD model to evaluate whether the scores are 
in line with disease progression and to identify at which stage of the PD rat model disease expression is mani-
fested metabolically.

Methods
α-SYN rAAV2/7 PD rat model.  All experiments were conducted on 18 female Wistar rats (body weight 
ranged from 204 to 243 g at the start of the study). We considered a similar data set in terms of size and sex 
as described by Van der Perren et al. who characterized the rAAV2/7 PD rat model in order not to introduce 
extra variability in the anima model19. Ten rats were stereotactically injected with rAAV2/7 encoding for the 
human A53T α-synuclein mutant in the right SN (PD group), while the other 8 were stereotactically injected with 
rAAV2/7 encoding enhanced green fluorescent protein (eGFP, control group). All animals were injected with 3 µl 
(9.0 E11 genome copies/ml) rAAV vector. Stereotactic coordinates used for the SN of the rat were anteroposterior 
(AP) −5.3, lateral (LAT) −2.0, dorsoventral (DV) −7.2 calculated from the dura using bregma as reference. All 
rats were housed per 2 or 3 per genotype, at an average room temperature of 22 °C and a 12/12-h light/dark cycle. 
Food and water were given ad libitum. The research protocol was approved by the local Animal Ethics Committee 
of the University of Leuven and was according to European Ethics Committee guidelines (decree 86/609/EEC). 
PET scans and behavioral tests were repeated at baseline before stereotactic injection and at 3, 4, 6 and 9 weeks 
after rAAV2/7 injection.

18F-FDG PET data acquisition and preprocessing.  Cerebral FDG images were obtained for all 18 
animals using 18F-FDG, prepared by a standard synthesis module (IBA, Louvain-la-Neuve, Belgium). Small 
animal PET imaging was performed using a lutetium oxyorthosilicate detector-based FOCUS 220 tomograph 
(Siemens/Concorde Microsystems, Knoxville, TN, USA), which has a transaxial resolution of 1.35 mm full-width 
at half-maximum (FWHM). Data were acquired in list mode in a 128 × 128 × 95 matrix with a pixel width of 
0.475 mm and a slice thickness of 0.796 mm. The coincidence window width was set at 6 ns. The rats were anesthe-
tized with 2% isoflurane in 2.0 L/min oxygen before being injected with the radioligand. Tail veins were catheter-
ized to enable the infusion of 18F-FDG (22 ± 3 MBq; specific activity range 83–710 GBq/μmol). The radioligand 
was diluted with saline to obtain a 5% ethanol solution and injected in a total volume of approximately 500 μl. 
Acquisitions were performed for 30 min, starting 60 min post injection, as previously described20. For quantifica-
tion purposes, PET scans were reconstructed using an iterative maximum a posteriori probability algorithm with 
ordered subsets (MAP; 18 iterations, 9 subsets, fixed resolution: 1.5 mm). PET images were spatially normalized 
for each animal onto the Schiffer rat brain atlas (version 3.9, PMOD Inc., Zurich, Switzerland). After smoothing 
with a Gaussian isotropic kernel with FWHM of 1.6 mm and masking, the images were vectorized, a demean 
(subtracting the mean uptake) was performed and finally normalized by dividing by the L2 norm (sum of squares 
equals one).

Motor behavior scores using the cylinder test.  The cylinder test, considered as the gold standard to 
detect motor deficits in unilateral PD models, was performed at each time point on both alpha-synuclein and 
control rats to assess the asymmetry of forelimb use during explorative activity. The rats were placed in a trans-
parent glass cylinder (40 cm height and 20 cm diameter) and videotaped while they explored the cylinder walls 
with their forelimbs. The number of forelimb contacts with the cylinder wall were counted until a minimum of 
20 contacts was recorded. Contact was determined by placement of either the right or left forepaw. Data were 
expressed as percent use of the impaired forelimb relative to the total number of wall contacts, and given in the 
supplementary material.
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Glucose metabolic brain patterns for the α-SYN rAAV2/7 PD rat model.  Both the PD specific 
pattern (PDSP) and PD motor pattern (PDMP) were generated based on a principal component analysis (PCA) 
prior to classification or regression by a support vector machine (SVM) with linear kernel. The general framework 
for both approaches is given by the generalized linear model (GLM)21. Consider a vectorized D--dimensional 
medical image x with corresponding discrete class label or continuous score t for classification and regression 
respectively. In case of regression, for a GLM combined with a linear feature transform characterized by the trans-
formation matrix A, the estimated continuous output score y is given by

