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Abstract

The Ewing Sarcoma Family Tumors (ESFT) consist of the classical pathologic entities of Ewing Sarcoma and peripheral
Primitive Neuroectodermal Tumor. Occurring largely in the childhood through young adult years, these tumors have an
unsurpassed propensity for metastasis and have no defined cell of origin. The biology of these aggressive malignancies
centers around EWS/FLI1 and related EWS/ETS chimeric transcription factors, which are largely limited to this tumor class.
Much progress has been made in the identification of a network of loci whose expression is modulated by EWS/FLI1 and its
congeners. To date, little progress has been made in reconstructing the sequence of direct and indirect events that produce
this network of modulated loci. The recent identification of GLI1 as an upregulated target of EWS/ETS transcription factors
suggests a target which may be a more central mediator in the ESFT signaling network. In this paper, we further define the
relationship of EWS/FLI1 expression and GLI1 upregulation in ESFT. This relationship is supported with data from primary
tumor specimens. It is consistently observed across multiple ESFT cell lines and with multiple means of EWS/FLI1 inhibition.
GLI1 inhibition affects tumor cell line phenotype whether shRNA or endogenous or pharmacologic inhibitors are employed.
As is seen in model transformation systems, GLI1 upregulation by EWS/FLI1 appears to be independent of Hedgehog
stimulation. Consistent with a more central role in ESFT pathogenesis, several known EWS/FLI1 targets appear to be
targeted through GLI1. These findings further establish a central role for GLI1 in the pathogenesis of Ewing Tumors.
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Introduction

Much of the unique biology of the Ewing Sarcoma Family Tumors

(ESFT) stems from the unique effects of EWS/FLI1. This fusion

transcription factor, along with related EWS/ETS fusions, is virtually

pathognomonic of these aggressive malignancies[1]. Given the nature

of these chimeric proteins, considerable work has gone into the

identification of the transcriptional targets of EWS/FLI1[2,3]. Despite

this effort, no identified target has been clinically demonstrated to be

of prognostic or therapeutic significance. Together, this diverse group

of targets constitute a signaling network. Elements of this transcrip-

tional network have been identified[3] but the relationship between

these elements has not been well studied. In a sense, such relationships

constitute the topology of this network. Based on the biology of this

disease, one can presume that EWS/FLI1 will be central to this

network. But targets of EWS/FLI1 will vary in importance from

isolated clients on the network to more centrally situated hubs or

routers which regulate a subdomain of this network in concert.

Establishing the existence and nature of such relationships will be

critical to prioritizing which transcriptional targets are most likely to

have maximal impact as targets for translational therapeutics.

The recent finding that EWS/FLI1 enhances expression of

GLI1 presents a potential clue to the interpretation of this

network[4,5]. GLI1 is the principal transcriptional effector of the

Hedgehog-GLI (HH-GLI) signaling pathway[6]. This pathway is

of critical importance in many developmental processes and is

important in the maintenance of stem cell compartments in both

developing and mature tissues[7]. Furthermore, HH-GLI has been

found to be involved in many human cancers from prostate cancer

in adults to childhood medulloblastoma[8]. Translational efforts to

target this pathway are ongoing[9,10,11]. While it has been

implicated in EWS/FLI1 biology, much of this data comes from a

murine model system for EWS/FLI1 transformation[4]. The

establishment of the significance of GLI1 upregulation to ESFT

biology remains to be more firmly established. Beyond this, if

GLI1 is more than a peripheral event in the EWS/FLI1 signaling

network, it can be expected to to leave an identifiable trans-

criptional footprint which may encompass some previously

identified EWS/FLI1 targets.

Here we demonstrate that ESFT primary tumors express HH-

GLI pathway members in a manner consistent with that seen in

model transformation systems. The EWS/FLI1 dependence of

GLI1 expression and signaling in multiple ESFT cell lines is clearly

demonstrated. Using multiple means of GLI1 inhibition, we

demonstrate the importance of GLI1 to the ESFT tumorigenic

phenotype. Intriguingly, we show that GLI1 upregulation in ESFT
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is a Hedgehog independent phenomenon in ESFT, suggesting

non-canonical mechanism of pathway activation. Finally, in

multiple ESFT cell lines, we demonstrate that several loci known

to be transcriptionally modulated by EWS/FLI1 are dependent

upon GLI1 expression. This establishes GLI1 as a higher order

target in the EWS/FLI1 signaling network and begins to define a

hierarchy in the EWS/FLI1 signaling network.

