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To precisely predict the clinical outcome and determine the optimal treatment options for patients with esophageal squamous cell
carcinoma (ESCC) remains challenging. Prognostic models based on multiple molecular markers of tumors have been shown to
have superiority over the use of single biomarkers. Our previous studies have identified the crucial role of ezrin in ESCC
progression, which prompted us to hypothesize that ezrin-associated proteins contribute to the pathobiology of ESCC. Herein, we
explored the clinical value of a molecular model constructed based on ezrin-associated proteins in ESCC patients. We revealed
that the ezrin-associated proteins (MYC, PDIA3, and ITGA5B1) correlated with the overall survival (OS) and disease-free survival
(DFS) of patients with ESCC. High expression of MYC was associated with advanced pTNM-stage (P � 0.011), and PDIA3 and
ITGA5B1 were correlated with both lymph node metastasis (PDIA3: P< 0.001; ITGA5B1: P � 0.001) and pTNM-stage (PDIA3:
P � 0.001; ITGA5B1: P � 0.009). Furthermore, we found that, compared with the current TNM staging system, the molecular
model elicited from the expression of MYC, PDIA3, and ITGA5B1 shows higher accuracy in predicting OS (P< 0.001) or DFS
(P< 0.001) in ESCC patients. Moreover, ROC and regression analysis demonstrated that this model was an independent predictor
for OS and DFS, which could also help determine a subgroup of ESCC patients that may benefit from chemoradiotherapy. In
conclusion, our study has identified a novel molecular prognosis model, which may serve as a complement for current clinical risk
stratification approaches and provide potential therapeutic targets for ESCC treatment.

1. Introduction

Esophageal cancer is the sixth leading cause of cancer-re-
lated deaths and the eighth most common type of malignant
gastrointestinal cancer in the world [1, 2]. Adenocarcinoma
and squamous cell carcinoma (ESCC) are the two major
types of esophageal cancer, with the latter accounting for the
90% of cases worldwide [3]. In China, ESCC still remains the
highest incidence and cancer-induced mortality rates, and

the long-term prognosis of patients with ESCC is less than
20%, despite improvements in treatments such as surgical
resection and adjuvant chemoradiation [4, 5]. .is poor
prognosis for ESCC patients is highly associated with the
difficult nature of diagnosing early-stage ESCC and the
frequent occurrence of local invasion and distant metastasis
[5]. In addition, conventional chemotherapy and radio-
therapy treatments are relatively ineffective [6]. .erefore,
seeking novel molecular prognostic markers that can help

mailto:nmli@stu.edu.cn
mailto:lyxu@stu.edu.cn
https://orcid.org/0000-0001-6375-3614
https://orcid.org/0000-0002-1618-4292
https://creativecommons.org/licenses/by/4.0/


identify patients at high risk and improving their prognosis
are urgent needs in the clinic.

However, signal molecular marker cannot meet the clinical
requirements for biomarkers, such as high sensitivity and
specificity, and it is more accurate than the current clinical
staging system [7]. In the last few years, studies have dem-
onstrated that combinations of multiple biomarkers weremore
sensitive and reliable than single molecular marker. Although
several prognostic biomarkers for ESCC have been reported
[8–12], there is still no ideal biomarker for clinical use.

