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Prospects and Challenges into the Role of Gut Microbiome in Health and Disease

Lay summary

It has been noted that certain baseline gut profiles of COVID-19 patients are associated 
with a more severe disease course, and the gut microbiome impacts the disease course of 
several contributory risk factors to the severity of COVID-19. A protein called ACE-2, which 
is found in the small intestine among other sites, is a key receptor for COVID-19 virus entry; 
there is evidence that the gut microbiome influences ACE-2 receptor expression, and hence 
may play a role in influencing COVID-19 infectivity and disease severity. Furthermore, the 
gut microbiome plays a significant role in immune regulation, and hence may be pivotal 
in influencing the immune response to COVID-19. In terms of understanding COVID-19 
treatments, the gut microbiome is known to interact with several drug classes being used 
to target COVID-19 and should be factored into our understanding of how patients respond 
to treatment. Importantly, our understanding of the role of the gut microbiome in COVID-19 
infection remains in its infancy, but future research may potentially aid our mechanistic 
understanding of viral infection, and new ways in which we might approach treating it.

The gut microbiome: an under-recognised 
contributor to the COVID-19 pandemic?
Jonathan P. Segal , Joyce W. Y. Mak, Benjamin H. Mullish, James L. Alexander,  
Siew C. Ng and Julian R. Marchesi

Abstract
The novel coronavirus infection (COVID-19) caused by the SARS-CoV-2 virus has spread 
rapidly across the globe, culminating in major global morbidity and mortality. As such, 
there has been a rapid escalation in scientific and clinical activity aimed at increasing our 
comprehension of this virus. This volume of work has led to early insights into risk factors 
associated with severity of disease, and mechanisms that underpin the virulence and 
dynamics involved in viral transmission. These insights ultimately may help guide potential 
therapeutics to reduce the human, economic and social impact of this pandemic. Importantly, 
the gastrointestinal (GI) tract has emerged as an important organ influencing propensity 
to, and potentially severity of, COVID-19 infection. Furthermore, the gut microbiome has 
been linked to a variety of  risk factors for COVID-19 infection, and manipulation of the gut 
microbiome is an attractive potential therapeutic target for a number of diseases. While 
data profiling the gut microbiome in COVID-19 infection to date are limited, they support 
the possibility of several routes of interaction between COVID-19, the gut microbiome, 
angiotensin converting enzyme 2 (ACE-2) expression in the small bowel and colon and gut 
inflammation. This article will explore the evidence that implicates the gut microbiome as 
a contributing factor to the pathogenesis, severity and disease course of COVID-19, and 
speculate about the gut microbiome’s capability as a therapeutic avenue against COVID-19.
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Introduction
The severe global disease burden caused by 
COVID-19 infection has resulted in almost 
unprecedented levels of rapid activity by the inter-
national scientific community across various disci-
plines in an attempt to understand pathogenesis 
and develop treatment options for this novel virus, 
with a focus on slowing and preventing its further 
impact. One particular intriguing facet of COVID-
19 infection is the marked heterogeneity of clinical 
presentation, with some infected people being 
asymptomatic whilst others progress to multi-
organ failure and death.1 Comparison of clinical, 
molecular and immunological data from a large 
Chinese cohort of COVID-19 patients demon-
strated that viral genetic variation did not seem to 
be associated with disease severity, while host fac-
tors (including age and immune response) 
appeared to be much more important contributory 
factors.2 As such, exploring further exactly what 
these host factors are is of key clinical importance.

A number of emerging clinical and scientific 
strands of research have implicated the gastroin-
testinal (GI) tract as an important organ for pro-
pensity to, and severity of, COVID-19infection. 
As one example, GI symptoms (including nausea, 
vomiting and diarrhoea) have been described 
consistently as common clinical features of infec-
tion in addition to typical respiratory and consti-
tutional symptoms.3 In addition, COVID-19 has 
been detected in tissues from throughout the GI 
tract,4 and virus shedding in stool has been 
detected in a significant proportion of patients,5 
with such shedding often occurring for prolonged 
periods6; raised faecal calprotectin in association 
with infection has also been described.7 Furthermore, 
emerging evidence using organoid models has 
shown that COVID-19 can infect the GI tract 
directly5; in particular, the SARS-CoV-2 virus 
uses angiotensin converting enzyme 2 (ACE-2), 
which is highly expressed on differentiated entero-
cytes, as a receptor for cell entry before inducing 
a viral response programme.8,9

In this article, we review the evidence that may 
implicate the gut microbiome as a contributory 
factor to the pathogenesis of COVID-19 infection, 
by reviewing what has been described specifically 
regarding the gut microbiome in COVID-19 
patients to date. We also consider whether the gut 
microbiome may be relevant to our consideration 
for treatment of COVID-19, such as through its 
influence on anti-viral therapy or vaccine efficacy. 