Results

Primary tumors demonstrate significant GLI1 expression
Our earlier findings focused on EWS/FLI1 activation of GLI1

in an NIH3T3 model transformation system[4] with added data

from ESFT cell lines. However, HH-GLI pathway activity has

been found to be diminished in in vitro cultured medulloblastoma

lines[12], so the cell lines we evaluated may not reflect the

condition in primary ESFT. To see how well these findings apply

to clinical disease, we evaluated the status of a panel of 12 ESFT

primary tumor specimens. As is illustrated in Figure 1, the

expression of mediators of the HH-GLI pathway closely resembles

that found in EWS/FLI1 expressing NIH3T3 cells. The most

characteristic indicators of oncogenic signaling via this pathway

are the expression levels of GLI1, GLI2 and the direct GLI1 target

Patched1. These are important components of what has been

termed the GLI code[13]. In these twelve ESFT specimens, we

found expression levels of these pathway mediators to be similar or

higher than those in specimens from cell lines known to be in the

upper quartile for expression in microarray data obtained for the

NCI-60 panel of tumor cell lines (Novartis, http://wombat.gnf.

org). Our earlier data from NIH3T3 indicated little or no

expression of Sonic Hedgehog (SHH)[4], which mediates pathway

activity in development and in some tumor systems. Once again,

our primary tumor specimens demonstrate very little to no

expression of SHH transcript when compared to a positive control

expressing SHH cDNA. Similar low levels of Indian Hedgehog

(IHH) were also found (data not shown). Some of the variability of

expression of GLI pathway members from sample to sample could

reflect variable tumor cell content in the primary specimens. All

specimens showed either an EWS/FLI1 or an EWS/ERG

transcript by RT-PCR, indicating at least some ESFT tumor cell

content. However the percentage of the specimen which was

tumor cells could not be assessed. Another source of variability

could relate to some of the other signaling pathways such as PI3-

AKT, RAS-MEK1, and PKC-delta which have been shown to

affect signaling in the HH-GLI1 pathway[14]. Nevertheless,

overall these findings indicate that primary ESFT demonstrate

significant expression of HH-GLI1 mediators and appear to

demonstrate little expression of Hedgehog species.

Multiple means of inhibition demonstrate GLI1 to be
EWS/FLI1 dependent in ESFT

Our earlier findings demonstrated that GLI1 expression is

dependent on EWS/FLI1 expression in one set of experimental

conditions using in vivo EWS/FLI1 siRNA. If GLI1 upregulation

by EWS/FLI1 is of biologic importance to ESFT, we would expect

to find such a relationship applies to multiple means of targeting

EWS/FLI1 and in multiple ESFT cell lines. Since off target effects

can produce spurious results in RNAi experiments, we assessed the

relationship between EWS/FLI1 and GLI1 activity in ESFT cell

lines using several shRNA targeting sequences. In all cases,

polyclonal cell lines were derived using lentivirally delivered shRNA

followed by rapid selection in puromycin. As is seen in Figure 2A,

the degree of EWS/FLI1 knockdown of expression mirrors the

reduction in GLI1 and of Patched1 transcript. This close

relationship is highly unlikely to have been produced by an off

target effect. It also establishes Patched1 as a target of transcrip-

tional modulation by EWS/FLI1 in ESFT cell lines.

Furthermore, similar polyclonal shRNA experiments have been

shown to yield reductions of GLI1 and of Patched1 in both A673

Figure 1. Expression of HH-GLI pathway species in primary ESFT specimens. Twelve CHTN banked tumor specimens are assessed for HH-
GLI1 related gene expression by real time quantitative PCR. Also included is TTC475 in both primary tumor specimen and cell line form. For
comparison, two Rhabdomyosarcoma (RMS-R and -T) and an Osteosarcoma (Saos) cell line are included. SaOS2 is in the upper quartile for GLI1
expression in NCI60 microarray data. For reference, TC71 cells transduced with SHH or empty retroviral vector are included in the SHH panel.
doi:10.1371/journal.pone.0007608.g001

GLI1 in Ewing Tumors
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and CHLA9 (see Figure 2B), indicating that the EWS/FLI1

dependence of GLI1 expression and signaling is shared among

several well studied ESFT cell lines.