Ezrin as a member of the ezrin/radixin/moesin (ERM)
protein family plays an important role in regulating the growth
and metastatic of cancer [13, 14]. In our previous studies, we
showed that ezrin was upregulated in ESCC and promoted
cellular proliferation and invasiveness of ESCC cells [15].
Furthermore, Ezrin might be a new prognostic molecular
marker for ESCC patients [16]. Ezrin was also known as a key
molecule connected with many other molecules in the biology
of tumor development [17]. In these ezrin-related proteins, our
previous studies identified that three proteins, i.e., MYC,
PDIA3, and ITGA5B1, correlated with patients’ survival
[11, 12]. MYC, a protooncogene, plays an integral role in a
variety of normal cellular functions [18]. MYC amplification is
a recurrent event in many tumors and contributes to tumor
development and progression [19–22]. .e progress of MYC-
induced tumorigenesis in prostate cancer cells entails MYC
binding to the ezrin gene promoter and the induction of its
transcription [23]. Meanwhile, the induction of ezrin ex-
pression is essential forMYC-stimulated invasion [23]. PDIA3
(protein disulfide isomerase family A, member 3), also known
as ERp57, is one of the main members of the protein disulfide
isomerase (PDI) gene family and is identified primarily as
enzymatic chaperones for reconstructing misfolded proteins
within the endoplasmic reticulum (ER) [24]. Several studies
have linked PDIA3 to different types of cancer, including
breast [25], ovarian [26], and colon [27] cancers. In ESCC, we
found that PDIA3 interacted with ezrin, and it was not only
involved in the development and progression of ESCC but also
related to OS and DFS of ESCC patients [12]. ITGA5B1 is a
member of the integrin family which plays a significant role in
cell adhesion to the extracellular matrix (ECM) [28, 29]. In
ESCC, ITGA5B1 upregulates the expression of ezrin through
the L1CAM [30].

Although ezrin plays a pivotal role in ESCC progression,
the clinical significance of ezrin-related proteins (MYC,
PDIA3, and ITGA5B1) has not been thoroughly investigated
in ESCC patients. Clinicopathological analyses of these
ezrin-interacting proteins may further our understanding of
the function of ezrin and provide therapeutic targets for
ESCC. In the current study, we found that a three-gene
signature comprised of MYC, PDIA3, and ITGA5B1 could
independently predict ESCC patient survival.

2. Materials and Methods

2.1. Patients and Specimens. For this retrospective study, 284
cases of formalin-fixed, paraffin-embedded ESCC tissue were
collected from the Shantou Central Hospital between No-
vember 2007 and January 2010. All patients underwent

curative resection and were confirmed as having ESCC by
pathologists in the Clinical Pathology Department of the
Hospital. Information on age, gender, and histopathological
factors was obtained from the medical records and shown in
Table 1. An independent validation set (GSE53622 and
GSE5364) was obtained from the publicly available GEO da-
tabase (https://www.ncbi.nlm.nih.gov/). We excluded the
ESCC patients without clinical survival information, and the
clinicopathological information was shown in Table S1. Overall
survival (OS) was defined as the interval between surgery and
death from tumors or between surgery and the last observation
taken for surviving patients. Disease-free survival (DFS) was
defined as the interval between surgery and diagnosis of relapse
or death. Ethical approval was obtained from the ethical
committee of the Central Hospital of Shantou City and the
ethical committee of the Medical College of Shantou Uni-
versity, and only resected samples from surgical patients giving
written informed consent were included for use in research.

2.2. Tissue Microarrays (TMAs) and Immunohistochemistry
(IHC). TMAs were constructed based on standard tech-
niques as previously described [12]. IHC was performed
using the PV-9000 2-step Polymer Detection System (ZSGB-
BIO, Beijing, China) and Liquid DAB Substrate Kit (Invi-
trogen, San Francisco, CA) according to the manufacturer’s
instructions and has been described in our previous studies
[12]. .e primary mouse monoclonal MYC antibody (1 :100
dilution; Santa Cruz Biotechnology, USA), anti-PDIA3
antibody (polyclonal, 1 : 700 dilution; sigma, Saint Louis,
MO), and anti-ITGA5B1 antibody (monoclonal, 1 : 50 di-
lution; millipore, USA) were used in this study.

2.3. Evaluationof IHCVariables. .e protein expression was
evaluated by an automated quantitative pathology imaging
system (PerkinElmer, Waltham, MA, USA), as described
previously [11]. Briefly, as shown in Figure S1, the auto-
mated image acquisition and color images were obtained
using Vectra 2.0.8 software. Subsequently, the spectral li-
braries were constructed using Nuance 3.0 software. And
then, the color images were evaluated by Inform 1.2 software
as follows: (1) segmentation of the tumor region from the
tissue compartments, (2) segmentation of the tumor region
from the tumor region, and (3) H score calculation (�(% at
0)∗ 0 + (% at 1+)∗ 1 + (% at 2+)∗ 2 + (% at 3+)∗ 3) based on
the optical density which produces a continuous protein
expression value in the range of 0 to 300.

