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Deep learning algorithm predicts diabetic retinopathy
progression in individual patients
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The global burden of diabetic retinopathy (DR) continues to worsen and DR remains a leading cause of vision loss worldwide. Here,
we describe an algorithm to predict DR progression by means of deep learning (DL), using as input color fundus photographs
(CFPs) acquired at a single visit from a patient with DR. The proposed DL models were designed to predict future DR progression,
defined as 2-step worsening on the Early Treatment Diabetic Retinopathy Diabetic Retinopathy Severity Scale, and were trained
against DR severity scores assessed after 6, 12, and 24 months from the baseline visit by masked, well-trained, human reading
center graders. The performance of one of these models (prediction at month 12) resulted in an area under the curve equal to 0.79.
Interestingly, our results highlight the importance of the predictive signal located in the peripheral retinal fields, not routinely
collected for DR assessments, and the importance of microvascular abnormalities. Our findings show the feasibility of predicting
future DR progression by leveraging CFPs of a patient acquired at a single visit. Upon further development on larger and more
diverse datasets, such an algorithm could enable early diagnosis and referral to a retina specialist for more frequent monitoring and
even consideration of early intervention. Moreover, it could also improve patient recruitment for clinical trials targeting DR.
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INTRODUCTION

Vision loss due to diabetic eye disease is on the rise and it is
expected to reach epidemic proportions globally in the next few
decades. In 2017, ~425 million people worldwide had diabetes,
and this number is estimated to increase to 642 million by 2040.'
Diabetic retinopathy (DR) is the most common and insidious
microvascular complication of diabetes, and can progress
asymptomatically until a sudden loss of vision occurs. Almost all
patients with type 1 diabetes mellitus and ~60% of patients with
type 2 diabetes mellitus will develop retinopathy during the first
20 years from onset of diabetes.” However, DR often remains
undetected until it progresses to an advanced vision-threatening
stage. The current state of DR screening in the real world, based
on assessment of color fundus photographs (CFPs, see Fig.1a) by a
retina specialist or a trained grader, leaves a large proportion of
patients undiagnosed and therefore receiving medical help too
late, in part due to low adherence and access to retina screening
visits.>* In-person expert examinations are impractical and
unsustainable given the pandemic size of the diabetic popula-
tion.>”” Notwithstanding, early detection and prevention of DR
progression are essential to mitigate the rising threat of DR.

Artificial intelligence (Al) may offer a solution to this conun-
drum. Deep learning (DL), and specifically, deep convolutional
neural networks (DCNNs)?® can be used for an end-to-end
assessment of raw medical images to produce a target outcome
prediction. The diagnostic use of DCCN algorithms is already
spreading in various healthcare areas,”'® such as radiology,'"'?
dermatology,'® and pathology.’® In ophthalmology, groundbreak-
ing work has recently been conducted on the automation of DR
grading™"” and prediction of cardiovascular risk factors'® by
DCNN analysis of CFPs.

The purpose of this work was to go beyond the use of DL for DR
diagnostics'>™"7"'? and to assess the feasibility of developing
DCNNs operating on 7-field CFPs that can predict the future threat
of significant DR worsening at a patient level over a span of 2
years after the baseline visit.

To achieve that, our DCNNs have been trained on high-quality
7-field CFPs acquired at a single visit and graded for DR severity
by masked and well-trained reading center experts, using the
validated Early Treatment Diabetic Retinopathy Study (ETDRS)
Diabetic Retinopathy Severity Scale (DRSS)*° from large
controlled clinical trials. Previous studies have limited the
deployment of DCNNs to fovea- or optic nerve-centered
CFPs.”>'® Qur findings highlight the importance of the
predictive signal located in the peripheral retinal fields of
patients with DR and suggest that such a predictive algorithm,
upon further development and proper validation, could help
fight blindness by identifying fast DR progressors for referral to
a retina specialist or inclusion in clinical trials targeting early
stages of DR.