Finally, to further evaluate the soundness of this relationship, we

employed an antisense form of EWS/FLI1 and selected stable

knockdown clones from TC71 and TC32[15]. Figure 2C

demonstrates once again that an experimentally induced reduction

in EWS/FLI1 expression results in a reduction of GLI1 and

Patched1 expression.

Multiple means of GLI1 inhibition establish the
importance of GLI1 expression to ESFT phenotype

We have also demonstrated that GLI1 hairpin is capable of

diminishing anchorage independent growth in ESFT cell lines. To

rule out a possible off-target effect, we evaluated a panel of GLI1

shRNA targeting sequences in the ESFT cell line TC71. Figure 3A

illustrates the targeting sequences used and depicts the degree of GLI1

expression decrease and the degree of decrease in anchorage

independent growth. The consistent observation is that the degree

of GLI1 knockdown is associated with a reduction in anchorage

independent growth. Figure 3B demonstrates the efficacy of these

constructs at reducing GLI1 protein levels. These findings suggest that

GLI1 is clearly important to this aspect of tumor cell line phenotype

and that this observation is unlikely to be due to an off target effect.

To further confirm the effect of HH-GLI inhibition in ESFT,

we employed alternate means of inhibition. Suppressor of Fused

(SUFU) is an endogenous inhibitor of the HH-GLI1 pathway

acting by either cytoplasmic sequestration of GLI1 or by inhibition

of GLI1 transcription at select loci[16,17]. We drew upon our

prior observation that overexpression of Suppressor of Fused

(SUFU) is capable of diminishing anchorage independent growth

of EWS/FLI1 transformed NIH3T3 cells[4]. To see if ESFT lines

behave in a similar fashion, we transduced a total of three ESFT

lines with SUFU under the control of a high activity retroviral

promoter. High levels of SUFU transcript were exhibited by these

polyclonal lines (data not shown). Figure 3C shows that all three

lines exhibited diminished anchorage independent growth. These

experiments were verified in 2–4 independent assays per line.

They further strengthen the case that GLI1 dependence of ESFT

lines is a widespread phenomenon.

GLI1 signaling in ESFT is Hedgehog independent
The most common mechanism for activation of the HH-GLI

pathway involves activation of Smoothened, either by overexpression

Figure 2. RNAi mediated reduction in EWS/FLI1 expression results in a consistent reduction of GLI1 signaling. Panel A: Four different
shRNA sequences targeting EWS/FLI1 were introduced into the Ewing cell line TC71. The sequences are EF-2[26], EF-bp (from the Type 1 EWS/FLI1
breakpoint)[34], EF-4 [26] and EF-818 [33]. These are compared to a non-targeting control shRNA directed to a sequence in the luciferase gene by
qPCR. Reduced expression of EWS/FLI1 is always accompanied by a reduction of GLI1 and its direct target Patched1. Panel B: Similar qPCR results are
obtained from other ESFT cell lines, A673 and CHLA9. Panel C: An unrelated antisense construct inhibits EWS/FLI1 expression by Western blot (left of
panel). This reduction in EWS/FLI results similar alterations in the expression of GLI1 and Patched1 by real time qPCR (right of Panel C).
doi:10.1371/journal.pone.0007608.g002

GLI1 in Ewing Tumors
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of the HH ligand or by a loss of function mutation in the Patched1