2.4. Construction of a Survival Predictive Model. Firstly, we
used a univariate Cox proportional hazards regression analysis
to evaluate the correlation between survival and each protein.
Subsequently, we constructed a predictive model by the sum-
mation of the expression of each biomarker (high� 1, low� 0)
multiplied by its regression coefficient, as described in the
following equation: Y� (β1)×MYC+(β2)×PDIA3+ (β3)×

ITGA5B1 [9]. Patients were then divided into three groups
(high-risk, medium-risk, and low-risk) by the cut-off value
generated by X-tile software [31].
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2.5. Statistical Analysis. .e SPSS v19.0 program was used
for statistical analysis. Cumulative survival time was cal-
culated by the Kaplan-Meier (K-M) method and analyzed by
the log-rank test. .e association of biomarkers and clini-
copathological factors was evaluated by Fisher’s exact test.
.e Cox proportional hazards regressionmodel was used for
univariate and multivariate analyses. .e predictive value of
the parameters was determined by receiver operating
characteristic (ROC) curve analysis. P< 0.05 was considered
to be statistically significant.

3. Results

3.1. Immunohistochemical Characteristics of 3 Biomarkers.
.e expression levels of MYC, PDIA3, and ITGA5B1 protein
in ESCC were examined by IHC. As shown in Figure 1(a),
MYC, PDIA3, and ITGA5B1 were mainly localized in the
cytoplasm. We further investigated the association between

the expression of these 3 biomarkers and clinicopathological
parameters..ere was no significant correlation between the
3 markers and age, gender, tumor size, histologic grade, or
invasive depth, etc. Nonetheless, low-expression of PDIA3
or high expression of ITGA5B1 significantly correlated with
lymph node (LN) metastasis, whereas no correlation was
found between MYC and LN metastasis (Table 2). In ad-
dition, PDIA3 had a negative correlation while MYC and
ITGA5B1 had a positive correlation with pTNM-stage
(Table 2). In support of these correlation analyses, MYC and
ITGA5B1 showed increased expression in tumors with high
clinical stage; in contrast, PDIA3 expression was down-
regulated in stage III tumors compared with those with
stages I and II (Figure 1(b)).

3.2. Prognostic Significance of MYC, PDIA3, and ITGA5B1 in
Patients with ESCC. To further explore the clinical

Table 1: .e clinicopathological characteristics of generation dataset of patients with ESCC.

Clinical and pathological indexes Case no. 5-year OS (%) P∗ 5-year DFS (%) P∗

Specimens 284
Mean age 58.7
Age (year)
≤58 148 48.1 0.036 43.4 0.207>58 136 39.1 35.8

Gender
Male 220 44.8 0.387 40.5 0.915Female 64 40.2 37.2

.erapies
Only surgery 160 45.2

0.080

42.0

0.070Surgery + radiotherapy 39 53.6 51.3
Surgery + chemotherapy 57 46.2 36.4
Surgery + chemoradiotherapy 28 17.9 17.9

