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Abstract: Identity-based encryption (IBE), and its hierarchical extension (HIBE), are interesting
cryptographic primitives that aim at the implicit authentication on the users’ public keys by using
users’ identities directly. During the past several decades, numerous elegant pairing-based (H)IBE
schemes were proposed. However, most pairing-related security assumptions suffer from known
quantum algorithmic attacks. Therefore, the construction of lattice-based (H)IBE became one of
the hot directions in recent years. In the setting of most existing lattice-based (H)IBE schemes,
each bit of a user’s identity is always associated with a parameter matrix. This always leads to
drastic but unfavorable increases in the sizes of the system public parameters. To overcome this
issue, we propose a flexible trade-off mechanism between the size of the public parameters and the
involved computational cost using the blocking technique. More specifically, we divide an identity
into l′ segments and associate each segment with a matrix, while increasing the lattice modulo
slightly for maintaining the same security level. As a result, for the setting of 160-bit identities,
we show that the size of the public parameters can be reduced by almost 89.7% (resp. 93.8%) while
increasing the computational cost by merely 5.2% (resp. 12.25%) when l′ is a set of 16 (resp. 8).
Finally, our IBE scheme is extended to an HIBE scheme, and both of them are proved to achieve
the indistinguishability of ciphertexts against adaptively chosen identity and chosen plaintext attack
(IND-ID-CPA) in the standard model, assuming that the well-known ring learning with error (RLWE)
problem over the involved ideal lattices is intractable, even in the post-quantum era.
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1. Introduction

Identity-based encryption (IBE), first introduced by Shamir [1], is an interesting public-key
encryption mechanism. It reduces the complexity of system and the cost of establishing public-key
infrastructure. The public keys are users’ identities directly, and the corresponding private keys can
only be generated by the private-key generator (PKG). Moreover, IBEs can be used for confidential
communication, network protocols, digital signatures, etc. In 2001, Boneh and Franklin [2]
constructed the first practical IBE scheme under the bilinear Diffe–Hellman (BDH) assumption. Then,
Canetti et al. [3] constructed an IBE scheme in the standard model, and they gave the security proof in
the selective-ID model. In this model, the adversary must announce the target identity at the beginning.
Boneh and Boyen [4] proposed a fully (adaptively) secure IBE scheme. Their scheme is too inefficient
to be practical since it requires numerous exponentiation operations and group operations. In the
adaptive-ID model, the adversary can announce the target identity after private key queries. In 2005,
Waters [5] constructed the first efficient fully secure IBE scheme and showed that a selectively secure
scheme can be improved to adaptive security. Furthermore, there are many IBE constructions [6–13]
based on pairing or quadratic residues which cannot resist quantum computing.
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Lattice-based cryptography has become the focus of research in recent years because it is flexible
in construction and resistant to quantum computing. Regev [14] defined the learning with error (LWE)
problem and gave a reduction from the worst-case lattice problems. Stehlé [15] and Lyubashevsky [16]
defined the ring learning with error (RLWE) problem, which led to new cryptographic applications.

In 2008, Gentry et al. [17] proposed the first LWE-based IBE scheme in the random oracle model.
Their scheme relied on the Dual-Regev encryption scheme and became an example of an LWE-based
IBE scheme. Agrawal et al. [18] then construct an efficient selectively secure IBE scheme based on LWE
problem in the standard model. They also give an adaptively secure IBE scheme, but each bit of a
user’s identity is associated with a parameter matrix. This always leads to drastic but unfavorable
increases in the sizes of the system public parameters. To solve this drawback, Singh et al. [19]
constructed efficient adaptively secure (hierarchical) IBE schemes with short parameters using the
blocking technique [20,21]. In 2016, Yamada [22] constructed an adaptively secure IBE scheme with
short parameters using injective map and homomorphic computation. Zhang et al. [23] proposed
an adaptively secure IBE scheme which achieved shorter public parameters, but their scheme only
achieved Q-bounded security. In 2017, Yamada [24] constructed new adaptively secure IBE schemes via
new partitioning functions, but the public parameters in their scheme are larger than [23]. Moreover,
there are many other IBE constructions [25–32] based on the LWE problem.

Compared with the LWE problem, the RLWE problem is more practical in construction because
of smaller storage and faster calculation. In particular, we can use fast Fourier transform (FFT) or
number theoretic transform (NTT) to accelerate polynomial multiplications. In 2013, Yang et al. [33]
construct a selectively secure IBE scheme over ideal lattice in the standard model. Their construction
is a ring variant of Agrawal’s selective-ID scheme [18]. In 2014, Ducas et al. [34] propose an efficient
IBE scheme over Number Theory Research Unit (NTRU) lattice. (NTRU is a ring-based public key
cryptosystem, which was proposed by Hoffstein [35] in 1998. The lattice specified in their scheme is
often called the NTRU lattice.) Their construction is a NTRU variant of the scheme by [17]. In order to
achieve shorter public parameters, Katsumata [36] constructs an adaptively secure IBE scheme over
ideal lattice using Yamada’s method [22]. In 2018, Bert et al. [37] construct an efficient IBE scheme and
give an efficient implementation. Their construction uses the ring-version trapdoor of Micciancio [38]
which is efficient and easy to implement. However, their scheme only achieves selective security.
Therefore, it is meaningful to construct adaptively secure efficient (H)IBE schemes over ideal lattice
with shorter parameters.

Our contribution. In this paper, we first construct an adaptively secure IBE scheme over ideal
lattice with short parameters. In the setting of the most existing lattice-based (H)IBE schemes, the
public parameters are generally composed of l + 2 matrices, where l is the bit length of user’s identity.
Using the blocking technique, we can reduce the number of elements in public parameters from l + 2
to l/β + 2 where β is a flexible constant. However, this leads to a reduction in the security. We need
to increase the lattice modulo q to achieve the same security level as [18], but it causes an increase
in computational cost. Therefore, we make a trade-off between storage space and computational
cost. For l = 160, the size of public parameters can be reduced by almost 89.7% while increasing
the computational cost by only 5.2%. When β is set of 20 (resp. 10), the public parameters only
contain 10 (resp. 18) vectors. According to our performance analysis, our scheme can achieve shorter
public parameters and better computational efficiency. In addition, we use the gadget-based trapdoor
as [37,38] which is simple, efficient and smaller in storage than a basis. Finally, we extend our IBE
scheme to a hierarchical IBE scheme, and both of them are proved achieving the indistinguishability
of ciphertexts against adaptively chosen identity and chosen plaintext attack (IND-ID-CPA) in the
standard model.