tumor suppressor. In EWS/FLI1 transformed NIH3T3, there is

evidence for only minimal HH activation[4]. Furthermore, expres-

sion data from primary Ewing tumor specimens does not

demonstrate significant levels of HH ligand (Figure 1). To obtain

further proof of the HH independence of GLI1 activation in ESFT,

we assessed HH activation by the application of an active form of

exogenous human SHH ligand to cells in culture. As shown on the

left in Figure 4A, application of this ligand on the HH sensitive cell

line NIH3T3 results in marked upregulation of GLI1 and of

Patched1, demonstrating an intact HH-GLI transduction pathway

with appropriate downstream signaling. The compound Cyclopa-

mine, which blocks pathway activation at the level of Smoothened,

effectively eliminates this activation as expected. In ESFT cell lines

Figure 3. Multiple means of GLI inhibition, diminish ESFT cell line phenotype. Multiple GLI1 shRNA constructs (A, bottom) produce
diminished GLI1 expression to varying degrees (Panel A, top) and diminished anchorage independent growth (Panel A, middle) in TC71. Panel B: GLI1
shRNA constructs produce the expected reduction in GLI1 protein by western blot in TC71. Panel C: Overexpression of the endogenous HH-GLI
inhibitor Suppressor of Fused (SUFU) reduces anchorage independent growth of ESFT lines.
doi:10.1371/journal.pone.0007608.g003

GLI1 in Ewing Tumors
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(Figure 4A, right), the picture is different. GLI1 transcript is

upregulated by SHH to generally lesser degree, with 2/4 lines

showing no response. While this increase in GLI1 transcript can be

blocked by Cyclopamine, none of the cell lines demonstrate even a

50% enhancement of Patched1 with exogenous human SHH. So this

lesser degree of GLI1 activation in ESFT cell lines is not accompanied

by any major enhanced signaling downstream of GLI1. We conclude

that, in addition to having little HH expression, ESFT cell lines are

relatively HH insensitive. The consequence of this insensitivity is

shown in Figure 4B as incubation of these lines with Cyclopamine

produces little measurable effect on anchorage independent growth.

These results contrast with the results presented above for GLI1

hairpin or overexpression of SUFU.

Cyclopamine acts on the HH-GLI pathway at the cell surface

by inhibiting the activation of Smoothened[18]. The failure of

Cyclopamine to recapitulate our shRNA and SUFU inhibitory

studies suggest that GLI1 activation is a more central phenomenon

is ESFT. To further confirm this impression we used another

means of blockade. Forskolin (FSK) is a compound which effects

cytoplasmic PKA stimulation and is known to inhibit the HH-GLI

pathway at the level of GLI1[19,20,21]. While it is not a pure

GLI1 inhibitor, it has been extensively used experimentally to

Figure 4. GLI1 upregulation is Hedgehog independent. Panel A: Exogenous SHH in culture media effectively upregulates GLI1 and Patched in
NIH3T3, an SHH responsive cell line. Cyclopamine (5 mcM) effectively blocks this stimulation. However, the same human SHH protein is relatively
ineffective in altering GLI1 expression in ESFT cell lines, with 2/4 lines showing no response. Patched1 expression is mildly altered (,50% change) in
TC32, with 3/4 lines showing no change. Statistical comparisons are made with diluent. NS means ‘‘not significant.’’ Panel B: Consistent with the
minimal expression changes produced by Cyclopamine, 10 mcM Cyclopamine is ineffective at altering anchorage independent growth in ESFT cell
lines as was observed with GLI1 shRNA. Panel C: Forskolin, which blocks the pathway at the level of GLI1 at 100 mcM concentration, has similar
inhibitory effects to those observed with shRNA and endogenous inhibitors. Panel D: Unlike Cyclopamine increasing concentrations of the specific
GLI transcriptional inhibitor GANT58 results in abrogation of anchorage independent growth in the Ewing cell line A673.
doi:10.1371/journal.pone.0007608.g004

GLI1 in Ewing Tumors
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block the pathway at this level [22,23,24,25]. As is shown in

Figure 4C, treatment of ESFT cells with FSK results in diminished

expression of GLI1 transcript. As a consequence, anchorage

independent growth is inhibited. This further suggests that GLI1 is

important to ESFT biology and that it is activated downstream of

Smoothened.

Finally, GANT58 (NSC75503) has been shown to inhibit

transcriptional activation by GLI1 (as well as by the other GLI

species) [9]. We exposed A673 cells to increasing concentrations of

GANT58 and found a dramatic reduction in anchorage

independent growth with concentrations as low as 5 mcM. This

further supports a mechanism of activation which is downstream

of Smoothened and is consistent with the recent observation of

direct transcriptional activation of GLI1 by EWS/FLI1[5].