RESULTS

Model performance

The DL models (the architecture is shown in Fig. 1c and described
in detail in the Methods section) were able to predict 2-step or
more ETDRS DRSS worsening at 6, 12, and 24 months with an area
under the curve (AUC) of 0.68+0.13 (sensitivity, 66% + 23%;
specificity, 77% + 12%), 0.79 + 0.05 (sensitivity, 91% + 8%; specifi-
city, 65% * 12%), and 0.77 £ 0.04 (sensitivity, 79% + 12%; specifi-
city, 72%*14%), respectively. The receiver operating
characteristic curves of the fivefold cross-validation (CV) are
shown in Fig. 2. By comparing these values with the average AUC
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Fig. 1 An overview of retinal imaging features analyzed to assess diabetic retinopathy (DR) severity and a schematic of the study design.
a Example of fovea-centered color fundus photographs (CFPs) of a patient without DR (left) and a patient with signs of DR (right). In the CFP of
the patient with signs of DR (right), one example each of hemorrhage, exudate, and a microaneurysm are highlighted. Both examples have
been selected from the Kaggle DR dataset.*” b Schematic of the Diabetic Retinopathy Severity Scale (DRSS) established by the Early Treatment
Diabetic Retinopathy Study (ETDRS) group to measure DR worsening over time. ¢ Schematic of the two-phase modeling to detect two-step or
more DRSS worsening over time. In phase |, field-specific Inception-v3 deep convolutional neural networks (DCNNs) called “field-specific
DCNNs" or “pillars” are trained by means of transfer learning to predict whether the patient will progress two ETDRS DRSS steps. In phase II,

the probabilities independently generated by the field-specific DCNNs are aggregated by means of random forest
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Fig. 2 Summary of the results for the prediction of two-step or more diabetic retinopathy progression at months 6, 12, and 24 using 7-field
color fundus photographs of patients at baseline. AUC area under the curve, Cl confidence interval, CV cross-validation, ROC receiver
operating characteristic, SD standard deviation, SENS sensitivity, SPEC specificity

of the individual field-specific DCNN models (Table 1), it appears
that the aggregation did significantly improve the overall
performance, especially for month 12 (P=0.00049) and 24 (P=
0.00042). Results for month 6 were weaker compared with months
12 and 24, mainly due to the scarcity of patients with DR
progression within the first 6 months (~6%; see details in the
“Methods” section).

Models using just the ETDRS DRSS grade at baseline achieved
an AUC ~0.52; only slightly above the “tossing-coin line”
(Supplementary Fig. 2).

Predictive value of the individual CFP fields

The optic-nerve-centered field (F1) and the fovea-centered field
(F2) are generally regarded as the most important fields in a
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standard ophthalmoscopy exam. The purpose of this analysis was
to evaluate the predictive signal of DR progression in these central
retinal fields compared with the peripheral fields (F3, F4, F5, F6,
and F7). We found that the main predictive contribution came
from the peripheral retinal fields (F3, F4, F5, F6, and F7) that
encompass areas of the retina far from both the fovea and optic
nerve. Performance comparisons between models trained only on
central fields (F1 and F2) versus models trained on all seven retinal
fields support our finding. For this comparison, we performed the
random forest (RF) aggregation only with the probabilities
generated by the F1- and F2-specific DCNNs (Fig. 1c). Using this
subset of the RF inputs brought the AUC down to 0.62+0.13
(from 0.68 +£0.13 with all seven fields; P=0.0486), 0.64 +0.05
(from 0.79 = 0.05 with all seven fields; P = 0.00014), and 0.69 + 0.05
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Table 1. Performance of the individual field-specific DCNNs in terms of AUC

Month F1 F2 F3 F4 F5 F6 F7

6 0.65+0.12 0.65+0.11 0.63 +0.09 0.59+0.08 0.72+0.11 0.66 +0.14 0.69+0.12
12 0.68 + 0.04 0.62 +0.07 0.67 £ 0.05 0.75+0.06 0.70 £ 0.04 0.72+0.05 0.74+£0.03
24 0.69 £ 0.07 0.61 +0.06 0.67 £ 0.04 0.68 + 0.05 0.70+0.03 0.65 = 0.05 0.74 £ 0.04

AUC area under the curve, DCNN deep convolutional neural network

The associated errors are the standard deviation over the AUC values of 25 DCNNs (five repetitions x five folds, n = 25) trained for each field

(from 0.77 + 0.04 with all seven fields; P = 0.0023) for months 6, 12,
and 24, respectively.