Tumor size
≤3 cm 67 55.6

0.057
54.4

0.0213–5 cm 134 43.5 37.9
>5 cm 83 34.7 31.1

Tumor location
Upper 16 33.5

0.463
25.0

0.127Middle 122 45.6 44.8
Lower 146 43.3 37.2

Histologic grade
G1 45 57.7

0.001
57.7

<0.001G2 219 43.5 38.3
G3 20 15.0 15.0

Invasive depth
T1 13 84.6

0.005
84.6

0.013T2 42 50.0 45.2
T3 229 40.2 36.2

Lymph node metastasis
N0 141 58.1

<0.001

53.5

<0.001N1 81 44.0 39.0
N2 46 15.2 13.0
N3 16 0.0 0.0

pTNM-stage
I 23 82.6

<0.001
82.6

<0.001II 131 54.2 49.2
III 130 26.4 22.6

∗Log-rank test of Kaplan–Meier method; P< 0.05 was considered significant. All patients underwent surgical treatment.OS: overall survival. DFS: disease-free survival.
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significance of MYC, PDIA3, and ITGA5B1 in ESCC pa-
tients, Kaplan-Meier analysis and log-rank test were per-
formed. As shown in Figure 2, high expression of MYC or
ITGA5B1 was significantly associated with poor prognosis
(MYC: OS, P � 0.024, DFS, P � 0.024; ITGA5B1: OS,
P � 0.001, DFS, P � 0.009, Figures 2(a) and 2(c)). However,
the overexpression of PDIA3 trended to predict a favorable
OS (P � 0.002) and DFS (P � 0.003, Figure 2(b)). Besides,
because ITGA5B1 is a heterodimer of alpha and beta sub-
unit, we used the expression level of ITGA5 instead of
ITGA5B1 in microarray data, and the predictive value of
MYC, PDIA3, and ITGA5 was further validated in an in-
dependent cohort (GSE53622 and GSE5364).

.e results for validation set were in line with those in
generation set (Supplementary Figure S2(a)). Univariate

Cox regression analysis further identified that these 3
molecules were significantly associated with OS (MYC:
P � 0.026; PDIA3: P � 0.003; ITGA5B1: P � 0.001) and DFS
(MYC: P � 0.026; PDIA3: P � 0.004; ITGA5B1: P � 0.010,
Table 3).

3.3. A Molecular Prognostic Model of the 3 Biomarkers
Signature. We then evaluated the prognostic value of a
molecular model that takes consideration of all the 3 bio-
markers. To this end, we calculated the risk score
Y� (β1)∗ (MYC) + (β2)∗ (PDIA3) + (β3)∗ (ITGA5B1). In
this dataset, the regression coefficients (β1� 0.347,
β2� − 0.482, β3� 0.501) were calculated by univariate Cox
proportional hazards analysis. All patients were divided into
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Figure 1: Expression ofMYC, PDIA3, and ITGA5B1 in ESCC. (a) Representative images of IHC staining forMYC, PDIA3, and ITGA5B1 in
ESCC samples (scale bars� 50 μm). (b) .e H scores of MYC, PDIA3, and ITGA5B in different clinical stages (stages I, II, and III) of ESCC
were shown by scatter diagram (P< 0.05, independent-samples t-test).

4 BioMed Research International



low-, medium-, and high-risk groups based on the Y scores,
and the optimal cut-off values were determined by the X-tile
software based on patients’ prognosis [31]. Kaplan–Meier
analysis further demonstrated that patients in the low-risk
group indeed had markedly prolonged survival (OS:
P< 0.001: DFS: P< 0.001, Figure 3(a)). .e 5-year OS for
low-, medium-, and high-risk groups was 62.9%, 41.3%, and
24.5%, respectively. Similar results were obtained for 5-year
DFS in those groups, which were 56.0%, 37.4%, and 24.5%,
respectively (Figure 3(a)). To validate whether this molecular
prognostic model can serve as an independent predictor for
OS and DFS, we carried out both univariate and multivariate
analyses. As shown in Table 3, our newly defined molecular
prognostic model, along with pTNM-stage and tumor size,
was independent prognostic factors (Table 3). Moreover,
receiver operating characteristic (ROC) analysis indicated
that the predictive power of this molecular prognostic model
was higher compared to each biomarker individually or the
pTNM-stage (Figure 3(b)). .e predictive value and power

of molecular model for OS also yielded similar results from
validation set as shown in Figure S2(b).

3.4. 
e Potential of the Molecular Prognostic Model in
Identifying ESCC Patients Who Can Benefit from
Chemoradiotherapy. As shown in Table 1, chemo-
radiotherapy did not markedly prolong the OS and DFS of
ESCC patients. To test the utility of the molecular prognostic
model for predicting therapeutic efficacy, we performed
K-M survival analysis. Our results showed that the OS and
DFS of patients who were treated with surgery only were
higher compared with those who received surger-
y + radiotherapy or surgery + chemotherapy in the low-risk
group (Figure 4(a)). However, the opposite was true for
patients in the high-risk group, in which ESCC patients who
received only surgery had an unfavorable outcome
(Figure 4(c)). Radiotherapy and chemotherapy tended to
prolong patients’ survival as the risk went up as determined

Table 2: .e correlation between 3 markers and clinicopathological characteristics in ESCC.