Some GLI1 and EWS/FLI1 transcriptional targets overlap
GLI1 is an oncogenic transcription factor. If GLI1 is more than

a peripheral event in ESFT biology, one might expect it to play a

significant role in the transcriptional profile of EWS/FLI1 in

ESFT. To evaluate this possibility, we assessed a published set of

EWS/FLI1 targets[26]. Generated in A673 cells, this data set

identified 31 genes upregulated by EWS/FLI1 as assessed by two

separate shRNA hairpin sequences combined with data on

restored expression of EWS/FLI1. In this target list, one finds

GLI1. Also on this list are NKX2.2 and GAS1, two loci known to

be affected by HH-GLI signaling. NKX2.2 is a Class II HH target

in the developing neural tube[27]. Its expression is induced in

neural ectoderm subsequent to SHH release by the notochord.

More recently, it has been shown to be directly targeted by

GLI1[28], much like Patched1. GAS1 is more indirectly involved

as part of a feedback network of SHH binding factors. An

enhancer of HH-GLI signaling, its expression is modulated based

on the signaling conditions of the target tissue. Under conditions of

low HH stimulation, GAS1 expression is enhanced; while in

conditions of strong SHH signaling, its expression is downregu-

lated[29]. Our own data indicate that the GLI1 target Patched1 is

also transcriptionally upregulated by EWS/FLI1 in multiple ESFT

lines (see Figure 2). The finding that several HH-GLI1 targets have

also been identified EWS/FLI1 targets suggests a model in which

EWS/FLI1 reaches these targets through GLI1.

To test this hypothesis, we first sought to demonstrate that

NKX2.2 and GAS1 were also EWS/FLI1 modulated targets in

TC32 and TC71, as has been shown in A673[26]. Figure 5A

demonstrates that both are indeed transcriptionally upregulated by

EWS/FLI1, based on data from cells transduced with EWS/FLI1

antisense. Next, we tested whether these EWS/FLI1-modulated

targets are also GLI1 responsive in an ESFT background. Since

TC32 cells have the lowest level of GLI1 expression of common

ESFT cell lines[4], we overexpressed GLI1 in TC32 (Figure 5B).

As direct GLI1 targets, Patched1 and NKX2.2 are upregulated by

GLI1. This supraphysiologic GLI1 expression results in downreg-

ulation of GAS1, as has been observed with prolonged SHH

stimulation in developmental models[29]. Nevertheless, the

transcript levels of all three loci are clearly GLI1 modulated in a

Ewing cell background.

As a further test that EWS/FLI1 targets these three loci through

GLI1, we measured the effect of GLI1 inhibition via GLI1

shRNA. Figure 5C demonstrates that all three loci are

transcriptionally downregulated by GLI1 hairpin, just as they

diminish with EWS/FLI1 hairpin. The fact that GAS1 is

downregulated by both GLI1 expression and by GLI1 knockdown

reflects the different states of pathway activation between the more

physiologic levels of GLI1 expression in the shRNA experiment

and the dramatic overstimulation of the pathway with GLI1

overexpression.

As an additional proof of this model, we employed a different

method of GLI1 transcriptional inhibition. The compound

GANT58 has been shown to inhibit GLI transactivation [5,9].

We have already shown that it has effects similar to GLI1 shRNA

on anchorage independent growth in an ESFT line (see Figure 4D).

If our model is correct, GANT58 should produce effects on

downstream transcriptional targets similar to those seen with GLI1

shRNA. To test this, we exposed the ESFT cell line A673 to

GANT58 at doses shown to inhibit GLI1 transactivation.

Figure 5D demonstrates the anticipated transcriptional downreg-

ulation of Patched, NKX2.2 and GAS1 by treatment with

GANT58.

Discussion

Our findings demonstrate the widespread nature of EWS/FLI1

dependent GLI1 deregulation in ESFT cell lines. Deregulated

expression of GLI1 is a characteristic of primary ESFT and many

ESFT cell lines. GLI1 expression is important to support the

malignant phenotype of ESFT cell lines whether inhibited by

shRNA, endogenous regulators, or by pharmacologic agents. This

deregulation appears to be Hedgehog independent. Finally, we

have identified the first members of a subset of EWS/FLI1 targets

which require GLI1 for their deregulation. The significant biologic

effects of GLI1 inhibition in ESFT cell lines is not surprising, since

inhibition of NKX2.2 alone is sufficient to produce similar

significant effects[26]. The biologic effects of altered expression of

our other two overlapping targets, Patched1 and GAS1 remain to

be elucidated in ESFT.