The analysis by “Shapley Additive Explanations” (SHAP)?' allows
for interpretation of predictions of complex symbolic machine
learning (ML) models by attributing the descriptors to the weights
of importance. Here it was used to evaluate the field-specific
DCNN contribution to the final RF aggregation. Figure 3 shows
SHAP values on the prediction level for the five folds used for CV,
indicating the contribution of the RF input features (namely the
probabilities of DR progression generated by all individual DCNNs)
for the final prediction. Figure 3 generally confirms that high
probabilities (dots in the red spectrum) for individual DCNNs
contribute to the prediction of faster DR progression (appear on
the positive part of the x-axis) and that low probabilities (dots in
the blue spectrum) result in the opposite. This pattern is broken in
the few cases where the aggregation used low- and high-
probability values to predict both classes. This further confirms
that using just one field would not be sufficient to properly
address the prediction. In this particular case, Fig. 3 highlights that
F5- and F7-specific DCNNs play a more crucial role in the
prediction compared with F1 and F2.

Attribution maps

Attribution maps are a powerful strategy to shed light on the
complex mechanism inside a single DCNN. These maps highlight
areas where the model focuses its attention in order to decide
how to classify a certain query image. Attribution maps are useful
to check whether the decision mechanism of a DCNN is relatable
to human expectation. The maps analyzed in this study were
generated by guided back propagation,®® which provided the
most salient results among different attribution techniques that
were tested.

Figure 4 offers examples of different target time points and CFP
fields, where test images are placed side-by-side to the
corresponding attribution map. In general, the DCNNs seem to
focus mainly on hemorrhages and microaneurysms, and partially
on exudates, which are well recognized for their association with
DR.2® A remarkable aspect is that the DCNNs are able to highlight
very small and low-contrast microaneurysms, even though they
were not explicitly designed to accomplish this task. The
correlation between microaneurysms and DR progression has
been studied by Piri et al.?” and our attribution maps seem to be
in line with these studies. However, there is an important
difference; in our work, the DCNNs learn a functional mapping
from baseline to month X (6, 12, or 24) using a single time point
rather than the multiple visits used by Piri et al.*’ to measure
microaneurysm turnover. Please see the Supplement for examples
of how attribution maps on the same image vary from month 6
through 24 (Supplementary Fig. 3) or with different repetitions of
the prediction model (Supplementary Fig. 4).

Examples highlighted in Fig. 4 indicate that pathologies such as
microaneurysms, hemorrhages, and hard exudates could be
predictive for DR progression. Future studies may confirm this
hypothesis by, for example, replacing DL with symbolic ML

22-25
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methods operating on hand-crafted features based on these
pathologies.

DISCUSSION

This work demonstrates the feasibility of developing a DL
algorithm to identify patients who will experience DR worsening
by two or more ETDRS DRSS steps over the next 2 years, based
solely on CFPs acquired at a single visit. Currently, it is only
possible to approximate progression risk for groups of patients
with similar signs and symptoms on the basis of their assessed DR
severity level, but it is not possible to accurately predict the course
of DR in an individual patient.?° Previous data from ETDRS studies
demonstrated that DR is a slowly progressing disease and that
there is an increasing risk of DR worsening and vision-threatening
events as DR severity increases.?® For example, using the
traditional manual grader assessment, a patient with moderately
severe non-proliferative DR (NPDR) will have an ~20% risk,
whereas a patient with severe NPDR will have an ~50% risk of
progressing to proliferative DR (PDR) within 1 year.”® However, it is
not know which individual patients belong to the subsets of fast
versus slow progressors. This type of individual prediction can be
achieved by means of the DL algorithms described in this paper.

A second crucial finding of this study was that any imaging-
based diagnostic/predictive Al tool for DR should contemplate the
inspection of both central and peripheral retina, instead of being
limited to the use of CFPs centered around the fovea or optic
nerve (F2, in the traditional ETDRS 7-field photography).'> "
Moreover, lateral fields may contain predictive signs of DR
worsening before the pathology has affected the macula, allowing
for prompt referral and, eventually, timely treatment before vision
loss occurs. Coupling algorithms such as the one described here
with more recent imaging technologies, such as ultrawide field
(UWF) photography, might enable the identification of fast DR
progressors even earlier in their disease course. The non-mydriatic
UWF CFPs*®3° were recently validated for DR severity assess-
ments and have the advantage of capturing a view of 200 degrees
of the retina with less time and effort compared with the standard
7-field CFP, while providing good to excellent agreement in
determining DR severity.?>° Part of our algorithm validation and
expansion strategy is to guarantee that the described algorithm
will be capable of operating on UWF CFPs as well.