The rest of this paper is organized as follows. Section 2 is preliminaries. Sections 3 and 4 describe
our adaptively secure IBE and HIBE schemes. In Section 5, we analyse the trade-off and compare with
other constructions. In Section 6, we summarize this paper.
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2. Preliminaries

Notation. In this paper, we use uppercase letters to represent matrix (i.e., A), and lowercase letters to
represent constant or polynomial (i.e., l or u). We use uppercase bold letters to represent polynomial
matrices (i.e., R), and lowercase bold letters to represent polynomial vectors (i.e., a). We use negligible
function to represent the function ε(n) which is less than all polynomial fractions for sufficiently large
n. We use overwhelming probability to indicate that the event happens with probability 1− ε(n).

2.1. IBE and Hierarchical IBE

HIBE system contains four algorithms [7,8]. For identity id = (id1, · · · , idl), we describe the HIBE
system as follows.

Setup(d, λ): On input a security parameter λ and a maximum depth d, the algorithm outputs the
public parameters PP and master key MK.

Derive(PP, id|idl , SKid|idl−1
, MK): On input public parameters PP, master key MK, identity id|idl

at depth l, and private key SKid|idl−1
at depth l − 1, it outputs the private key SKid|idl

at depth l.
Encrypt(PP, µ, id|idl): On input public parameters PP, an identity id|idl at depth l and a message

µ, the algorithm outputs a ciphertext CT.
Decrypt(PP, CT, SKid|idl

): On input public parameters PP, a ciphertext CT and a private key
SKid|idl

, the algorithm outputs the message µ.
IBE system is the same as above HIBE system when d = 1. Compared with HIBE, there is an

algorithm Extract instead of algorithm Derive. The algorithm Extract inputs public parameters PP,
identity id, master key MK, and it outputs the corresponding private key SKid.

Security Game. We use an indistinguishable from random game to define the adaptive security of
(H)IBE, which means that adversary can not distinguish between challenge ciphertext and random
ciphertext. LetMλ and Cλ be the message space and ciphertext space where λ is a security parameter.
For a maximum depth d, the following defines the game.

Setup: The challenger runs algorithm Setup(d, λ) and sends the public parameters PP to
the adversary.

Phase 1: The adversary performs private key queries q1, · · · , qm, and the event qi corresponds to
the identity idi. The challenger runs algorithm Extract to generate the private key ski corresponding to
idi and sends it to the adversary.

Challenge: The adversary submits a plaintext M ∈ Mλ and a target identity id∗ which can not
appear in Phase 1. Then the challenger chooses a random bit r ∈ {0, 1} and a random ciphertext
C ∈ Cλ. If r = 0, the challenger sets the challenge ciphertext C∗ := Encrypt (PP, M, id∗). Otherwise, it
sets the challenge ciphertext C∗ = C. The challenger sends C∗ to the adversary.

Phase 2: The adversary performs adaptive queries qm+1, · · · , qn. The event qi corresponds to the
identity idi which can not be id∗. The challenger responds as in Phase 1.

Guess: The adversary outputs a guess r′ ∈ {0, 1}, and wins if r′ = r.

The adversary A described above is a IND-ID-CPA attacker. We define the advantage of A as

Advd,ε,A(λ) = |Pr [r′ = r]− 1
2 |

Definition 1. If for all IND-ID-CPA attackers A, the advantage Advd,ε,A(λ) is a negligible function, then the
HIBE scheme ε is IND-ID-CPA security. The security model of IBE is the same as above model with d = 1.

The following Definition 2 defines the abort-resistant hash functions [18,19], which is used in our
security proof.

Definition 2 ([18,19]). LetH := {H : X → Y} be a family of hash functions and Y contains element 0. For a
set x̄ = {x0, x1, · · · , xQ} ∈ XQ+1 with x0 /∈ {x1, · · · , xQ}, we define the non-abort probability of x̄
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α(x̄) := Pr[H(x0) = 0∧ H(x1) 6= 0∧ · · · ∧ H(xQ) 6= 0]

where the probability is over the random choice of H in H. For α(x̄) ∈ [αmin, αmax], the hash family H is
(Q, αmin, αmax) abort-resistant.

We use the abort-resistant hash family similar to [5,18]. Let q be a prime and (Zl′
q )
∗ := Zl′

q \{0l′};
we define the hash family HWat :

{
Hh : (Zl′

q )
∗ → Zq

}
as Hh(id) := 1 + ∑l′

i=1 hibi ∈ Zq where id =

(b1, . . . , bl′) ∈ (Zl′
q )
∗ and h = (h1, . . . , hl′) ∈ Zl′

q .

2.2. Integer Lattice and Ideal Lattice

Definition 3. Let q be a prime, A ∈ Zn×m
q and u ∈ Zn

q ; we define integer lattice as:
Λq(A) := {e ∈ Zm s.t. ∃s ∈ Zn

q where A>s = e mod q}
Λ⊥q (A) := {e ∈ Zm s.t. Ae = 0 mod q}
Λu

q (A) := {e ∈ Zm s.t. Ae = u mod q}

Ideal Lattice. Let n be a power of 2; we define the modular polynomial f (x) = xn + 1. Then, we
define the ring polynomial R as R = Z[x]/ f (x). For a modulus q, we define the ring polynomial
Rq as Rq = Zq[x]/ f (x). Therefore, elements in Rq are polynomials with coefficients less than q. The
following definition from [16,37] defines the Decision RLWE problem.

Definition 4 (Decision RLWE). Given a vector of m uniformly random polynomials a = (a1, · · · , am)> ∈
Rm

q , and b = as + e where s ∈ Rq and e ∈ DRm ,σ. Then, distinguish (a, b = as + e) from uniform (a, b).

Similar to [18], we use ‖S̃‖ to denote the Gram–Schmidt norm of S where S = {s1, · · · , sk} in Rm.
We use DL,σ,c to denote the discrete Gaussian distribution with center c and parameter σ over a set L.
Moreover, the following theorem from [18,39] defines an algorithm ExtendBasis which is used in our
HIBE construction.

Theorem 1 ([18,39]). Let Ai ∈ Zn×mi
q where i = 1, 2, 3, and A := (A1|A2|A3). We define the algorithm

ExtendBasis(A1, A2, A3, T2) which outputs a basis TA of Λ⊥q (A) where T2 is a basis of Λ⊥q (A2).

2.3. Trapdoors on Lattice

Our constructions require the notion of trapdoor which is first introduced by Ajtai [40]. For a
short basis TA of Λ⊥q (A), we can get short vectors in Λ⊥q (A) from a Gaussian distribution. We use
the g-trapdoor introduced by Micciancio [38] and the following definition from [37] defines the ring
variant of the g-trapdoor.

Definition 5 (g-trapdoor). For k = dlog2 qe, m > k, let a be a vector in Rm
q and g be a vector in Rk

q. The
g-trapdoor for a is a polynomial matrix Ta in R(m−k)×k following a discrete Gaussian distribution of parameter

σ, and satisfying a>( Ta

Ik
) = hg> for some invertible element h ∈ Rq. The polynomial h is the tag associated

to trapdoor Ta.