As we have observed in a model systems [4] and has been seen

in other ESFT cell lines [5], EWS/FLI1 deregulation of GLI1

appears to the a Hedgehog independent phenomenon. The

mechanism by which GLI1 is upregulated has been recently

described as being direct transcriptional upregulation by EWS/

FLI1[5]. It is gratifying that data from this publication agrees with

our hypothesis of activation of GLI1 by a Hedgehog independent

mechanism downstream of Smoothened. These observations will

enable a broader understanding of the range of activity of EWS/

FLI1 and will add to the growing literature on non-canonical

mechanisms of activating HH-GLI signaling[30].

With the recent opportunities afforded by microarray analysis, a

more consistent set of EWS/FLI1 targets is emerging[3]. Such

target sets are biased by the means by which they are identified. As

such, these methods are likely to favor targets whose transcript

levels are inherently high, such as those which may be strong

direct EWS/FLI1 transcriptional targets [31]. However, there is

no reason to assume that the list of biologically significant EWS/

FLI1 targets must necessarily be restricted to the ‘‘high amplitude’’

set favored by microarray analysis.

Given the literature suggesting that Patched1, NKX2.2, and

GAS1 are components of the HH-GLI signaling network, the most

likely model is for EWS/FLI1 induced elevation of GLI1

expression leading to altered expression of a number of target

loci. Further characterization of this system has the potential to

provide some order to the complex picture of transcriptional

deregulation by EWS/FLI1. While it is likely that only a subset of

EWS/FLI1 targets are deregulated through GLI1, the data

presented here and the known biology of HH-GLI signaling

suggest that many may be of biologic import. Since GLI1 acts as a

transcription factor, analysis of shRNA-manipulated ESFT cell

lines by expression microarray would allow the identification of

common targets of EWS/FLI1 and GLI1. Knowledge of such a

GLI1 in Ewing Tumors
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hierarchy can be of tremendous benefit in the design of new

therapies. Certainly, targeting an EWS/FLI1 mediator which is

more upstream, such as GLI1, could be expected to have more

extensive effects than targeting a gene further downstream in the

process. Our work with the GLI1 inhibitor GANT58 suggests that

this pathway may be a valid target for translational research in

Ewing Sarcoma. A secondary benefit of employing GLI1

inhibition in Ewing tumors is that GLI1, unlike EWS/FLI1, is

Figure 5. EWS/FLI1 and Gli1 targets overlap in ESFT. Panel A. EWS/FLI1 antisense (see Figure 1C) demonstrates that NKX2.2 and GAS1 are
transcriptionally upregulated by EWS/FLI1 in TC71 and TC32. Panel B. GLI1 overexpression in TC32 shows that EWS/FLI1 targets PTCH, NKX2.2 and
GAS1 are transcriptionally modulated by GLI1 expression in a Ewing cell background. Panel C. GLI1 shRNA reduces GLI1 expression and also reduces
expression of these EWS/FLI1 targets. Panel D. GANT58 (10 mcM), an inhibitor of GLI transcriptional activation, results in transcriptional
downregulation of our three putative downstream targets of GLI1.
doi:10.1371/journal.pone.0007608.g005

GLI1 in Ewing Tumors
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felt to be involved in the pathogenesis of a large number of

common malignancies. As market-driven forces generate means of

targeting this pathway in common adult malignancies[8], the

potential application of these means to patients with Ewing

Sarcoma Family Tumors promises to improve outcomes in this

difficult malignancy.

Materials and Methods

Retroviral Experiments
The generation of recombinant retroviral stocks has been

previously described [32] and in these experiments was modified

only by using the LINX-A packaging line (Genetica) for retroviral

constructs. These experiments employed either the vector system

in that description or pLXIN (Clontech, Mountain View, CA) or

the derivative pLXIH[4]. The retroviral construct for murine

SHH was previously described [4]. The retroviral construct for

Human Suppressor of Fused was obtained by PCR amplification

of the reading frame from the clone MGC3533158 (Invitrogen).