= +y x w Ax b( ) , (1)T

where the weight vector w and the bias parameter b are determined by a training data set of size N: {xn, tn} (n = 1, 
…, N). In case of (deterministic) binary classification, the step function acts upon the argument wT Ax + b, such 
that the output variable y is a binary value. Rewriting the above Eq. (1), gives the following expression:

= +⟨ ⟩y x A w x b( ) , , (2)T

demonstrating that the output y is estimated upon taking the inner product between ATw and the subject x. 
Therefore, in case a proper classification/prediction model and feature transform is applied, the vector ATw could 
be interpreted as a PD discriminative brain pattern (imaging biomarker) if a classification is performed between a 
PD and control group and a PD motor related brain pattern in case motor scores are estimated. Moreover, project-
ing the scan x onto the vector ATw by taking the inner product ATw, x contains a measure of pattern expression. 
The weight vector w and bias b are obtained by a loss function penalizing the error made by modeling the real 
output value t by the estimated value y, in combination with a regularization function to avoid overfitting.

For this study, we opted for a support vector machine (SVM) model with linear kernel and L1-norm soft mar-
gin for classification22, and SVM with L1 loss for regression23. A PCA was performed as feature transform on the 
full training data set including both the PD and control groups prior to classification/prediction by SVM, gener-
ating an orthonormal space spanned by all principal components. As such, the rows of the transformation matrix 
A are given by the principal components, determined by the eigenvectors of the data covariance matrix24,25. 
Consequently, the pattern ATw is generated by a linear combination of these principal components. The SVM 
minimization problem for both the binary classification and regression, being a quadratic programming problem 
in dual space, was solved by sequential minimal optimization26 (MATLAB version 2016b, The MathWorks Inc., 
Massachussetts, United States). The kernel scale and soft margin hyperparameters were optimized using a grid 
search and a nested inner loop 10 fold cross-validation.

To generate a metabolic PDSP and PDMP, both classification and regression were performed using the PET 
data and motor behavior scores of week 9, corresponding to near-complete and stable dopaminergic degener-
ation. The accuracy of the binary classifier separating the PD group from controls at week 9 was evaluated by 
leave-one-out cross-validation. Pattern expression scores at earlier time points were determined by taking the 
inner product with the patterns derived at week 9, allowing to metabolically quantify disease expression. Group 
differences between the PD and control group (at baseline, week 3, week 4, week 6 and week 9) in terms of pattern 
expression scores were evaluated by a Wilcoxon rank sum test (5% significance level).

Since rats from the PD and control group match a positive and negative pattern score respectively, regions 
in the PDSP with a predominant positive weighting correspond to an increased glucose metabolism relative to 
healthy rats, whereas a predominant negative weighting represent glucose hypometabolic regions.

Results
The PD specific metabolic brain pattern determined by using all data at week 9 is given in Fig. 1, whereas the 
percentage of positive and negative weighting relative to the whole PDSP is summarized in Table 1 for all relevant 
brain regions (Schiffer atlas27). Regions with a predominant positive weighting relative to the PDSP, and there-
fore associated increased glucose metabolism, include the bilateral striatum, bilateral cortices (including motor-, 
somatosensory-, cingulate-, orbitofrontal-, visual-, and prefrontal cortex), midbrain, pons and medulla. Regions 
with predominant negative relative weighting, and thus associated decreased glucose metabolism, were noticed 
in thalamic, hippocampal and cerebellar regions, as well as entorhinal and insular cortices. The PD motoric brain 
pattern is illustrated in Fig. 2, with the corresponding percentage of positive and negative weighting relative 
to the PDMP summarized in Table 1. The main discrepancy with the PDSP is that the motor, orbitofrontal, 

Figure 1.  Metabolic PDSP derived by classification between PD group and controls for the α-SYN rAAV2/7 PD 
rat model. The PDSP indicates discriminative regions of relative hypermetabolism (positive weights indicated in 
yellow/red) and hypometabolism (negative weights indicated in blue). The PDSP is based on the 18F-FDG-PET 
scans at week 9, where the dopaminergic degeneration is considered stable and near-complete.
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somatosensory and visual cortex, striatum and thalamus are no longer predominant. However, all predomi-
nant regions in the PDMP correspond with the PDSP. Pearson correlation for voxel values within brain regions 
between PDSP and PDMP are given in Table 2. Since PDSP and PDMP pattern expression scores are obtained 
by projecting onto the PDSP and PDMP respectively and the patterns are highly correlated, PDSP and PDMP 
expression scores PD and control rats are correlated as well (correlation between all scores of PD and control 
rats combined). Pearson correlation values between PDSP and PDMP expression scores are 0.70 (baseline), 0.86 
(week 3), 0.75 (week 4), 0.75 (week 6) and 0.87 (week 9).