In our construction, we need a trapdoor generation algorithm (TrapGen) and preimage sampling
algorithm (SamplePre) from [37], and both of them are described as follows.

Algorithm TrapGen inputs a modulus q, a Gaussian parameter σ, a polynomial vector a′ ∈ Rm−k
q

and a polynomial h ∈ Rq. It returns a polynomial vector a ∈ Rm
q , a trapdoor Ta ∈ R(m−k)×k with tag h.

We use vector a′, gadget vector g and trapdoor Ta to construct the target vector a. The trapdoor Ta is
choosing from a gaussian distribution with parameter σ. In our construction, the target vector a is part
of public parameter and the trapdoor Ta is the master key.



Entropy 2020, 22, 1247 5 of 19

Algorithm SamplePre inputs a vector a ∈ Rm
q , a trapdoor Ta ∈ R(m−k)×k with tag h ∈ Rq, a

polynomial u ∈ Rq and a Gaussian parameter σ. It returns a vector x ∈ Rm
q following a discrete

Gaussian distribution of parameter ξ, and satisfying a>x = u. To find a vector x satisfing a>x = u, we
need to find a vector z that satisfies g>z = h−1 · (u− a>p) where p is a perturbation vector. Then, we

get x = p + (
Ta

Ik
)z such that a>x = a>p + a>( Ta

Ik
)z = a>p + hg>z = a>p + h · h−1(u− a>p) = u.

In our construction, the target vector x is used to construct the private keys.

2.4. Sampling Algorithms

Our constructions require a vector of form f = (
a

R>a + b
) ∈ R2m

q where a and b are vectors in

Rm
q . Matrix R ∈ Rm×m consists of polynomials with coefficients {1,−1}. We can get the private key by

sampling short vectors in Λu
q ( f ) for some u ∈ Rq. Algorithm SampleLe f t is used in our construction

and algorithm SampleRight is used in our security proof.

Algorithm SampleLe f t needs a vector of form f1 := (
a

m1
). It inputs a trapdoor Ta of Λ⊥q (a) and

returns a short vector s ∈ Λu
q ( f1). The description of SampleLeft is shown in Algorithm 1. By algorithm

SamplePre and 1, we have a>s1 = u−m>1 s2. Then, f>1 s = a>s1 + m>1 s2 = u−m>1 s2 + m>1 s2 = u.
Therefore, we get a short vector s ∈ Rm+m1 distributed statistical close to DΛu

q ( f1),σ.

Algorithm 1 SampleLeft(a, m1, Ta, u, σ).

Input: Polynomial vectors a ∈ Rm
q and m1 ∈ Rm1

q , a trapdoor Ta of Λ⊥q (a), a polynomial u ∈ Rq and a

Gaussian parameter σ;

Output: A short vector s ∈ Rm+m1
q following the Gaussian distribution DΛu

q ( f1),σ with f1 := (
a

m1

).
1: Sample a random vector s2 ← DRm1 ,σ;
2: Sample s1 ← SamplePre(a, Ta, y, σ), where y = u−m>1 s2 ∈ Rq;
3: return s← (s1, s2) ∈ Rm+m1 .

Algorithm SampleRight needs a vector of form f2 := (
a

R>a + b
). It inputs a trapdoor Tb of Λ⊥q (b)

and returns a short vector s ∈ Λ⊥q ( f2). The description of SampleRight is shown in Algorithm 2.
In HIBE, we also need an algorithm ExtendBasis which is similar to Theorem 1. By algorithm
SamplePre and 2, we have f2s = u and then we get a short vector s ∈ Rm+k

q distributed statistically
close to DΛu

q ( f2),σ.

Algorithm 2 SampleRight(a, b, Tb, u, σ).

Input: Polynomial vectors a ∈ Rk
q and b ∈ Rm

q , a matrix of polynomial R ∈ Rk×m
q , a trapdoor Tb of

Λ⊥q (b), a polynomial u ∈ Rq and a Gaussian parameter σ;

Output: A short vector s ∈ Rm+k
q following the Gaussian distribution DΛu

q ( f2),σ with f2 := (
a

R>a + b
).

1: Select m + k linearly indepndent vectors in Λ⊥q ( f2) and construct Tf2 ;
2: Convert Tf2 into a basis T ′f2

of Λ⊥q ( f2) where ‖T̃f2‖ = ‖T̃ ′f2
‖;

3: Sample s← SamplePre( f2, T ′f2
, u, σ);

4: return s ∈ Λu
q ( f2).

3. Adaptively Secure IBE

Agrawal [18] converted their selectively secure IBE to an adaptively secure IBE using the technique
of Waters [5]. Though the private key size and ciphertext size are the same, the size of the public
parameters is too large. In this section, we construct an adaptively security IBE over ideal lattice and
reduce the size of the public parameters using the blocking technique.
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3.1. The IBE Construction

The identity id is an l bits string in {0, 1}l . We divide id into l′ segments (b1, b2, · · · , bl′), where bi
is a l/l′ = β bits string. Then, we describe our IBE construction as follows.
Setup(λ): On input a security parameter λ and other parameters q, n, m, σ, α, do:

1. Run (a0, Ta0)← TrapGen(q, n), where a0 is a vector in Rm
q with a trapdoor Ta0 ∈ R(m−k)×k

q ;
2. Select l′ + 1 uniformly random vectors a1, a2, · · · , al′ , b ∈ Rm

q , and these vectors are used to form
the public parameters;

3. Select a uniformly random polynomial u ∈ Rq;
4. Output the public parameters PP = (a0, a1, a2, · · · , al′ , b, u) and master key MK = (Ta0).

Extract(PP, MK, id): On input public parameters PP, master key MK and identity id =

(b1, b2, · · · , bl′), do:

1. Set aid = b + ∑l′
i=1 bi · ai ∈ Rm

q and f = (
a0

aid
) ∈ R2m

q . They are used to generate the private key;

2. Run s← SampleLe f t(a0, aid, Ta0 , u, σ), where s is a vector in R2m
q ;

3. Output the private key SK = s ∈ R2m
q .

Encrypt(PP, id, m): On input public parameters PP, an identity id = (b1, b2, · · · , bl′), and a message
µ ∈ {0, 1}n, do:

1. Set aid = b + ∑l′
i=1 bi · ai ∈ Rm

q and f = (
a0

aid
) ∈ R2m

q . They are used to generate the ciphertext;
2. Select a uniformly random polynomial t ∈ Rq;
3. Select l′ matrices R1, R2, · · · , Rl′ in Rm×m which consist of uniformly random polynomials with

coefficient {1,−1}. Define Rid = ∑l′
i=1 biRi and its coefficients are in {−l′(2β − 1), l′(2β − 1)};

4. Select noise polynomial x ← DRq ,σ, noise vector y← DRm
q ,σ and set z← R>id · y ∈ Rm

q ;

5. Set c0 = u · t + x + µ · bq/2c ∈ Rq, and c1 = f · t + [
y

z
] ∈ R2m

q ;

6. Output the ciphertext CT = (c0, c1) ∈ Rq × R2m
q .

Decrypt(PP, SK, CT): On input public parameters PP, a private key SK = s, and a ciphertext
CT = (c0, c1), do:

1. Compute w = c0 − s> · c1 ∈ Rq, and wi denotes the coefficient of w;
2. Compare wi and bq/2c treating them as integer in Z, if |w− bq/2c| < bq/4c, output 1, otherwise

output 0.