An inherent limitation of the present work is that our DCNNs
have been developed and evaluated on two large, identically
designed, sham-controlled, double-masked, phase 3 clinical trials
(RIDE [NCT00473382] and RISE [NCT00473330]).>' The advantage
of using clinical trial data is the availability of high-quality
standardized imaging formats and processes as well as assess-
ments by masked experts at a centralized reading center.
However, this means that, at this time, our work is only applicable
to clinical trial populations within a similar range of pre-specified
eligibility criteria. Therefore, validation with datasets acquired in
the real world will be essential to ensure that these results are
reproducible and applicable to the broader DR population; the
authors are already tackling this issue. The great advantage of the
dataset at our disposal is that it contains a representation of
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Fig. 3 SHAP plots summarizing the pointwise and average contribution of each deep convolutional neural network (DCNN) to the random
forest aggregation. SHAP plots outlining the pointwise contribution of each DCNN. In this example, the SHAP analysis is related to the five
folds used for the prediction of DR progression at month 24 is showed. The DCNNs are ordered in importance from top to bottom. The
naming convention of the DCNNs highlights the field (f1,’ ‘f2,’ etc.) and repetition ('rep00,” ‘rep01,’ etc.)

patients across all levels of DR severity (see the distribution of
RIDE/RISE patients with respect to the ETDRS DRSS overlaid with
the number of 2-step DR progressors in Supplementary Fig. 1).
This was key to testing the algorithm reliability across a diverse DR
population. To summarize, the following aspects represent crucial
limitations of the presented work: (a) relatively small patient
population (~530 patients); (b) patient population fulfilling the
eligibility criteria of the RIDE and RISE clinical trials, thus not
representing the real world population of patients with diabetes;
(c) lack of an external validation set; and (d) limited interpretability
of the overall prediction models due to the use of DCNN pillars to
separately process CFP fields of view. Another potential limitation
of the current analyses was the definition of DR progression. The
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definition we used is based on the clinically relevant magnitude of
step-change on the ETDRS DRSS, which is not commonly used in
the clinic. Although this scale was designed based on the
correlation with increasing risk of vision loss and has been
validated and accepted by regulators around the world, our next
step is to explore the feasibility of an algorithm that predicts vision
loss directly.

Our work represents a step forward in the application of Al to
the field of ophthalmology. The DL modeling presented here
differs from previously mentioned studies which either required
multiple visits, did not employ ML, or focused on current DR
severity diagnosis instead of prediction of the future. Additionally,
as highlighted before, peripheral CFP fields have not been used in
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most of the previous ML and DL approaches dedicated to DR
diagnostic development.'>™"?

Our findings suggest that deployment of a predictive DR
progression algorithm would enable early identification of
patients at highest risk of vision loss, allowing timely referral to
retina specialists and potential initiation of treatment before
irreversible vision loss occurs. In the context of the global diabetes
epidemic, new screening tools could have a substantial socio-
economic impact on the healthcare system. The federal savings
are projected to reach $624.0 million annually in the United States
alone, if we can deploy tools that enable recommended eye
screening and ophthalmic care for all diabetes patients.
However, these estimates are based on the ability to expand
diagnosis across members of the diabetes population currently
lacking access to medical care. To our knowledge, nobody has yet
performed an evaluation of cost savings based on predictive
screening, which would identify individuals who require immedi-
ate follow up and possible early intervention due to impeding
near-future progression. Deployment of a predictive algorithm
represents therefore an important conceptual leap for the efficient
triage of patients at high risk of vision-threatening DR complica-
tions and a step towards a personalized approach to medicine,
what it also envisaged as “precision medicine.”

Moreover, the identification of fast DR-progressing patients
through a predictive DR progression algorithm would have the
potential to support the development of new treatments
targeting patients with mild and moderate NPDR. Clinical trials
based on the traditional endpoint of DR improvement/worsening
are considered prohibitively expensive due to size and/or
duration. By enriching the clinical trial population with fast DR-
progressing individuals, such an Al-based recruitment strategy
would increase the chances of success for clinical trials of novel
drugs designed to address the unmet need of those members of
the early DR population at the greatest risk of progression and
vision loss. This is particularly important considering the rising
global prevalence of DR and its potential impact on healthcare
systems and society.