Finally, we discuss practical difficulties in investi-
gating the impact of the interaction between the 
SARS-CoV-2 virus and the gut microbiome and 
suggest key areas for future focus.

Profiling of the gut microbiome in patients 
with COVID-19 infection
As of October 2020, only very limited data have 
been described specifically on the gut microbiome 
profile in patients with COVID-19 infection. A 
cross-sectional study of 30 COVID-19 patients, 24 
influenza A (H1N1) patients and 30 matched 
healthy controls (HC) attempted to identify differ-
ences in the gut microbiota by 16S ribosomal RNA 
(rRNA) gene V3–V4 region sequencing.10 Compared 
with healthy controls, patients with COVID-19 had 
significantly reduced bacterial diversity, a signifi-
cantly higher relative abundance of opportunistic 
pathogens (including Streptococcus, Rothia, Veillonella 
and Actinomyces) and a lower relative abundance of 
beneficial symbionts. Furthermore, it was noted that 
Fusicatenibacter, Romboutsia, Intestinibacter, Actinomyces 
and Erysipelatoclostridium could distinguish between 
the COVID-19 group and the healthy controls, with 
receiver operating characteristic (ROC)-plot area 
under the curve (AUC) value of 0.89 [95% confi-
dence interval (CI), 0.8–0.97]. When comparison 
was made between patients with COVID-19 and 
influenza, it was also observed that patients with 
influenza had significantly lower alpha and beta 
diversities that those with COVID-19. There  
were further differences noted at the phylum level, 
with decreased abundances of Actinobacteria and 
Firmicutes in the influenza group compared with the 
COVID-19 group. There were further differences 
highlighted at the family level, including a decrease 
in putative aerobic butyrate-producing bacteria in 
the influenza group. This study suggests there may 
be differences in the gut microbiome between those 
with COVID-19 and those without, but these remain 
associative without clear evidence of causality.

Further supporting evidence regarding alterations 
in the gut microbiota in COVID-19 came from a 
study in Hong Kong that used shotgun metagen-
omics to analyse the serial composition of the 
stool microbiome of 15 patients during the course 
of COVID-19 infection, comparing this with the 
stool microbiome of patients with community-
acquired bacterial pneumonia and HC.11 Samples 
were collected two to three times per week until 
discharge, which was variable for each patient. 
Baseline stool (defined as the first stool donated 
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following hospital discharge) samples from 
COVID-19 patients were enriched in a range of 
pathobionts (associated with bloodstream infec-
tions) compared with controls, with baseline sam-
ples from COVID-19 patients treated with 
antibiotics (n = 8) also being depleted of symbi-
onts associated with host immunity, including 
Faecalibacterium prausnitzii.11 Those bacterial 
species under-represented in the stool microbi-
ome of COVID-19 patients compared with con-
trols at baseline remained at low or undetectable 
levels throughout the disease course, even when 
SARS-CoV-2 was no longer detectable on naso-
pharyngeal or stool swab, and when respiratory 
symptoms had resolved.

Of further interest was the observation that mem-
bers of the bacterial phylum Firmicutes (specifi-
cally, the genus Coprobacillus, and the two species 
Clostridium ramosum and Clostridium hathewayi) 
were associated with increased clinical severity of 
COVID-19 disease. Clinical severity was defined 
as mild, if there was no radiographic evidence of 
pneumonia; moderate, if pneumonia was present 
along with fever and respiratory tract symptoms; or 
severe, if respiratory rate ⩾30/min, oxygen satura-
tion ⩽93% when breathing ambient air, or PaO2/
FiO2 ⩽ 300 mmHg (1 mmHg = 0.133 kPa) or criti-
cal. This association is of particular interest, since 
Coprobacillus has been recognised to upregulate 
colonic ACE-2 strongly in the gut of mice.12 One 
of the bacterial species most strongly negatively 
correlated with severity of COVID-19 was 
Faecalibacterium prausnitzii; this association is of note 
given the links that have hitherto been made between 
this bacterial species and anti- inflammatory activ-
ity within the gut.13 An additional finding was a 
negative correlation between faecal SARS-CoV-2 
load and the abundance of specific gut bacteria, 
particularly of a number of species from within the 
genus Bacteroides (Bacteroides dorei, Bacteroides the-
taiotaomicron, Bacteroides massiliensis and Bacteroides 
ovatus). It has been noted previously that these 
species were associated with a reduction in ACE-2 
expression within the mouse gut,12 suggesting that 
they may limit the ability of COVID-19 to access 
enterocytes and cause infection via this mecha-
nism. Further work from the same group noted 
higher abundance of short chain fatty acid (SCFA)-
producing bacteria in stool samples from COVID-
19 patients with low SARS-CoV-2 infectivity.14