Binary classification at week 9 between the PD group and controls resulted in a prediction accuracy of 
90% (9/10) and 75% (6/8) for the PD and control group respectively. The corresponding PDSP expression 
scores (Z-values) obtained by projecting the PET data at week 9 onto the PDSP (Fig. 1), using leave-one-out 
cross-validation, are given in Fig. 3A. Z-values are calculated based on the same mean and standard deviation of 
all control scans (across all time points). Moreover, the pattern expression scores at baseline and earlier disease 
stages (week 3, 4 and 6) are also shown in Fig. 3A. The Wilcoxon rank sum test (5% significance level, p-values 
indicated in Fig. 3A) revealed significant differences between the PD and control group at week 4, week 6 and 
week 9 (p-value of 5.5e-4, 1.8e-4 and 3.1e-3 respectively) while no significant difference was observed between 
the PD and control group at week 3 and baseline (both p-value of 0.20), in line with the pathophysiology of this 
animal model. Besides projecting the PET data onto the PDSP, PD motor pattern expression scores are also 
calculated. Z-values of the PDMP expression scores are illustrated in Fig. 3B and corresponding p-values for the 
Wilcoxon rank sum test are given in Fig. 3B. The p-values for baseline (0.12) and week 3 (0.52) are not significant, 
while for week 4 (0.0021), week 6 (8.7e-4) and week 9 (9.1e-5), a significant difference is found between PD and 
control groups, in correspondence with the PDSP expression scores.

PDSP PDMP

Positive 
weighting 
(%)

Negative 
weighting 
(%) Predominant

Positive 
weighting 
(%)

Negative 
weighting 
(%) Predominant

Cingulate Cortex 3.8 0.10 + 2.3 0.095 +

Entorhinal Cortex 1.4 7.7 − 2.3 5.8 −

Insular Cortex 0.51 3.0 − 0.15 5.2 −

Medial Prefrontal 
Cortex 1.9 0.03 + 0.81 0.22 +

Motor Cortex 4.1 1.1 + 1.8 2.7 /

Orbitofrontal Cortex 3.4 0.84 + 2.2 1.9 /

Somatosensory Cortex 4.1 3.0 / 4.2 4.3 /

Visual Cortex 5.5 1.4 + 3.9 2.8 /

Cerebellum 1.7 3.7 − 1.9 4.4 −

Striatum 8.5 2.1 + 6.2 4.9 /

Thalamus 1.1 3.4 − 2.4 3.3 /

Hippocampus 0.055 2.2 − 0.046 1.8 −

Midbrain 4.1 0.21 + 5.2 0.10 +

Pons 3.1 0.24 + 2.6 0.14 +

Medulla 7.8 0.078 + 8.1 0.07 +

Table 1.  Percentage of positive and negative weighting relative to the whole brain pattern (given in Fig. 1) 
for different brain regions for both the PDSP and PDMP. Weighting values are used to determine whether 
weighting is predominantly positive or negative and therefore can be interpreted as hyper- or hypometabolic.