3.2. Parameters and Correctness

In this section, we prove the correctness of the above IBE scheme. During decryption, we have

w = c0 − s> · c1

= u · t + x + µ · bq/2c − s>( f · t +
[

y

z

]
)

= µ · bq/2c+ x− s>
[

y

z

]
︸ ︷︷ ︸

error term

(1)

In order to decrypt correctly, the error term x− s>[ y

z
] should be bounded by bq/4c. Then, we

need the following two lemmas to analyze the error rate of decryption.

Lemma 1 ([41]). Let c ≥ 1, C = c · exp( 1−c2

2 ) < 1 and x ← DZn ,s; then, for any real s > 0 and any integer
n ≥ 1, we have

Pr
[
‖x‖ ≥ cs

√
n/2π

]
≤ Cn (2)
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Lemma 2 ([42]). For any real s > 0, T > 0, and any x ∈ Rn, we have

Pr [|< x, DZn ,s >| ≥ Ts‖x‖] < 2exp(−πT2) (3)

Theorem 2. Let q ≤ 4[l′(2β − 1)
√

mn + 1]δcσ
√

mn/2π, c ≥ 1, t > 15, the above IBE scheme decrypts
correctly with overwhelming probability.

Proof of Theorem 2. Letting s = (
s1

s2
) with s1, s2 ∈ Rm, we have s>[ y

z
] = s>1 · y + s>2 · z. Since

z = R>id · y, we have ‖z‖ = ‖Rid · y‖ ≤ ‖Rid‖ · ‖y‖ = l′(2β − 1)
√

mn‖y‖.
Similar to [33], we compute the decryption error rate with Lemma 2 as

Pr
[
(l′(2β − 1)

√
mn + 1)

√
m|< x, y >| ≥ q/4

]
= Pr

[
|< x, y >| ≥ q/(4(l′(2β − 1)

√
mn + 1)

√
m)
]

= Pr [|< x, y >| ≥ Tδ‖x‖]
< 2exp(−πT2)

(4)

For c ≥ 1, we have ‖x‖ ≤ cσ
√

n/2π with Lemma 1. Then,

T =
q

4[l′(2β − 1)
√

mn + 1]
√

mδ‖x‖
≥ q

4[l′(2β − 1)
√

mn + 1]δcσ
√

mn/2π
(5)

When T is sufficiently large, the decryption error rate 2exp(−πT2) is a negligible function, and
we can decrypt correctly with overwhelming probability.

Similar to [18,19,37], we need to set the parameters as follows:

• the error term is less than q/4 (i.e. q ≤ 4[l′(2β − 1)
√

mn + 1]δcσ
√

mn/2π),
• that algorithm TrapGen can operate (i.e. m = O(n log q)),
• that σ is sufficiently large for sampling algorithm

(i.e., σ > ‖T̃B‖2βl′
√

mω
√

log m = 2βl′
√

mω
√

log m),
• that reduction applies (i.e., the number of private key queries Q ≤ q

2 ).

3.3. Security Proof

In this section, we give the security proof of our IBE scheme. We describe the definition of
abort-resistant hash functions in Definition 2.

Lemma 3. Let q be a prime, the hash familyHWat is (Q, 1
q (1−

Q
q ),

1
q ) abort-resistant where 0 < Q < q.

Proof of Lemma 3. Let ¯id be a set of (id0, id1, · · · , idQ) where id0 /∈ {id1, · · · , idQ}. For i = 0, · · · , Q +

1, Si denotes the set of functions H(idi) = 0 in HWat. We have |Si| = ql′−1 and |S0 ∩ Sj| ≤ ql′−2 with
j > 0. For i = 1, · · · , Q, the set of H(id0) = 0 and H(idi) 6= 0 is defined as S := S0 \ (S1 ∪ · · · ∪ SQ).
Then, we have

|S| = |S0 \ (S1 ∪ · · · ∪ SQ)| ≥ |S0| −∑Q
i=1 |S0 ∩ Si| ≥ ql′−1 −Qql′−2

The non-abort probability of ¯id is |S|/ql′ ≥ 1
q (1−

Q
q ). Since |S| ≤ |S0|, the no-abort probability is

|S|/ql′ ≤ |S0|/ql′ ≤ 1
q at most.

Theorem 3. The IBE system with parameters (n, m, q, σ) is IND-ID-CPA secure in the standard model under
the hardness of RLWE.
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Proof of Theorem 3. The proof proceeds in a sequence of games, and the first game is the same as the
security game in Definition 1. In game i, we use Wi to denote that the adversary guesses the challenge
message correctly. Then, the advantage of adversary in game i is |Pr[Wi]− 1

2 |.

Game 0. The original IND-ID-CPA game between an adversary A and a challenger.

Game 1. The challenger builds the public parameters PP = (a0, a1, a2, · · · , al′ , b, u) in the original
game. These vectors a1, a2, · · · , al′ , b are chosen uniformly from Rm

q . The Game 1 challenger chooses l′

random matrices R∗i ∈ Rm×m and random polynomials hi ∈ Zq at the setup phase. Matrix R∗i consists
of uniformly random polynomials with coefficient {−1.1}. Then the challenger generates vectors a0

and b as in original game, and constructs vector ai as

ai ← (R∗i )
> · a0 − hi · b ∈ Rm

q , i ∈ [1, l′]

The matrix R∗i is used to build vector ai and challenge ciphertext CT∗ (i.e. z ← (R∗id)
>y ∈ Rm

q

where R∗id = Σl′
i=1b∗i · R∗i ∈ Rm×m). Set R∗ := (R∗1 , R∗2 , · · · , R∗l′), the distributions

(a0 , a>0 · R∗ , (R∗)>y) and (a0 , ((a′1)
>| · · · |(a′l′)

>) , (R∗)>y)

are statistically close. The vectors a′i are uniformly random elements in Rm
q . For z← (R∗id)