A further study from the same group explored the 
alterations in the faecal fungal microbiome in 

patients with COVID-19. In this study, deep shot-
gun metagenomic sequencing analysis was per-
formed on faecal samples from 30 patients with 
COVID-19 and compared with 9 subjects with 
community acquired bacterial pneumonia and 30 
HC.15 The same definitions  were used as in the 
 previous study. It was noted that patients with 
COVID-19 had significant alterations in their faecal 
mycobiomes compared with controls, characterized 
by enrichment of Candida albicans and a highly het-
erogeneous mycobiome configuration, at time of 
hospitalization. Furthermore, researchers found that 
samples collected at all timepoints from patients with 
COVID-19 had increased proportions of opportun-
istic fungal pathogens, Candida albicans, Candida 
auris and Aspergillus flavus, compared with controls. 
Importantly, there are likely confounders to this 
study, with the authors correctly identifying that 
determining whether these changes are a cause or an 
effect of COVID-19 needs to be explored further.

As such, overall, while data profiling the gut 
microbiome in COVID-19 infection to date are 
limited, they support the possibility of several 
routes of potential interaction between SARS-
CoV-2, the gut microbiome, intestinal ACE-2 
expression, and gut inflammation.16

Importantly, some of these associations have also 
been noted in critical illness and, hence, further 
studies are needed to explore changes in the gut 
microbiome and compare this with those with 
COVID-19.

Potential associations between COVID-19 
risk factors and the gut microbiome
As clinical experience of COVID-19 infection 
grows, a range of different risk factors – both for 
initial acquisition of infection, and for outcome in 
infected patients – have emerged. In this section, 
we explore potential links between these risk fac-
tors and the gut microbiome. Importantly, many 
of these risk factors are likely to influence not only 
the gut microbiome but potentially also other 
mechanisms that alter the outcomes of COVID-
19. Therefore, the changes in the gut microbiome 
are, at this stage, associative and are unlikely to be 
independent risk factors.

Old age
Across continents and multivariate analysis, age 
has been shown consistently to be a risk factor for 
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death from COVID-19.17 This risk is likely to be 
multifactorial. The diversity of the gut microbiota 
in elderly individuals has been shown to be 
reduced compared with that of younger adults.18–20 
Frailty was associated negatively with alpha  diversity 
of the gut microbiota.21 The ‘elderly’ microbiome 
generally showed a shift away from Firmicutes, 
which dominated in younger adults, toward genera 
such as Alistipes and Parabacteroides.22 It is believed 
that perturbations in the gut microbiota in the 
elderly trigger the innate immune response and 
may lead to chronic low-grade inflammation, 
leading to frailty and unhealthy aging.23 Many 
patients with COVID-19 present with respiratory 
symptoms and one of the serious manifestations of 
COVID-19 is the development of pneumonia and 
acute respiratory distress syndrome. The gut–lung 
axis has been proposed in the pathogenesis of res-
piratory infections.24 Patients with viral lung infec-
tions had an increase in the relative abundance of 
Bacteroidetes and a decrease in the relative abun-
dance of Firmicutes in their gut, which was similar 
to the gut microbiota composition of elderly indi-
viduals.25 Moreover, COVID-19 associated pneu-
monia and adverse outcomes from COVID-19 
seen in elderly subjects may relate to the changes 
in the gut microbiome. Importantly, perturbations 
in the gut microbiome are common across a range 
of diseases with many confounders, such as medi-
cations, that are common in the elderly; therefore, 
this association needs to be evaluated further.