METHODS
Dataset

This study is based on the post hoc retrospective analysis of stereoscopic
7-field CFPs obtained from eyes with DR in the RIDE (NCT00473382)%373°
and RISE (NCT00473330)>3° phase 3 studies at baseline (start of the
studies) that were not treated with anti-vascular endothelial growth factor
(VEGF) therapy. RIDE and RISE were registered on 13/05/2007 with the title
“A Study of Ranibizumab Injection in Subjects With Clinically Significant
Macular Edema (ME) With Center Involvement Secondary to Diabetes
Mellitus” and can be accessed via the ICTRP portal at the following URLs:
RIDE at http://apps.who.int/trialsearch/Trial2.aspx?Trial D=NCT00473382,
RISE at http://apps.who.int/trialsearch/Trial2.aspx?TriallD=NCT00473330.
The objective of this analyses was to generate algorithms that can
predict worsening in untreated eyes from baseline over a period of 2 years.
From RIDE and RISE, only the baseline images from those eyes that were
randomized to sham/untreated groups and the untreated fellow eyes were
used for this work. These eyes had the natural course of DR worsening
outcomes without anti-VEGF treatment collected at months 6, 12, and 24.
There was a total of 529 (683 eyes, 4781 CFPs), 528 (682 eyes, 4774 CFPs),
and 499 (645 eyes, 4515 CFPs) patients with untreated eyes who had all
seven fields captured on CFP at months 6, 12, and 24. RIDE and RISE were
two parallel, identically designed, phase 3, randomized, double-masked
clinical trials of ranibizumab in patients with DR with diabetic macular
edema. The studies were sham injection controlled for 2 years and
followed for an additional year in which all sham patients crossed over to
ranibizumab therapy. The study design, eligibility criteria, and core efficacy
and safety outcomes of these trials have been previously described.>*~3*
Baseline ETDRS DRSS DR severity in RIDE/RISE sham-treated study and
fellow eyes ranged from 10 (absent) to 71 (high-risk PDR) 2% The manually
detected rates of two-step or more worsening in sham study eyes and
fellow eyes at 2 years from baseline were 9.6% and 11.7%, respectively.®®
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Month 24, Field F6

The majority of the CFP images were of high quality due to the training
requirement for all study site photographers who participated in CFP
acquisition. Additionally, the image assessment for the manual severity
grading was of the highest attainable quality because it was performed by
two masked readers at an accredited fundus photograph reading center
supervised by a senior reader in charge of adjudication when needed.
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Fig. 4 Example of attribution maps placed side by side to the
original test color fundus image. In each set, the original image is on
the left and the attribution map is on the right. The attribution of
the deep convolutional neural networks focuses mainly on micro-
aneurysms, hemorrhages, and exudates. a Two examples of
attribution maps for the model predicting diabetic retinopathy
(DR) progression at month 6. b Two examples of attribution maps
for the artificial intelligence model predicting DR progression at
month 12. ¢ Two examples of attribution maps for the model
predicting DR progression at month 24

Each patient data point at each visit consists of seven CFP fields that
span a 30-degree view of retina. The different fields are indicated with the
following codes: F1 (optic nerve centered); F2 (fovea centered); and F3, F4,
F5, F6, and F7 (all peripheral fields); all codes correspond to a general
ETDRS standard adopted by reading centers.”

The trials adhered to the tenets of the Declaration of Helsinki and were
Health Insurance Portability and Accountability Act compliant, and the
protocols were approved by the study sites’ institutional review boards
and ethics committees (or as applicable). Patients provided written
informed consent.

Outcome variable for DR progression

The 7-field CFPs acquired for each patient at baseline were used to train DL
models designed to predict, on an individual patient level, two-step or
more worsening with respect to the ETDRS DRSS over 2 years, specifically
after 6, 12, and 24 months. The problem under study is a binary
classification, where ‘0’ means no occurrence of two-step or more ETDRS
DRSS worsening at month X (6, 12, or 24), and ‘1’ means the opposite. The
incidence of sham study and fellow eyes diagnosed with worsening by two
or more ETDRS DRSS steps was ~6% at month 6, ~10% at month 12, and
~12% at month 24. The histograms in Supplementary Fig. 1 show the
distribution of the population of sham study and fellow eyes at baseline
with respect to the ETDRS DRSS overlaid with the number of DR
progressors and non-progressors for month 6, 12, and 24.

The ETDRS DRSS scale has been validated and widely used for objective
quantification of retinopathy severity in the clinical trial setting. The
landmark trials, Diabetic Retinopathy Study and ETDRS, established that
worsening of DR (that is measured by anatomic features on the ETDRS
DRSS) is significantly associated with development of severe vision loss.>®
Moreover, the incidence of clinically significant diabetic macular edema
was shown to correlate with the progression of DR on the ETDRS DRSS
from NPDR to PDR.*° Even just one-step or more DRSS worsening was
shown to be associated with a five- to sixfold increased risk of PDR
development, and a three- to fourfold risk of developing clinically
significant macular edema with a high likelihood of vision loss over the
period of 4 years3” However, considering the intergrader variability
associated with this scale, two steps or more on the ETDRS DRSS was
deemed a more robust outcome variable to use for predictive modeling.