This insert was cloned into pLXIN (Clontech) or pLXIH [4].

Cloning strategy is available on request.

RNAi experiments
shRNA experiments were performed as previously described[4].

Target oligo sequences were obtained from the following publica-

tions: EF2 [26], EF4 [26], EF818 [33]. Other shRNA oligo sequences

can be found in Figure S1 accompanying this paper online.

The antisense EWS/FLI1 construct and its use has been

previously described [15].

Real Time Quantitative PCR (qPCR)
RNA was isolated using either Tri-Reagent (MRC) or RNeasy

Plus Kit (Qiagen, Valencia, CA) according to manufacturers

instructions. CDNA’s were prepared from 0.5 mcg total RNA

using the BioRad iScript Kit according to manufacturer’s

instructions. PCR was performed using a BioRad MyiQ Thermal

Cycler using BioRad iQ SYBR Green Supermix according to

manufacturer instructions (BioRad, Hercules, CA). Conditions

selected were 30 seconds of denaturation at 94uC and annealing/

extension for one minute at 60uC. Data was analyzed for

expression relative to GAPDH using the comparative Ct method

with data resulting from the average of three replica wells within

each experiment. Data in figures is represented either as a

percentage of GAPDH expression or the percent GAPDH values

have been normalized with the control value set at 1.0. Results

shown average the results of three independent experiments. Error

bars show the standard error of the mean. P values were calculated

using an unpaired Student’s t-Test. Primers for human GLI1,

GLI2, Patched1, and GAPDH have been previously described[4].

Other primers sequences are in Figure S1 online.

Cells, Cell Culture, and Materials
All tumor cell lines were grown in RPMI supplemented with

2 mM glutamine and 10% Fetal Bovine Serum at 37 degrees C

and in 5% CO2. TC71, TC32, TTC466, and TTC475 (plus

primary specimen) were kindly provided by Dr. Tim Triche.

CHLA9 was provided by Dr. C. Patrick Reynolds. A673 cells were

obtained directly from ATCC.

Primary tumor specimens were obtained from Cooperative

Human Tissue Network (CHTN) (http://www.chtn.nci.nih.gov).

RMS-R and RMS-T RNA specimens were kindly provided by Dr.

Michael Anderson. SaOS RNA was kindly provided by Dr. Daniel

Wai. We appreciate their help in this regard.

Drug Experiments
Cells were exposed to Sonic Hedgehog C24II amino-terminal

peptide (R&D Systems: http://www.rndsystems.com) for 16 hours

before RNA was extracted.

GANT58 and Forskolin (FSK) were obtained from EMD

Biosciences (http://www.emdbiosciences.com, Cat #344270).

Cyclopamine was obtained from Toronto Research Chemicals

(http://www.trc-canada.com). Drugs were dissolved in DMSO.

For expression experiments, cells were incubated with cells

overnight.

Antibodies and Immunoblotting
These were performed as previously described[4].

Soft Agar Transformation Assay
Polyclonal, selected populations of the cell type to be analyzed

were plated in soft agar at either 5000 or 15000 cells per well of a

6-well plate. The agar was made with Iscove’s medium containing

20% fetal calf serum for tumor cell lines as described previously

[32]. Drugs or diluent were added to the top layer of the agar in an

amount to achieve the target concentration in the whole well.

Drug was added only at the time of Agar setup. Agar plates were

imaged via a transilluminating flatbed scanner approximately 2–3

weeks after plating. Counts were performed manually on high

resolution scanned images. Results shown for these agar assays

were consistent over at least three independent experiments.

Lighter background color on some scanned agar images results

from acidification of phenol red in the media, a sign of enhanced

anchorage independent growth.

Reproducibility
Data presented has been repeated at least three times with

consistent results. Numerical data presented is the average of these

replicated experiments. Where necessary, results across experi-

ments have been normalized to a control value. Error bars

presented are the standard error of the mean.

Supporting Information

Figure S1 Oligonucleotide sequences

Found at: doi:10.1371/journal.pone.0007608.s001 (0.00 MB

RTF)
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