Diabetes mellitus
Diabetes mellitus (DM) has been shown to be a 
significant risk factor for mortality from COVID-
19.26 Patients with COVID-19 who have underly-
ing diabetes had a two-fold increased risk of 
mortality compared with non-diabetic COVID-19 
patients.27 Gut microbiota composition has been 
shown to be altered in patients with diabetes.28 
Patients with diabetes had significantly reduced 
proportions of the phylum Firmicutes and the class 
Clostridia compared with non-diabetic subjects. 
Diabetic patients had significantly more Bacter oidetes 
and Proteobacteria.29 The presence of Bifido-
bacterium, Bacteroides, Faecalibactrium, Akkermansia 
and Roseburia was suggested to be protective against 
type 2 DM, while Ruminococcus, Fusobacterium 
and Blautia were found to be positively associated 
with type 2 DM.30 There have also been studies 
showing that the use of probiotics containing 
Lactobacillius and Bifidobacterium can delay the 
onset of glucose intolerance and lower fasting 

glucose in type 2 DM,31,32 highlighting further a 
potential role of gut microbiota in the pathogenesis 
of DM. In this regard, perturbations in the gut 
microbiota in patients with DM might have a con-
tributory role in the poor prognosis of COVID-19.

Hypertension
Hypertension is a common comorbidity associ-
ated with more severe course and mortality 
amongst patients with COVID-19.33 Nearly 30% 
of patients hospitalised for COVID-19 had hyper-
tension,34 and the presence of hypertension was 
associated with a 2.5-fold increased risk of mor-
tality due to COVID-19.35 Hypertension is asso-
ciated with increased gut wall permeability and 
microbial perturbations.36 Patients with hyper-
tension had less SCFA producers, including 
Faecalibacterium and Roseburia, while opportunis-
tic pathogenic taxa including Klebsiella spp., 
Streptococcus spp. and Parabacteroides merdae were 
of increased abundance, compared with HC.37 
Bacterial diversity was associated negatively with 
hypertension and systolic blood pressure.38 Both 
animal and human studies have shown that the 
administration of probiotics with Lactobacillus 
could effectively lower systolic and diastolic blood 
pressure.38,39 The bioactive peptides produced 
from probiotics have ACE inhibitory properties 
during the fermentation process. ACE inhibition 
then lowers the synthesis of ACE-2, which results 
in attenuation of vasoconstriction and blood pres-
sure. ACE-2 can modulate the gut microbiota.40 
There has been debate on whether the use of 
ACE inhibitors is associated with higher risk of 
COVID-19 infection or more severe disease and 
mortality associated with COVID-19. However, 
recent population-based and case control studies 
did not show that the use of renin-angiotensin-
aldosterone system inhibitors was associated with 
an increased risk of COVID-19 infection or more 
severe disease or higher mortality.41,42 One might 
speculate instead that it is the gut microbiota act-
ing as a co-factor influencing worse outcomes in 
COVID-19 patients with hypertension.

Ethnicity
Ethnic minorities have had a disproportionately 
higher mortality from COVID-19,43 but the under-
lying mechanisms remain poorly understood. 
Different ethnic groups have a broad range of dif-
ferent dietary, socioeconomic, genetic, lifestyle and 
environmental exposures. Importantly, it has been 
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demonstrated that there are significant variations in 
the gut microbiome of ethnic minorities.26 In a 
study that explored geographical variations in the 
microbiota, it was found that microbial richness 
and evenness were highest in Hispanics, followed 
by Caucasians and Asian Pacific Islanders, with 
lowest richness found in south-Asian Surimanese 
and the highest distribution of uneveneess found in 
Moroccans.44 Furthermore, it has been noted that 
geographical location showed the strongest associa-
tions with microbiota variations.45 In a Dutch study 
that analysed 25,000 adults from various back-
grounds it was found that ethnicity contributed to 
interindividual dissimilarities in gut microbiota 
composition.44 An enrichment in Prevotella was 
noted in Moroccan, Turkish and Ghanaian ethnici-
ties, as was an enrichment of Bacteroides in African 
Surinamese and South-Asian Surinamese, and an 
enrichment of Clostridiales in Dutch populations. 
The Dutch also exhibited the greatest gut microbi-
ota α-diversity and the South-Asian Surinamese 
the smallest, with corresponding enrichment or 
depletion in numerous operational taxonomic units 
(OTU).44 Further studies from India have demon-
strated that the microbiome can vary even between 
two regions, with a greater abundance of Prevotella 
in Northern India, which has a carbohydrate-rich, 
plant-based diet, while the Southern Indian popu-
lation, which has an omnivorous diet, had greater 
enrichment with Bacteroides.46 Importantly, these 
remain associative studies; the impact on these 
alterations on COVID-19 will require further 
exploration. Significantly, as many facets contrib-
ute to the variations in the microbiome seen in dif-
ferent ethnic groups, there are many potential 
targets where we may be able to modify the gut 
microbiome and potentially reduce risk.