Variables
MYCa

P∗
PDIA3b

P∗
ITCA5B1c

P∗
Low High Low High Low High

Age (year)
≤58 67 81 0.425 84 64 0.725 92 56 0.334>58 68 68 80 56 92 44

Gender
Male 109 111 0.208 127 93 0.990 137 83 0.100Female 26 38 37 27 47 17

.erapies
Only surgery 85 75

0.067

97 63

0.588

107 53

0.849Surgery + radiotherapy 14 25 20 19 25 14
Surgery + chemotherapy 21 36 30 27 35 22
Surgery + radiochemotherapy 15 13 17 11 17 11

Tumor size
≤3 cm 39 28

0.101
41 26

0.303
43 24

0.4893–5 cm 62 72 71 63 83 51
>5 cm 34 49 52 31 58 25

Tumor location
Upper 6 10

0.307
9 7

0.383
8 8

0.395Middle 64 58 65 57 82 40
Lower 65 81 90 56 94 52

Histologic grade
G1 25 20

0.499
20 25

0.054
32 13

0.588G2 101 118 129 90 140 79
G3 9 11 15 5 12 8

Invasive depth
T1 +T2 32 23 0.078 37 18 0.111 34 21 0.607T3 +T4 103 126 127 102 150 79

Lymph node metastasis
N0 73 68 0.156 64 77 <0.001 105 36 0.001N1+N2+N3 62 81 100 43 79 64

pTNM-stage
I 17 6

0.011
10 13

0.001
16 7

0.009II 65 66 64 67 96 35
III 53 77 90 40 72 58

∗Fisher’s exact test. P value< 0.05 was considered significant.
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Figure 2: K-M survival analysis in ESCC patients based on the expression ofMYC, PDIA3, and ITGA5B1..eH scores of each protein were
divided into low and high groups as determined by X-tile, and the number of patients who were at risk at specific times was labeled under the
x-axis (P< 0.05, log-rank test).
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by our molecular prognostic model. In particular, patients
treated with surgery + chemotherapy in the high-risk group
had the most favorable OS and DFS compared with surgery
alone and surgery + radiotherapy (Figure 4).

4. Discussion

ESCC is one of the most prevalent and lethal cancers in
Asian [4]; however, there is no effective molecular signatures
for predicting the effectiveness of adjuvant treatments and
prognosis in the clinic. Previous studies demonstrated that
the cytoskeleton changes are intimately associated with
cancer invasion and metastasis [32]. In support of this
notion, our research has confirmed that the membrane-
cytoskeletal linking protein ezrin contributes significantly to
ESCC progression [15]. In this study, we attempted to
generate an effective molecular model based on ezrin-related
proteins (MYC, PDIA3, and ITGA5B1) for potential clinical
applications. Our data highlight that a molecular model
elicited from MYC, PDIA3, and ITGA5B1 has superior
prognostic values compared with pTNM-stage, which also
facilitates the identification of ESCC patients who may
benefit from chemoradiotherapy.

Ezrin, a membrane-cytoskeleton linker, plays a major
role in promoting tumor progression [23, 33]. Our previous
study has identified the mislocalization of ezrin during
ESCC development, in which membranous ezrin in normal
epithelial cells becomes cytoplasmic in ESCC [34]. .is
abnormal localization changes the interacting proteins of
ezrin, which has been shown to be critical for regulating
tumor cell survival, invasion, and metastasis [12, 17]. .e
expressions of MYC, PDIA3, and ITGA5B1 have been
demonstrated to play critical roles in various malignant
tumors and are independent prognostic factors in certain
cancers [12, 35, 36].