> · y,
the distributions

(a0 , a>0 · R∗1 , · · · , a>0 · R∗l′ , z) and (a0 , (a′1)
> , · · · , (a′l′)

> , z)

are statistically close. In adversary’s view, the vectors a>0 · R∗i are statistically close to uniformly
random elements (a′i)

> and independent of vector z. Therefore, in adversary’s view, the vector ai are
uniformly random vectors as in Game 0. This shows that

Pr[W0] = Pr[W1] (6)

Game 2. In Game 2, we add an abort event and the rest is the same as Game 1. We use the abort-resistant
HWat introduced in Lemma 3. In the Setup phase, the challenger chooses a function H ∈ HWat and
reserves it to itself. Then, the challenger answers key queries and sends challenge ciphertext to
adversary as in Game 1. We use id1, · · · , idQ to denote the identities that the adversary queries. We use
id∗ to denote the challenge identity which is not in {id1, · · · , idQ}. In the Guess phase, the adversary
returns a guess r′ ∈ {0, 1}. Then, the challenger performs as follows:

1. Abort check [18]: For i = 1, · · · , Q, the game proceeds normally if H(id∗) = 0 and H(idi) 6= 0.
Otherwise, it resets r′ and aborts the game. However, the game proceeds normally in the
adversary’s view.

2. Artificial abort [5,18]: The challenger chooses a bit Γ ∈ {0, 1} such that Pr[Γ = 1] = γ(I). If there
is no abort γ(I) = 0, otherwise, γ(I) = 1. If Γ = 1 or γ(I) = 1, the challenger resets r′ and aborts
the game.

For identities I = (id∗, id1, · · · , idQ), we use ε(I) to denote the probability of non-abort when the
adversary performs these private key queries. Moreover, we use εmax and εmin to denote the maximum
and minimum of ε(I).

Lemma 4 ([18]). For i = 1, 2, let Wi be the event that the adversary wins the Game i. Then,∣∣∣Pr [W2]− 1
2

∣∣∣ ≥ εmin

∣∣∣Pr [W1]− 1
2

∣∣∣− 1
2 (εmax − εmin)
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According to [18], they show that εmax − εmin is less than εmin

∣∣∣Pr [W1]− 1
2

∣∣∣. Since q ≥ 2Q, we

have εmin = 1
q (1−

Q
q ) ≥

1
2q . Then,∣∣∣∣Pr [W2]−

1
2

∣∣∣∣ ≥ 1
2

εmin

∣∣∣∣Pr [W1]−
1
2

∣∣∣∣ ≥ 1
4q

∣∣∣∣Pr [W1]−
1
2

∣∣∣∣ (7)

Game 3. In Game 3, we change the method of generating a0 and b in PP. Vector a0 is generated as
a random element in Rm

q and vector b is generated by algorithm TrapGen. The challenger also gets
a trapdoor Tb of Λ⊥q (b). The construction ai ← (R∗i )

> · a0 − hi · b ∈ Rm
q is the same as in Game 2.

To answer the private key query of id = (b1, b2, · · · , bl′), the challenger generates the corresponding
private key SKid = s from Λu

q ( fid). Let

fid :=

(
a0

b + Σl′
i=1bi · ai

)
=

(
a0

(Rid)
> · a0 − hid · b

)
(8)

where Rid = Σl′
i=1bi · R∗i ∈ Rm×m

q and hid = 1 + Σl′
i=1bi · hi ∈ Zq. If hid = 0, the challenger abort

the game as in Game 2. Otherwise, the challenger gets s← SampleRight(a0, hid · b, Rid, Tb, u, σ) ∈ R2m
q .

Then, it sends SKid = s to adversary A.
In adversary’s view, Game 2 and Game 3 are indistinguishable. Therefore,

Pr[W2] = Pr[W3] (9)

Game 4. The challenge ciphertext (c∗0 , c∗1) is randomly selected in Rq × R2m
q and the rest is the same as

in Game 3, so the advantage of A is 0 in Game 4. Then, we need to prove that Game 3 and Game 4 are
computationally indistinguishable.

Suppose there is an adversary A who has non-negligible probability in distinguishing Game 3
and Game 4. Then, we constructs an RLWE algorithm B.

An instance of RLWE problem is provided as a sample oracle O. We use O$ to denote a truly
random oracle. For a random s ∈ Rq, we use Os to denote a noisy pseudo-random oracle.

Instance. For i = 0, · · · , m, B requests from O and gets RLWE samples (ui, vi) ∈ Rq × Rq .

Setup. B generates the public parameters:

1. Construct random vector a0 ∈ Rm
q with RLWE samples. For i = 1, · · · , m, the i-th column of a0

is ui.
2. Let the random polynomial u0 ∈ Rq be the 0-th RLWE sample.
3. Construct vectors ai and b as in Game 3.
4. Send public parameters PP = (a0, a1, · · · , al′ , b, u0) to adversary A.

Phase 1 and Phase 2. B answers private key queries as in Game 3.

Challenge. A submits a target identity id∗ = (b1, · · · , bl′) and a message µ∗ ∈ {0, 1}n. B prepares a
challenge ciphertext for the target identity as follows:

1. Set v∗ =

 v1

...

vm

 ∈ Rm
q with the RLWE instance.

2. Let c∗0 = v0 + µ∗ · bq/2e ∈ Rq to blind the message bit.

3. Set R∗id = Σl′
i=1bi · R∗i ∈ Rm×m

q and c∗1 =

[
v∗

(Rid∗)
> · v∗

]
∈ R2m

q .

4. Choose a random bit r ∈ {0, 1}. If r = 0, set CT∗ = (c∗0 , c∗1). Otherwise, select a random element
CT∗ = (c0, c1) in Rq × R2m

q . Then, send challenge ciphertext CT∗ to adversary.
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Guess. Finally, the adversary A returns a guess r′. The simulator B outputs 1 if r′ = r, otherwise 0.

Analysis. According to [18], the challenge ciphertext is the same as valid ciphertext in game 3 if
sampling oracleO is pseudo-randomOs, and the challenge ciphertext is the same as random ciphertext
in game 4 if oracle O is truly random O$. The simulator’s advantage in solving RLWE problem is
equal to A’s advantage in distinguishing valid ciphertext and random ciphertext. For Pr[W4] =

1
2 ,

we get

|Pr[W3]−
1
2
| = |Pr[W3]− Pr[W4]| ≤ AdvRLWE

B (10)

Then, we have

|Pr[W0]−
1
2
| ≤ 4q · AdvRLWE

B (11)

4. Adaptively Secure HIBE

We extend our IBE scheme to a hierarchical IBE scheme. Similar to our IBE scheme above, we also
use the blocking technique to reduce the size of public parameters.