Potential mechanisms underpinning the role 
of the gut microbiome in COVID-19 infection

Entry of COVID-19 into human cells
It is known that COVID-19 enters cells using the 
ACE-2 receptor, which is expressed in tissues in a 
number of different organ systems. More specifically, 
recently, polymerase chain reaction (PCR) analysis 
has revealed that the ACE-2 receptor is also expressed 
in the lung, kidney and gastrointestinal tract. 
Importantly the microbiota and its interaction with 
the ACE-2 receptor has been elucidated in cardio-
vascular diseases,40 intestinal inflammation, malnu-
trition,47 immunity and energy metabolism,48 

suggesting a potential role in COVID-19 infection. 
Furthermore, in a murine model it has been shown 
that the gut microbiota regulates colonic ACE-2 
receptors,49 and thus may play a role in the infectivity 
and severity of SARS-CoV-2.

When considering specific sites of ACE-2 expres-
sion within the gastrointestinal tract, various 
mechanisms of entry have been implicated. 
Specifically, it has been demonstrated that the 
ACE-2 receptor increases with age in the duode-
num, suggesting a potential entry mechanism 
through microbiome interactions.50 Furthermore, 
in a single-cell transcriptome study, ACE-2 was 
found to be expressed highly in oesophageal 
upper and stratified epithelium, as well as in 
absorptive enterocytes derived from both the 
ileum and the colon.51 Further areas of ACE-2 
expression have been found in enterocytes of all 
parts of the small intestine, including the duode-
num, jejunum and ileum, but not in colonic 
enterocytes.52 Interestingly, ACE-2 activity was 
described in patients with inflammatory bowel dis-
ease (IBD).53 We have started to appreciate the 
importance of the gut microbiome in the role of 
IBD54; hence, further studies may provide mech-
anistic insight into the role of the microbiome on 
ACE-2 expression and COVID-19.

Lung-microbiome changes in COVID-19
As COVID-19 is a disease affecting predominately 
the respiratory system in extreme disease, attempts 
have been made to understand microbiome changes 
in the lung. To date, two studies have explored this. 
One study highlighted that patients with COVID-
19 had a microbiome that was similar to those with 
community-acquired bacterial pneumonia, with 
enrichment of pathogenic and commensal bacte-
ria.55 The other study explored post-mortem biop-
sies from 20 deceased COVID-19 patients. The 
most common bacterial genera were Acinetobacter, 
Chryseobacterium, Bukholderia, Brevundimonas, 
Sphingobium and Enterobacteriaceae. The most 
common fungal genera were Cutaneotrichosporon, 
followed by Issatchenkia, Wallemia, Cladosporium, 
Alternaria, Dipodascus, Mortierella, Aspergillus, 
Naganishia, Diutina and Candida.56 These are, at 
present, associative findings, and evidence is again 
lacking of whether the changes in the lung microbi-
ome are causative or associative. Furthermore, it 
remains unclear how the lung and the gut microbi-
omes interact.
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Microbiome–immune interactions
It has been shown that the number of total T 
cells, CD4+ and CD8+ T cells are reduced dra-
matically in patients with COVID-19, and this 
phenomenon is more pronounced in patients 
requiring intensive care unit (ICU) care.57 
Furthermore, T cell numbers correlate negatively 
with serum interleukin (IL)-6, IL-10 and tumour 
necrosis factor (TNF)-α concentration, and 
patients in the disease resolution phase show 
reduced IL-6, IL-10 and TNF-α concentrations 
and restored T cell counts.57 This observation 
was further supported by a study demonstrating 
that patients with severe COVID-19 had reduced 
circulating levels of CD8+ T cells.58 When con-
sidering how these mechanisms may link to the 
gut microbiota, it is known that gut microbiota 
are key regulators of CD8+ T cell function.59 
The gut microbiota that produce SCFA can pro-
mote the memory potential of antigen-activated 
CD8+T cells.60 In terms of mounting a response 
directly against the SARS-CoV-2 virus, it has 
been demonstrated that the SCFAs, butyrate 
and, to a lesser extent, propionate directly modu-
late gene expression of CD8+ cytotoxic T lym-
phocytes (CTLs) and Tc17 cells.61 This study 
highlighted that butyrate increased IFN-γ and 
granzyme B expression on cytotoxic T lympho-
cytes as well as promoting the molecular switch of 
Tc17 cells towards a cytotoxic phenotype.61 
Extrapolating from these findings may implicate 
the products of gut microbiota metabolism in the 
regulation of the immune response against 
COVID-19 infection.