Modeling

The overall model is a binary classification whose input data points are sets
of seven CFP images acquired for a selected eye at baseline. Modeling was
performed in two steps: (1) DCNNs were separately trained for each type of
CFP field to form the “pillars”; and (2) the probabilities provided by the
individual pillars are then aggregated by means of RFs. Single pillars and
RFs are trained against the binary outcome variable defined in the previous
section. A simple schematic of the model is provided by Fig. 1c.

The Inception-v3 architecture®® was used to build the field-specific
pillars. A transfer learning®® cascade strategy was adopted to create the
starting weights; first, the architecture was initialized with Imagenet*
weights and trained on the Kaggle DR*' dataset to differentiate between
CFPs with no DR from those with signs of DR; the weights generated by
this last training are then used to initialize the training of the pillars for DR
progression.

Transfer learning was performed, first by replacing and training for 10
epochs the last dense layers while keeping all the others fixed, and then by
fine-tuning for 50 epochs all layers from the end up to the third one. The
Adam optimizer was used with learning rates adapted for the various
pillars. A small parameter grid search was conducted to find the optimal
learning rates for the pillars. A five-times fivefold CV scheme with patient
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ID constraint (data points of the eyes of the same patient were constrained
to belong to the same CV fold; i.e., both either to the training or testing set)
was adopted to generate a total of 25 DCNNs for each pillar.

RFs*? were then used to aggregate the probabilities of all pillars. A five-
fold CV scheme with the same folds of the previous step was performed.
This means that for each fold, 35 probabilities (seven fields x five
repetitions for each CV fold) were used as input features for the RF.
Please see Supplementary Methods for additional information about the
RF models used in this study.

The model performance was measured in terms of AUC, sensitivity, and
specificity evaluated at the Youden’s point,”® which is obtained by
maximizing the difference between the true- and false-positive rate.

SHAP is a technique originally adopted in game theory to determine
how much each player in a collaborative game has contributed to its
success. In the ML context, each SHAP value measures how much each
feature contributes to the target prediction, either in a positive or a
negative way.?' The traditional feature importance algorithm is based on
the Gini index highlights, which features are contributing the most to the
prediction across the entire population** and is known in literature to be
characterized by multiple biases,*® preventing this algorithm to be reliable
in many scenarios. Differently from the Gini index, SHAP offers a local
perspective by informing on the most predictive features at the level of
individual sample.?" In the plots of Fig. 3, each row corresponds to an input
feature and each colored dot is a sample, whose color ranges from blue to
red to inform whether the selected input feature has a low or a high value
for the selected sample.

The attribution maps for the individual DL models presented in Fig. 4
were generated by means of a gradient-based technique called guided-
backpropagation.”® The idea behind gradient-based methods is that the
relative importance of the input features is measured by computing the
gradient of the output decision with respect to those input features.*’ This
gradient, once back-projected onto the input image, provides an idea of
where the CNN has focused on in order to classify the image in a certain
way. In particular, guided-backpropagation®® is characterized by the
suppression of flow of gradients where either the input or incoming
gradients are negative.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary.

DATA AVAILABILITY

Quialified researchers may request access to individual patient level data through the
clinical study data request platform (www.clinicalstudydatarequest.com). Further
details on Roche’s criteria for eligible studies are available here (https:/
clinicalstudydatarequest.com/Study-Sponsors/Study-Sponsors-Roche.aspx). For
further details on Roche’s Global Policy on the Sharing of Clinical Information and
how to request access to related clinical study documents, see here (https://www.
roche.com/research_and_development/who_we_are_how_we_work/clinical_trials/
our_commitment_to_data_sharing.htm).

CODE AVAILABILITY

The code to create the FOV-specific CNN pillars is based on Keras using Tensorflow as
backend and is available at this public Github repository (https://github.com/arcaduf/
nature_paper_predicting_dr_progression). The repository contains the YAML config-
uration files used to select the training hyper-parameters of each FOV-specific CNN
pillar and a detailed README file outlining the content of the folders and how to
make use of the scripts.
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