4.1. The HIBE Construction

The identity id|idl is composed of l identities idi at different depth, and it is represented as
id|idl = (id1, · · · , idl) where idi is a l′ bit string. We divide the identity idi at depth i into l′′ segments
(bi,1, · · · , bi,l′′) where bi,j is a β = l′/l′′ bits string.

Then, we describe our HIBE construction as follows.
Setup(d, λ): On input a security parameter λ, a maximum depth d and other parameters
q, n, m, σ, α, do:

1. Run (a0, Ta0)← TrapGen(q, n), where a0 is a vector in Rm
q with a trapdoor Ta0 ∈ R(m−k)×k

q ;
2. Choose l′′d + 1 random vectors a1,1, · · · , a1,l′′ , · · · , ad,1, · · · , ad,l′′ , b ∈ Rm

q , and these vectors are
used to form the public parameters;

3. Choose a uniformly random polynomial u ∈ Rq;
4. Output the public parameters PP = (a0, a1,1, · · · , a1,l′′ , · · · , ad,1, · · · , ad,l′′ , b, u) and master key

MK = (Ta0).

Derive(PP, id|idl , SKid|idl−1
): On input public parameters PP, an identity id|idl and a private key

SKid|idl−1
at depth l − 1, do:

1. Set fid|idl
=

(
fid|idl−1

∑l′′
i=1 al,ibl,i + b

)
∈ R(l+1)m

q , and it is used to generate the private key;

2. Run s← SampleLe f t( fid|idl−1
, ∑l′′

i=1 al,ibl,i + b, SKid|idl−1
, σl), where s is a vector in R2m

q ;
3. Output the private key SKid|idl

= s ∈ R2m
q .

Encrypt(PP, id, m): On input public parameters PP, an identity id|idl at depth l and a message
µ ∈ {0, 1}n, do:

1. Set fid|idl
=

(
fid|idl−1

∑l′′
i=1 al,ibl,i + b

)
∈ R(l+1)m

q , and it is used to generate the ciphertext;

2. Choose a uniformly random polynomial t ∈ Rq;
3. Choose ll′′ matrices Ri,j ∈ Rm×m for i = 1, · · · , l and j = 1, · · · , l′′, which consist of random

polynomials with coefficient {1,−1}. Define Rid = ∑l′′
i=1 b1,iR1,i|| · · · ||∑l′′

i=1 bl,iRl,i ∈ Rm×lm;
4. Choose noise polynomial x ← DRq ,σ, noise vector y← DRm

q ,σ, and set z← R>id · y ∈ Rlm
q ;
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5. Set c0 = u · t + x + µ · bq/2c ∈ Rq, and c1 = f · t +
[

y

z

]
∈ R(l+1)m

q ;

6. Output the ciphertext CT = (c0, c1) ∈ Rq × R(l+1)m
q .

Decrypt(PP, SKid|idl
, CT): On input public parameters PP, a private key SKid|idl

at depth l and a
ciphertext CT = (c0, c1), do:

1. Set τl := σl
√

m(l + 1)w
√

log(lm);
2. Sample sid ← SamplePre( fid|idl

, SKid|idl
, u, τl) such that fid · sid = u;

3. Compute w = c0 − s>id · c1 ∈ Rq, wi denotes the coefficient of w;
4. Compare wi and bq/2c treating them as integer in Z, if |wi − bq/2c| < bq/4c, output 1, otherwise

output 0.

4.2. Parameters and Correctness

In this section, we prove the correctness of the above HIBE scheme. During decryption, we have

w = c0 − s>id · c1

= u · t + x + µ · bq/2c − s>id( f · t +
[

y

z

]
)

= µ · bq/2c+ x− s>id

[
y

z

]
︸ ︷︷ ︸

error term

(12)

In order to decrypt correctly, the error term x− s>id

[
y

z

]
should be bounded by bq/4c. Similar to

our IBE scheme, the following proof also needs Lemmas 1 and 2 to analyze the error rate of decryption.

Theorem 4. Let q ≤ 4[l′′(2β − 1)
√

lmn + 1]δcσ
√

mn/2π, c ≥ 1, t > 15, the above HIBE scheme decrypts
correctly with overwhelming probability.

Proof of Theorem 4. Letting sid = (
s1

s2
) with s1, s2 ∈ Rm we have s>id[

y

z
] = s>1 · y + s>2 · z. Since

z = R>id · y, we have ‖z‖ = ‖Rid · y‖ ≤ ‖Rid‖ · ‖y‖ = l′′(2β − 1)
√

lmn‖y‖.
Then, we compute the decryption error rate with Lemma 2 as

Pr
[
(l′′(2β − 1)

√
lmn + 1)

√
m|< x, y >| ≥ q/4

]
= Pr

[
|< x, y >| ≥ q/(4(l′′(2β − 1)

√
lmn + 1)

√
m)
]

= Pr [|< x, y >| ≥ Tδ‖x‖]
< 2exp(−πT2)

(13)

For c ≥ 1, we have ‖x‖ ≤ cσ
√

n/2π with Lemma 1. Then

T =
q

4[l′′(2β − 1)
√

lmn + 1]
√

mδ‖x‖
≥ q

4[l′′(2β − 1)
√

lmn + 1]δcσ
√

mn/2π
(14)

When T gets large enough, the decryption error rate 2exp(−πT2) is negligible, and we can decrypt
correctly with overwhelming probability.

Similar to [18,19,37], we need to set the parameters as follows:

• the error term is less than q/4 (i.e., q ≤ 4[l′′(2β − 1)
√

lmn + 1]δcσ
√

mn/2π),
• that algorithm TrapGen can operate (i.e., m = O(n log q)),
• that σ is sufficiently large for sampling algorithm

(i.e., σ > ‖T̃B‖2βl′′
√

lmω
√

log m = 2βl′′
√

lmω
√

log m),
• that reduction applies (i.e., the number of private key queries Q ≤ ql/2).



Entropy 2020, 22, 1247 12 of 19

4.3. Security Proof

In this section, we give the security proof of our HIBE scheme. We describe the definition of
abort-resistant hash functions in Definition 2.

Lemma 5. Let q be a prime and 0 < Q < q; the hash familyHWat is (Q, 1
ql (1− Q

ql ),
1
ql ) abort-resistant.

Proof of Lemma 5. Let ¯id be a set of (id0, id1, · · · , idQ) where id0 /∈ {id1, · · · , idQ}. For i = 0, · · · , Q +

1, we have |Si| = ql(l′′−1) and |S0 ∩ Sj| ≤ ql(l′′−2) for j > 0. Then,

|S| = |S0 \ (S1 ∪ · · · ∪ SQ)| ≥ |S0| −
Q

∑
i=1
|S0 ∩ Si| ≥ ql(l′′−1) −Qql(l′′−2) (15)

The non-abort probability of ¯id is |S|/qll′′ ≥ 1
ql (1− Q

ql ). Since |S| ≤ |S0|, the non-abort probability

is |S|/qll′′ ≤ |S0|/qll′′ ≤ 1
ql at most.