Importantly, intestinal antiviral immunity relies 
on lipopolysaccharides found on the surface of 
Gram-negative commensal-dependent nuclear 
factor kappa B (NF-ĸB) signalling, while enteric 
viral infection protects against intestinal damage 
and pathogenic bacteria.62

One of the key events that leads to severe respira-
tory distress syndrome appears to be the develop-
ment of a cytokine storm. It has been demonstrated 
that gut microbiota are essential in the maintenance 
of a cytokine storm through Toll-like receptor 
(TLR)-mediated immune responses.63 It is there-
fore plausible that the gut microbiota may play a 
significant role in the severity of COVID-19.

It has been speculated the gut virome is a missing 
link between the gut microbiome and diseases, 
including IBD.64 Importantly, these cross-kingdom 

interactions can change the host (human) pheno-
type. Their role in the microbiome and viral defence 
is well established; one method of defence is 
through the production of mucus and synthesis of 
potential antiviral compounds.65 There is also prec-
edent for the gut microbiota initiating the inflam-
masome, which has induced dendritic cell migration 
to local lymph nodes to influence an influenza virus 
T cell response in the lung.66,67 It is therefore pos-
sible that altering the gut virome, may alter the 
COVID-19 disease course (Figure1).

The SARS-CoV-2 virus enters cells through the 
ACE-2 receptor, which is found in both the gastro-
intestinal tract and the lung. The gut microbiota 
has been shown to modulate the ACE-2 receptor in 
an animal model, and interact with the lung micro-
biota to regulate pro-inflammatory and regulatory 
immune signals. In patients with severe COVID-19 
infection, it has been shown that there is a dramatic 
decrease in the number of T cells, CD4+ T cells 
and CD8+ T cells. The gut microbiota produces 
SCFAs (butyrate and propionate), which can mod-
ulate the expression of CD8+ T cells. The gut 
microbiota is also an essential player in the mainte-
nance of the cytokine storm through their interac-
tion with TLRs. It is therefore possible that the gut 
microbiome may play a role in the regulation of our 
immune system, including regulating the immune 
response to the COVID-19 infection.

Vitamin D
In a study that explored the relationship between 
vitamin D level and incidence of COVID-19, the 
authors observed a negative correlation between 
levels of mean vitamin D [average 56.79 nmol/l, 
standard deviation (SD) 10.61] and number of 
cases of COVID-19/1 million population in each 
country.68 This concept was further supported by 
an editorial that plotted mortality against latitude 
and noted that all countries that lie below 35 
degrees north have relatively low mortality.69 A 
study that explored Vitamin D levels in patients 
with COVID-19 was found that positive patients 
had a lower median serum 25(OH)D level of 
27 nmol/l [interquartile range (IQR) = 20–
47 nmol/l] compared with the COVID-19-negative 
arm, with median level of 52 nmol/l (IQR = 31.5–
71.5 nmol/l) (p value = 0.0008).70 To our knowl-
edge, there is only one randomised controlled pilot 
study that explored the role of direct vitamin D 
treatment in COVID-19 patients. In this, the 
authors found that administration of high dose 
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calcifedol or 25-hydroxyvitamin D significantly 
reduced the risk of ICU admission with proven 
COVID-19.71

Although this association is likely to be multifac-
torial,72 vitamin D has been associated with the 
promotion of regulatory T cells (Tregs) inhibition 
of Th1 and Th17 cells, impairment of the devel-
opment and function of B cells, and reducing 
monocyte activation.73,74 It has been shown that 
the gut microbiome can be altered by vitamin D 
exposure.75,76 Furthermore, it has been estab-
lished that microbially derived bile acids, includ-
ing lithocholic acid, are well established as ligands 
for the vitamin D receptor77. As such, if this asso-
ciation is valid, it may be possible that vitamin 
D-related manipulation of the gut microbiome 
may impact on the morbidity and mortality asso-
ciated with COVID-19 infection.