It is important to note that although ESCC patients with
higher risk predicted by our three-protein molecular model
had poor prognosis, these patients might benefit from ad-
juvant therapies such as chemoradiotherapy, which im-
proved their survival compared with surgical treatment
alone. Compared with the model using three different genes
(PPARG, MDM2, and NANOG), which we reported in 2015
[9], the current molecular model not only accurately predicts
the OS of patients with ESCC but also predicts the DFS and
sensitivity to chemoradiation. .is makes it much more
practical for clinical application. Our results are in line with

Table 3: Univariate andmultivariate analyses of factors associated with overall survival (OS) and disease-free survival (DFS) in patients with
ESCC.

Variables
Univariate analysis Multivariate analysis

OS DFS OS DFS
HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age (>58 vs. ≤58) 1.376 (1.017 to
1.861) 0.039 1.203 (0.900 to

1.609) 0.213 1.498 (1.082 to
2.073) 0.015

Gender (female vs. male) 0.857 (0.603 to
1.219) 0.391 0.981 (0.693 to

1.390) 0.916

.erapies 0.090 0.080
(Surgery + radiotherapy vs. only

surgery)
0.799 (0.492 to

1.296) 0.363 0.893 (0.557 to
1.432) 0.639

(Surgery + chemotherapy vs. only
surgery)

0.918(0.642 to
1.423) 0.825 1.225(0.847 to

1.770) 0.281

(Surgery + radiochemotherapy
vs. only surgery)

0.918 (1.036 to
2.550) 0.035 1.701 (1.087 to

2.662) 0.020

Tumor size 0.062 0.025 0.045 0.021

3–5 cm vs. ≤3 cm 1.285 (0.860 to
1.921) 0.222 1.404 (0.948 to

2.077) 0.090 1.378 (0.915 to
2.075) 0.124 1.432 (0.964 to

2.130) 0.076

>5 cm vs. ≤3 cm 1.657 (1.082 to
2.539) 0.020 1.787 (1.176 to

2.716) 0.007 1.730 (1.124 to
2.664) 0.013 1.821 (1.193 to

2.779) 0.005

pTNM-stage (III vs. I + II) 2.087 (1.443 to
3.019) <0.001 1.956 (1.376 to

2.780) <0.001 1.876 (1.267 to
2.778) 0.002 1.689 (1.162 to

2.456) 0.006

MYC 1.415 (1.043 to
1.920) 0.026 1.397 (1.041 to

1.874) 0.026

PDIA3 0.618 (0.450 to
0.848) 0.003 0.638 (0.471 to

0.864) 0.004

ITGA5B1 1.651 (1.216 to
2.241) 0.001 1.477 (1.098 to

1.986) 0.010

Molecular prognostic model <0.001 <0.001 0.001 0.006

Medium-risk vs. ≤ low-risk 1.830 (1.215 to
2.758) 0.004 1.625 (1.111 to

2.378) 0.012 1.577 (1.036 to
2.402) 0.034 1.493 (1.010 to

2.208) 0.045

High-risk vs. ≤ low-risk 2.914 (1.828 to
4.680) <0.001 2.457 (1.580 to

3.823) <0.001 2.539 (1.556 to
4.141) <0.001 2.122 (1.338 to

3.367) 0.001

Note. Multivariate analysis, Cox proportional hazards regression model. Variables were adopted for their prognostic significance by univariate analysis.
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other clinical studies, which have shown that high expression
and rearrangement of MYC are associated with better re-
sponse to chemoradiotherapy compared with patients without
these abnormalities [37, 38]. .e mechanism behind this
observation is probably related to the biological function of
MYC in promoting DNA replication and cell cycle distri-
bution [39]. As chemoradiotherapy utilizes the effects of DNA
damage-induced cytotoxicity in neoplastic cells, it is not
surprising to see an association between MYC and chemo/
radiosensitivity in ESCC patients. Indeed, overexpression of
MYC has been shown to render tumor cells susceptible to
chemotherapeutics, such as etoposide, doxorubicin, and

camptothecin [40]. Nevertheless, MYC remains an attractive
molecular target for therapy due to its high oncogenic
properties [41]. Antisense oligonucleotides (ASOs) targeting
MYC have been shown to block cell proliferation and induce
apoptosis in solid and hematologic tumors [41, 42].