Theorem 5. The HIBE system with parameters (n, m, q, σ) is IND-ID-CPA secure for depth d in the standard
model under the hardness of RLWE.

Proof of Theorem 5. The proof proceeds in a sequence of games, and the first game is the same as
the security game in Definition 1. In game i, we use Wi to denote that adversary guess the challenge
message correctly. The advantage of adversary in game i is |Pr[Wi]− 1

2 |.

Game 0. The original IND-ID-CPA game between an adversary A and a challenger.

Game 1. The challenger builds the public parameters PP = (a0, a1,1, · · · , a1,l′′ , · · · , ad,l′′ , b, u) in the
original game. These vectors a1,1, · · · , a1,l′′ , · · · , ad,l′′ , b are chosen uniformly random from Rm

q .
The Game 1 challenger chooses ll′′ random matrices R∗k,i ∈ Rm×m and polynomials hk,i ∈ Rq for

k ∈ [1, l], i ∈ [1, l′′]. Matrix R∗k,i consists of uniformly random polynomials with coefficients {−1.1}.
Then, the challenger generates vectors a0 and b as in original game, and constructs vector ak,i as

ak,i ← (Rk,i)
> · a0 − hk,i · b ∈ Rm

q , k ∈ [1, l], i ∈ [1, l′′] (16)

In the adversary’s view, the distribution a>0 · R∗k,i is statistically close to uniform (a′k,i)
> and

independent of vector z. Therefore, in adversary’s view, vecors ak,i are uniformly random elements as
in Game 0. This shows that

Pr[W0] = Pr[W1] (17)

Game 2. In Game 2, we add an abort event which is similar to the abort event in Section 3.3. The rest
is the same as Game 1. We use the abort-resistantHWat introduced in Lemma 5.

According to [18], they show that εmax − εmin is less than εmin

∣∣∣Pr [W1]− 1
2

∣∣∣. Since ql ≥ 2Q, we

have εmin = 1
ql (1− Q

ql ) ≥ 1
2ql . By Lemma 4, we have∣∣∣∣Pr [W2]−

1
2

∣∣∣∣ ≥ 1
2

εmin

∣∣∣∣Pr [W1]−
1
2

∣∣∣∣ ≥ 1
4ql

∣∣∣∣Pr [W1]−
1
2

∣∣∣∣ (18)

Game 3. In Game 3, we change the method of generating a0 and b in PP. Vector a0 is generated as
a random vector in Rm

q and vector b is generated by algorithm TrapGen. The challenger also gets a
trapdoor Tb of Λ⊥q (b). The construction ak,i ← (R∗k,i)

> · a0 − hk,i · b ∈ Rm
q is the same as in Game 2.

To answer the private key query of id = (id1, id2, · · · , idl), the challenger generates the corresponding
private key SKid = s from Λu

q ( fid). Let
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fid|idl
:=


a0

∑l′′
i=1 a1,ib1,i + b

...

∑l′′
i=1 al,ibl,i + b

 or fid =

(
a0

(Rid)
> · a0 − hid · b

)
(19)

where

Rid :=
l′′

∑
i=1

b1,iR∗1,i|| · · · ||
l′′

∑
i=1

bl,iR
∗
l,i ∈ Rm×lm (20)

and

hid = (1 +
l′′

∑
i=2

b1,i · h1,i)|| · · · ||(1 +
l′′

∑
i=1

bl,i · hl,i) (21)

If hid = 0, the challenger aborts the game as in Game 2. Otherwise, the challenger gets private key
s ← SampleRight(a0, hid · b, Rid, Tb, u, σ) ∈ R2m

q . Then, it sends SKid = s to the adversary A. In the
adversary’s view, Game 2 and Game 3 are indistinguishable. Therefore,

Pr[W2] = Pr[W3] (22)

Game 4. The challenge ciphertext (c∗0 , c∗1) is randomly selected in Rq × R2m
q and the rest is the same as

in Game 3, so the advantage of A is 0 in Game 4. Similar to Section 3.3, we need to prove that Game 3
and Game 4 are computationally indistinguishable.

Instance. For i = 0, · · · , m, B receives RLWE samples (ui, vi) ∈ Rq × Rq.

Setup. B generates the public parameters:

1. Construct random vector a0 ∈ Rm
q with RLWE samples. For i = 1, · · · , m, the i-th column of a0

is ui.
2. Let a random polynomial u0 ∈ Rq be the 0-th RLWE sample.
3. Construct ak,i and b as in Game 3.
4. Send public parameters PP = (a0, a1,1, · · · , a1,l′′ , · · · , ad,l′′ , b, u) to adversary A.

Phase 1 and Phase 2. B answers private key queries as in Game 3.

Challenge. A submits a target identity id∗ = (id∗1 , · · · , id∗l ) and a message µ∗ ∈ {0, 1}n. B returns a
challenge ciphertext as follows:

1. Set v∗ =

 v1

...

vm

 ∈ Rm
q with the RLWE instance.

2. Set c∗0 = v0 + µ∗ · bq/2e ∈ Rq to blind the message bit.

3. Set Rid∗ := ∑l′′
i=1 b1,iR∗1,i|| · · · ||∑

l′′
i=1 bl,iR∗l,i and c∗1 =

[
v∗

(R∗id∗)
> · v∗

]
.

4. Choose a random bit r ∈ {0, 1}. If r = 0 set CT∗ = (c∗0 , c∗1), otherwise, select a random CT∗ =
(c0, c1) in Rq × R2m

q . Then, send the challenge ciphertext CT∗ to adversary.

Guess. Finally, the adversary A returns a guess r′. The simulator B outputs 1 if r′ = r otherwise 0.