Other factors
Perturbation of several other host pathways have 
also been linked to the pathogenesis of COVID-
19 infection. For instance, one pathway that  
has received particular attention has been the 
apparent marked state of vitamin K deficiency 
that characterises COVID-19 infection in 
humans, and which correlates with poor out-
come.78 In particular, vitamin K deficiency may 

directly contribute to the coagulopathy and lung 
inflammation found in severe COVID-19 infec-
tion.78 While there may be a number of contribu-
tory factors to this vitamin K deficient state, there 
has been increasing recognition recently of the 
key contribution of the gut microbiome and bile 
acids to normal vitamin K production and absorp-
tion.79 This contribution may be of particular rel-
evance given the high preponderance of antibiotic 
use in patients with COVID-19 infection, in the 
attempt to prevent or treat co-existing bacterial 
lung infections, which impacts the gut microbio-
ta’s contribution to the host’s vitamin K pool.

Diet and COVID-19 infection
There is a multi-directional relationship between 
diet, the immune system, infection and nutrition, 
with changes in one of these components having a 
significant impact on the other.80 Diet has been 
implicated in a broad range of diseases and it has 
been speculated that diet may be a key driver in 
determining the severity of COVID-19.81 The 
World Health Organisation provides advice on 
nutrition during this pandemic to include plenty 
of fruit and vegetables.82 There is a large evidence 
base on the impact of diet on the gut microbi-
ota,83 but as yet the relevance of diet-driven 
changes in the gut microbiome in the context of 
COVID-19 has yet to be established.

Figure 1. Potential mechanisms of interaction between the gut microbiome and SARS-CoV-2.
SCFA, short chain fatty acid; TLR, Toll-like receptor.
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Interestingly, China’s National Health commis-
sion and National Administration of Traditional 
Chinese medicines have recommended that 
patients with severe COVID-19 infection take 
probiotics as a means of preventing secondary 
bacterial infections.84 Significantly, it was shown 
in two meta-analysis that critically ill patients 
who were given probiotics developed substan-
tially less ventilator-associated pneumonia when 
compared with placebo.85,86 However, the ration-
ale for using probiotics in COVID-19 is based on 
indirect evidence only. Importantly, it has been 
suggested that conventional probiotics should 
not be recommended until the role of the micro-
biota on COVID-19 infection is understood.87 
Despite this advice, altering the gut microbiota to 
reduce the burden of COVID-19 infection may 
be an area that deserves further exploration. As 
of 22 October 2020, there are 11 clinical trials 
registered on clinicaltrials.gov on the use of pro-
biotics/synbiotics for the treatment of COVID-
19 infection.

The gut microbiome and proposed 
treatments for COVID-19 infection
In parallel with the efforts being made to under-
stand the pathogenesis of COVID-19 disease, 
the pandemic has prompted the rapid develop-
ment and roll out of an unprecedented number 
of investigational treatment studies. As of 
October 2020, over 3800 clinical trials targeting 
COVID-19 are registered across the globe.88 
The gut microbiome is well established as a 
modulator of a wide range of therapeutic com-
pounds used in clinical practice,89 including 
anti-virals,90 anti-hypertensives,89 and anti-dia-
betic medications,91 and baseline gut microbi-
ome profiles have been shown to predict 
responses to cancer therapies.92 It is possible 
that inter-individual variation in gut microbi-
omes will have an impact on the success of pro-
posed treatments for COVID-19.

A wide array of drugs are being trialled to combat 
COVID-19, with some showing evidence that they 
interact with the gut microbiome. Specifically, the 
macrolide antibiotic Azithromycin is being tested 
widely as a treatment for COVID-19, predomi-
nantly in combination with hydroxychloroquine. 
Azithromycin’s action on gut bacteria is well recog-
nised, hence its use in the treatment of Campylobacter 
infection in many parts of the world.93 In a blinded, 
randomised, placebo-controlled study in young 

children, a 3-day course of Azithromycin (10 mg/
kg) was shown to reduce alpha diversity of the gut 
microbiota characterised by loss of the genus 
Bifidobacterium at 14 days.94 Furthermore, func-
tional analysis of the metagenomes of African chil-
dren treated with Azithromycin showed 
under-representation of metabolic pathways 
involved in immune regulation and inflamma-
tion.95 The aforementioned studies concern chil-
dren, and their applicability in the population 
severely affected by COVID-19, mainly older 
adults, is perhaps moot, although, in an adult pop-
ulation, azithromycin treatment has been associ-
ated with a diminishment of Lachnospiraceae.96