Figure 2.  Metabolic PDMP obtained by SVM regression of the behavioral motor scores of both the PD and 
control group for the α-SYN rAAV2/7 PD rat model. Positive weights (red/yellow) contribute to a high motor 
score (cylinder test) and therefore indicating regions of hypermetabolism, whereas negative weights (blue) 
contribute to a lower score, indicating hypometabolic regions. The PDMP is obtained with the 18F-FDG-PET 
scans at week 9, where the dopaminergic degeneration is considered quasi-stable and near-complete.
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Discussion
α-synuclein is considered a key player in the pathogenesis of PD since it is the main protein component of Lewy 
bodies, a pathological hallmark of PD. In some familial cases of PD this can be explained either gene duplication 
or triplication, or to a point mutation (A53T, A30P, E46K, H50Q or G51D) presumably leading to an abnormally 
folded form of α-synuclein28–30. This process is mimicked by stereotactic injection of rAAV2/7 encoding for the 
human A53T α-SYN into the rat or mouse SN31. Previous studies have shown that this induces overexpression of 
α-SYN leading to a progressive degeneration of the nigral dopaminergic neurons, along with the development of 
motor impairments19. In this study, we investigated the brain glucose metabolism using 18F-FDG PET in a PD rat 
model by using a multivariate approach. More specifically, a PCA was applied prior to classification/regression 
analysis by SVM to evaluate alterations in the brain glucose metabolism in the α-SYN rAAV2/7 PD rat model rel-
ative to control animals. While SVM is a widely used machine learning method in neuroimaging, PCA has proven 
its usefulness for PET imaging32 and is beneficial for reducing the impact of noise on classification or regression 
performance and improving the interpretability of disease-related glucose metabolic brain patterns (i.e. linear 
combination of principal components). The SSM has often been applied to identify metabolic disease-specific 
patterns and corresponding network expression scores, such as to generate a Parkinson’s disease-related pat-
tern based on 18F-FDG PET data32. However, the SSM/PCA approach includes several preprocessing steps other 
than a PCA, such as double demean and log transform, and selects the relevant principal components for the 
disease-specific glucose metabolic brain pattern prior to classification by logistic regression12. On the other hand, 
our approach automatically assigned a weight for every principle component during the training step as expressed 
by Eq. (2). Moreover, a multivariate analysis is fundamentally different from a mass univariate approach where 
voxelwise statistical testing is used to identify clusters which are significantly different between groups. Instead, 
we used a machine learning approach to generate a glucose metabolic brain pattern by training a classification 
or prediction model. In this way, a PD specific metabolic pattern was generated by performing a classification 
between the PD and control animals for the for the α-SYN rAAV2/7 PD rat model. Similarly, a PD motoric 
pattern was generated by applying a machine learning regression of behavioral motor parameters (cylinder test 
scores). Since PD and control animals correspond to a positive and negative pattern expression score respectively, 
positive weights in these brain patterns constitute PD related hypermetabolism while negative pattern weights 
correspond to PD-induced hypometabolic brain regions. As such, the PDSP represented hypermetabolism in all 
cortical regions, except the entorhinal, insular and ipsilateral somatosensory cortex, together with hypermetab-
olism in striatum, midbrain, pons and medulla while hypometabolism was observed in thalamus, hippocampus 
and cerebellum (Table 1). Moreover, longitudinal PDSP expression scores were significantly different between 
the PD and control group at time points which are in line with the pathophysiology of this animal model (week 
4, week 6 and week 9, see Fig. 3). Furthermore, these findings imply that the PDSP reflects PD related pathogen-
esis. For the PDMP, hypermetabolism was observed in the cingulate and medial prefrontal cortex, midbrain, 
pons and medulla, whereas hypometabolism was mainly identified in the cerebellum and hippocampus (Table 1). 
Most hyper- and hypometabolic brain regions of the PDSP and PDMP overlap as illustrated by the high corre-
lation values for region-weights given in Table 2. However, for the PDMP more regions are less clearly hyper- or 
hypometabolic since more regions have both a large contribution of positive and negative weighting values (e.g. 
striatum, see Table 1). While the multivariate PDSP was able to differentiate between the PD and control group 
at time points in accordance with the animal model, the univariate analysis did not persist through time at late 
disease stages as would be expected in degenerative diseases33. More specifically, voxel-based analysis of relative 
18F-FDG uptake showed a dynamic pattern of PD-related metabolic changes. At week 4, hypermetabolism is 
found in a cluster covering the ipsilateral nigra-thalamic region, whereas hypometabolism was noted in the ipsi-
lateral striatum at week 6. Elevated 18F-FDG uptake was seen in a cluster extending across the contralateral stria-
tum, motor- and somatosensory cortex at week 9 (Statisitcal Parametric Mapping analysis, T-maps interrogated 

Cingulate Cortex 0.64

Entorhinal Cortex 0.72

Insular Cortex 0.86

Medial Prefrontal Cortex 0.87

Motor Cortex 0.66

Orbitofrontal Cortex 0.87

Somatosensory Cortex 0.66

Visual Cortex 0.87

Cerebellum 0.71

Striatum 0.92

Thalamus 0.78

Hippocampus 0.84

Midbrain 0.87

Pons 0.79

Medulla 0.88

Table 2.  Pearson correlation for voxel values within brain regions between PDSP and PDMP.
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at a pheight ≤ 0.005 peak level and extend threshold of kE > 200 voxels; only significant clusters with pheight < 0.05 
corrected for multiple comparisons were retained34).