Analysis. According to [18], the challenge ciphertext is the same as valid ciphertext in game 3 if
sampling oracleO is pseudo-randomOs, and the challenge ciphertext is the same as random ciphertext
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in game 4 if oracle O is truly random O$. The simulator’s advantage in solving RLWE problem is
equal to A’s advantage in distinguishing valid ciphertext and random ciphertext. For Pr[W4] =

1
2 ,

we get

|Pr[W3]−
1
2
| = |Pr[W3]− Pr[W4]| ≤ AdvRLWE

B (23)

Then

|Pr[W0]−
1
2
| ≤ 4ql · AdvRLWE

B (24)

5. Efficiency

Trade-off. We make a trade-off between the decrease in the size of public parameters and the
increase in the computation cost. Using the blocking technique, we divide an identity into l′ segments,
and the number of elements in public parameters is reduced from l + 2 to l/β + 2 where β is a flexible
constant. Therefore, the percentage of decrease in public parameter space is l−l′

l+2 and it is shown as
the thin blue line in Figure 1 with l = 160. According to the analysis of Singh [19], there is no effect
of l′ on cost of key generation, encryption and decription. However, we need to increase the value
of lattice modulo q for maintaining the same security level, and it will increase the computation cost.
According to Chatterjee ’s work [20], the number of bits in q is increased by ∆ = β− log2 β. We use
|q| to denote the bit length of q and then |q′| = |q| + 2∆ = |q| + 2(β − log2 β). The percentage of

increase in computation cost is |q
′ |−|q|
|q| =

2(β−log2 β)
|q| and it is shown as the thick red line in Figure 1 with

|q| = 256. In Figure 1, the x-axis represents the value of β, and the y-axis represents the percentage
of increase or decrease. For l = 160 and |q| = 256, the size of public parameters is reduced by 89.7%
while the cost of computation is merely increased by 5.2% when l′ = 16 or β = 10. If we set l′ = 8
or β = 20, the size of public parameters is reduced by 93.8% while the computational cost is merely
increased by 12.25%.

Figure 1. Relative decrease in PP and relative increase in |q|

Comparisons. We propose an adaptively secure IBE scheme in Section 3. Table 1 shows the
comparison of storage space between different IBE schemes in the standard model. In this table, PP,
SK, l denote the public parameters, private keys and length of user’s identity.
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Table 1. Comparison of storage space.

Schemes PP Size SK Size Ciphertext Size Security Assumption

[18] (l + 2)mn log q 2m log q (2m + 1) log q Adaptive-CPA LWE

[23] (log l + 2)mn log q mn log q (m + n) log q Adaptive-CPA LWE

[22] * (ddl1/de+ 2)mn log q 2m log q (2m + 1) log q Adaptive-CPA LWE

[36] * (ddl1/de+ 2)mn log q 2mn log q (2m + 1)n log q Adaptive-CPA RLWE †

[24] (log2 l + 2)mn log q 2m log q (2m + 1) log q Adaptive-CPA LWE

Ours ** (l/β + 2)mn log q 2mn log q (2m + 1)n log q Adaptive-CPA RLWE †

* In [22] and [36], they use an injective map which maps an identity id ∈ {0, 1}l to a subset of [1, dl1/de]d, where
the element d is a flexible constant. The choice of d will affect the reduction cost; ** In our construction, the
element β is a flexible constant. The choice of β will affect the size of modulus q and we make a trade-off in
the previous part; † Our scheme and [36] only work over the rings Rq; thus, the basic elements in the public
parameters are polynomial vectors rather than matrices.

Since the public parameters are composed of multiple matrices, its size will directly affect the
communication overhead in actual applications. As shown in this table, the public parameter in
Agrawal’s construction [18] contains l + 2 matrices. Zhang’s construction [23] achieves shorter
public parameter at the cost of weaker security guarantees. In Yamada’s construction [22], the public
parameter consists of ddl1/de+ 2 matrices, where d is a constant. In Katsumata’s scheme [36], the public
parameter consists of ddl1/de+ 2 vectors because of ring setting. The relationship between the size
of public parameters and constant d is shown in Figure 2. For l = 160, the minimum size of public
parameters is 17 vectors when we set d = 5. Moreover, we need to set d very small (e.g., d = 2 or 3)
because of the reduction cost. If we set d = 2 (resp. 3), the public parameters have 28 (resp. 20) vectors.
In [24], the public parameter consists of log2 l + 2 matrices via new partitioning functions. In our
construction, the public parameters only contain l′ + 2 vectors, where l′ = l/β. We have analyzed the
choice of β or l′ in the previous part. For l = 160, the public parameter only contains 10 (resp. 18)
vectors if we choose β = 20 (resp. 10).

Figure 2. The relationship between the size of public parameters and constant d.

The comparison of public parameter size is shown in the Figure 3. It involves four IBE schemes
with short public parameters, including Yam17 [24] , KY16 [36] (d = 3), ZCZ16 [23] and ours (β = 20).
The x-axis represents the length of user’s identity, and the y-axis represents the number of basic
matrices (or vectors) in the public parameters of each scheme. Obviously, the public parameters in our
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scheme are shorter than [24] and [36]. Moreover, it can be shorter than [23] if the identity length l is
small (e.g., less than 140).

Figure 3. Comparison of public parameter size in different schemes.

Compared with the LWE-based scheme, the RLWE-based scheme contains a lot of polynomial
operations instead of matrix operations. To compare more fair, we only compare the computational
efficiency between the schemes under RLWE assumption. Since the scheme by [36] also has short
public parameters and ring setting, we only compare the calculation efficiency between [36] and our
scheme. Table 2 shows the comparison of computational efficiency. In this table, KeyGen, Enc, Dec
denote the key generation, encryption and decryption.

Table 2. Comparison of computational efficiency.

Schemes KeyGen Enc Dec

[36] dm2n2 dm2n2 + n2 + 2mn 2mn2

Ours l′mn l′mn + n2 + 2mn 2mn2

The difference between these two schemes is the calculation of H(id) and aid. In Katsumata’s
construction [36], H(id) = b + Σj1,··· ,jd PubEvald(b1,j1 , b2,j2 , · · · , bd,jd) and it is used to generate private
keys. They use the homomorphic function PubEvald : (Rm

q )
d → Rm

q as in [22], which maps vectors
b1, · · · , bd to a vector in Rm

q . The function PubEval needs dm2n2 multiplications and d− 1 inversions.

In our construction, aid = b + Σl′
i=1bi · ai and it is also used as the input of the sampling algorithm to

generate private keys. However, it only needs l′mn multiplication operations which is obviously less
than [36].

In Section 4, we also extend our IBE scheme to an adaptively secure HIBE scheme. Using Waters’
technology, we can convert the selectively secure HIBE scheme to adaptive security. Howerve, the size
of the public parameter increases from d + 2 matrices to dl′ + 2 matrices. In our HIBE construction, the
public parameter is reduced from dl′ + 2 matrices to dl′′ + 2 vectors where l′′ = l′/β. In particular,
it can be further reduced to l′′ + 2 thanks to the method of Chatterjee [11,43]. Finally, both of our
constructions support multi-bit encryption because of ring setting.

6. Conclusions

In this paper, we propose an identity-based encryption scheme and a hierarchical identity-based
encryption scheme over ideal lattice. The new schemes have short public parameters, and achieve
IND-ID-CPA security in the standard model. In addition, we use the trapdoor of Micciancio to further
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improve the efficiency of our scheme. However, there are still many problems to be solved, such as
how to reduce the size of ciphertext and how to implement these schemes.
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