Antibiotic use in COVID-19 patients has been 
widespread, and there is growing concern that 
antimicrobial resistance will be exacerbated.97 
There is also evidence that antibiotic use prior to 
viral exposure may predispose individuals to 
more severe respiratory infections.98 In a mouse 
model of influenza infection, animals given anti-
biotics had an abrogated interferon signature in 
lung stroma, which permitted early virus replica-
tion in the epithelia. Interestingly, faecal trans-
plant following antibiotics restored the interferon 
signature,98 suggesting that the gut microbiome 
plays an integral role in determining the integrity 
of barrier defences against infection at sites dis-
tant to the GI tract. If replicated in humans, this 
paradigm may be applicable to other viruses that 
enter via the respiratory epithelium, including 
SARS-CoV-2. As such, there has been a proposal 
for intervention studies with gut microbiota 
manipulation – with the aim of preventing or 
minimising the clinical extent of COVID-19 
infection – including via probiotics and faecal 
transplant.99,100

The monoclonal anti-IL6 antibody tocilizumab 
is the focus of several studies attempting the 
counter the hyperinflammatory cytokine release 
storm observed in some patients with severe 
COVID-19.101 Concern has been raised in some 
quarters that Tocilizumab, a drug used to treat 
rheumatological conditions such as rheumatoid 
arthritis, is known to cause lower intestinal per-
foration (2–3 per 1000 patients).102,103 The 
mechanism is not known, although patients with 
diverticular disease are thought to be at higher 
risk. The presence of diverticular disease, regard-
less of symptoms, is associated with an altered 
microbiota.104 It is noteworthy that IL-6 defi-
cient mice have an impaired gut-epithelial 
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barrier with thinning of the mucus gel layer.105 
Interestingly, bacteria in the order Bacteroidales 
promote intra-epithelial lymphocytes in the 
colon which produce IL-6,105 raising the possi-
bility that the composition or function of the gut 
microbiota may be implicated in the aetiology of 
tocilizumab-related perforation.

Finally, there is clearly a major clinical need for a 
vaccine against COVID-19, and a number of tri-
als are ongoing globally. It is well recognised that 
immune responses to vaccine administration 
against viral and other pathogens is notably vari-
able between patients; this variability may repre-
sent the interplay of a number of different factors, 
but which may include the composition and/or 
functionality of the gut microbiome.106 While 
there is much data to suggest immune response 
variability to vaccinations from animal studies, 
recent human data demonstrates that antibiotic-
mediated gut microbiome disruption impairs the 
antibody response to influenza vaccination to 
patients with low pre-existing anti-influenza anti-
body titres.107 As such, recent use of antibiotics 
(or other factors that may disrupt the gut micro-
biome) may be of relevance to consider when 
recruiting participants to COVID-19 vaccine 
studies.

Problems in assessing the microbiome
There are challenges with studying the microbi-
ome during this pandemic. One of the main safety 
concerns is the prolonged presence of COVID-19 
virus RNA in stools.108 Prolonged viral shedding in 
the faeces leads to challenges in collecting stool for 
research purposes, and such experiments require a 
Category 2 laboratory to process samples. Retrieving 
tissue samples for microbiome analysis also repre-
sents a logistical challenge. Currently, there are 
restrictions regarding endoscopic practice during 
the COVID-19 pandemic,109 meaning that the 
ease of acquiring tissue samples for research pur-
poses is reduced. There is also a reduction in sur-
gery during the COVID-19 pandemic.110

There has been a wider impact of the pandemic on 
other areas of research, with an overall reduction in 
academic activity outside of COVID-19 related 
studies.111 Furthermore, from an infrastructure 
perspective, many academic and university staff 
have been redeployed to focus their efforts on 
other areas of COVID-19 research, including vac-
cine development.112

Conclusion
The gut microbiome plays a significant role in 
human health and disease states, and could play a 
significant role in the interplay between COVID-
19 infection and the host. Microbiome studies 
may help our understanding of the pandemic and 
furthermore provide insights into preventative 
and therapeutic strategies.

The long-term implications of COVID-19 infec-
tion on a variety of organs are currently unknown, 
with the potential for long-lasting effects. 
Specifically it has been alluded to that the 
increased use of antimicrobials in this pandemic 
may result in the future burden of antibiotic 
resistance.113 As we develop more knowledge 
regarding the virus, it will also be important to 
understand the effects of this pandemic on the 
gut microbiome and hence potential long-term 
implications.
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