The spatial topography of the glucose metabolic PDSP and PDMP conforms well to changes in regional syn-
aptic activity described in other animal models of PD. In nonhuman primate MPTP models, abnormal metabolic 
activity was also observed with putamen/pallidum, pons and sensorimotor cortex demonstrating increased met-
abolic activity, while the posterior-occipital regions had a decreased metabolic activity35. However, the thalamic 
hypermetabolism which was observed in nonhuman primate MPTP models, was not present in the PDSP and 
PDMP of α-SYN rAAV2/7 PD rat model. On the other hand, the cerebellar hypometabolism in the brain patterns 
for α-SYN rAAV2/7 PD rat model is the major discrepancy with human PDRP glucose metabolic brain pattern 
characterized by an increased metabolic activity in the putamen, thalamus, pons, cerebellum, primary motor and 
sensorimotor cortex and reduced glucose metabolism in the lateral premotor cortex and parieto-occipital associ-
ation regions36. Especially, an increased cerebellar glucose metabolism is a common physiopathological feature of 
PD, as shown by several 18F-FDG PET studies37. This has been interpreted as compensatory on the dysfunctional 
basal ganglia loop system in PD and confirmed by the normalization of cerebellar hypermetabolism after deep 
brain stimulation of the subthalamic nucleus38,39. On the other hand, a PD related cognitive glucose metabolic 
brain pattern, characterized by the group of Eidelberg14, included severe increase of cerebellar glucose metabo-
lism. As such, it could be hypothesized that the effects of injecting rAAV2/7 encoding for α-SYN have limited 
effect on the cognitive function of rats. However, this discrepancy can arise from a combination of factors such as 
species variation, disease models, the use of anesthetics, imaging acquisition and reconstruction, post-processing 
and analytical methodology. Moreover, we should emphasize the difference between patterns of transient degen-
eration, as induced in the α-SYN rAAV2/7 PD rat model, and patterns resulting from true disease-based pro-
gressive degeneration. The same effects presumably play a role in the discrepancy between the increased thalamic 
glucose metabolism in human PDRP and lower glucose metabolism for the α-SYN rAAV2/7 PD rat model. A 
large number of cognitive tests40 such as attention deficit tests41 exist to examine the cognitive scores of the α-SYN 
rAAV2/7 PD rats and to evaluate to which extent motor or cognitive impairment underlie the cerebellar glucose 
metabolic function in the α-SYN rAAV2/7 PD rat model. On the other hand, an increase in hippocampal activity 
is seen in advanced human PD42 while the injection of rAAV2/7 encoding for α-SYN in the SN could also deplete 
dopaminergic neurons of the ventral tegmental area projecting to the hippocampus. This could explain the loss of 
hippocampal glucose metabolic function compared to the human PDRP glucose metabolic brain pattern.

Figure 3.  PDSP and PDMP expression scores for PD and control group at baseline, week3, week 4, week 6 and 
week 9. Scores (Z-values) are determined by projecting onto the PDSP (A) and PDMP (B) derived at week 9. At 
week 9, leave-one-out cross-validation is performed to calculate the expression scores. On each box, the central 
mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively, while the whiskers extend to the most extreme data points. P-values of the Wilcoxon rank sum test 
between the PD and control group (HC) for the PDSP and PDMP expression scores at each time point are also 
given.
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Conclusion
Based on longitudinal 18F-FDG PET imaging, a multivariate approach was able to generate PD specific and 
PD motor patterns, which resulted in an improved characterization of the glucose metabolism for the α-SYN 
rAAV2/7 PD small animal model. The PDSP is in accordance with disease progression and corresponds mainly 
to the PDMP. Moreover, both patterns overlap to a large extent with the human glucose metabolic PDRP. The 
multivariate PDSP expression scores are promising for preclinical evaluation of future therapeutic strategies that 
may modulate the observed patterns.

Data Availability
The datasets analysed during the current study are available from the corresponding author on reasonable request.
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