Compared with MYC, relatively little is known about the
biological function of ITGA5B1 in carcinoma. Recent
studies suggest that ITGA5B1 can prevent cell anoikis
through suppressing inflammation- and oxidative stress-
related genes [43, 44]. ITGA5B1 is especially more notice-
able in regulating cell adhesion [45], and it can promote
early peritoneal metastasis in serous ovarian cancer [46]. In

P < 0.001

Molecular prognostic model

High risk (n = 53)

Low risk (n = 73)

Medium risk (n = 158)

No. at risk
Low risk
Medium risk
High risk

60 50 46 43 434373
158 112 77 67 63 61 61
53 32 19 13 12 11 11

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll 

su
rv

iv
al

20 40 60 80 1000 120
Time (months) No. at risk

P < 0.001

Time (months)
40 60 80 1000 120

Molecular prognostic model

High risk (n = 53)

Low risk (n = 73)

Medium risk (n = 158)

20

Low risk
Medium risk
High risk

73 53 4145 38 37 37
158 90 68 60 57 5656
53 23 17 13 11 9 9

0.0

0.2

0.4

0.6

0.8

1.0

D
ise

as
e f

re
e s

ur
vi

va
l

(a)

ROC for OS

pTNM stage
Molecular prognostic model
MYC

PDIA3
ITGA5B1

Ref.line

MYC

pTNM stage

ITGAB1
PDIA3

Molecular prognostic model

AUROC P value

0.637
0.1250.554
0.016
0.010

0.584
0.409

0.611 0.002
<0.001

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

1.00.4 0.6 0.80.20.0
1 – specificity

Se
ns

iti
vi

ty

pTNM stage
Molecular prognostic model
MYC

PDIA3
ITGA5B1

Ref.line

1 – specificity

ROC for DFS
1.0

0.0
0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

MYC

pTNM stage

ITGAB1
PDIA3

Molecular prognostic model

AUROC P value

0.624
0.1080.557
0.034
0.020

0.576
0.417

0.616 0.001
0.001

(b)

Figure 3: Predictive value of the molecular model. (a) K-M survival curves showing that the OS and DFS had a striking contrast between the
ESCC patients in low-, medium-, and high-risk groups. (b) Receiver operating characteristic (ROC) curve was used to evaluate the ability of
the molecular model for OS or DFS compared with each biomarker alone or the pTMN-stage.
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Figure 4: Continued.
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line with the protumorigenic role of ITGA5B1, we are the
first to uncover the high expression of this protein in more
advanced and metastatic ESCC tumors with unfavorable
prognosis. Further studies are needed to delineate the
mechanisms behind the deregulation of ITGA5B1 and its
biological function in ESCC. PDIA3 has been shown to
confer chemo/radioresistance to various types of tumor cells
such as ovarian carcinoma [47, 48]. PDIA3 expression level
is correlated with the clinical outcome of patients with
ovarian carcinoma who receive chemoradiotherapy, and the
sensitivity to paclitaxel can be enhanced by PDIA3 silencing
[47, 48]. In ESCC, we found that PDIA3 decreased gradually
with the progress of stage and related to favorable prognosis,
which was in accord with the findings in gastric cancer [49],
but contrary to those in hepatocellular carcinoma [50]. .e
favorable prognostic value of PDIA3 in ESCC implies that
ESCC patients with high expression of PDIA3 may be more
sensitive to chemotherapy such as paclitaxel, but further
studies are warranted. .ese contrasting observations can be
attributed to the differences in the carcinogenic machinery
between ESCC and other carcinomas.

Taken together, these data suggest that MYC, PDIA3,
and ITGA5B1 may serve as potential therapeutic targets for
ESCC treatment, and cotargeting of these biomarkers might
be more effective than targeting a single biomarker alone.
Importantly, this study provides a clinically applicable
molecular model that can more precisely predict clinical
outcome than pTNM-stage, which may also facilitate the
identification of ESCC patients who can benefit from ra-
diotherapy or chemotherapy.
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characteristics of validation dataset of patients with ESCC.
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