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Alteration of cell junctions during viral infection
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Abstract
Cell junctions serve as a protective barrier for cells and provide an important
channel for information transmission between cells and the surrounding envi-
ronment. Viruses are parasites that invade and commandeer components of host
cells in order to survive and replicate, and they have evolved various mechanisms
to alter cell junctions to facilitate viral infection. In this review, we examined the
current state of knowledge on the action of viruses on host cell junctions. The
existing evidence suggests that targeting the molecules involved in the virus-cell
junction interaction can prevent the spread of viral diseases.

Introduction

Emerging and re-emerging infectious diseases pose an
increasing threat to global health.1–3 Clarifying the molecu-
lar mechanisms underlying viral infection can improve the
detection, control, and treatment of viral diseases.4–8

Viruses are noncellular life forms composed of proteins
and a DNA or RNA genome wrapped in a protective pro-
tein coat. As parasites, viruses infect an organism and self-
replicate using host cellular components.9–11 The first step
in this process is invasion of target cells in the host tissue,
which typically comprises a layer of epithelial cells con-
nected via intercellular junctions. These junctions allow the
transmission of information between cells and the sur-
rounding environment and serve as a protective barrier
against noxious stimuli.12 The attachment of a virus to the
host cell membrane can alter or destroy junctional pro-
teins, leading to cell infection.13–16

Mammalian cell junctions are classified based on their
function as tight junctions, anchoring junctions (adherens
junctions, desmosomes, and hemidesmosomes), and com-
municating (gap) junctions.17,18 Tight junctions are present

in the gastrointestinal epithelium, bladder epithelium,
brain capillary endothelium, and in testicular supporting
cells, and form a branching network of sealing strands,
each of which contains a row of transmembrane proteins
that are inserted into the bilayers of the plasma membrane
and are connected to other proteins through their extracel-
lular domains.19–21 Tight junctions do not constitute a
static barrier, and are highly dynamic structures whose
components (eg, occludin) undergo continuous turnover.22

Anchoring junctions provide a mechanical connection
between cells; they can be one of two types depending on
their constituent cytoskeletal proteins.23–26 Desmosomes
and hemidesmosomes are linked to intracellular filaments,
whereas adherens junctions are linked to actin.27 Adherens
junctions serve as anchors that connect the actin cytoskele-
tons of adjacent cells via cadherin.28 These different types
of anchoring junctions form an epithelial barrier that con-
trols paracellular transport. Gap junctions enable commu-
nication between adjacent cells by allowing the movement
of small molecules and ions in the cytoplasm in response
to various signals. They also play an important role in

Thoracic Cancer 11 (2020) 519–525 © 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd 519
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Thoracic Cancer ISSN 1759-7706

https://orcid.org/0000-0002-3844-3013
https://orcid.org/0000-0002-1626-7100
http://creativecommons.org/licenses/by-nc-nd/4.0/


regulating cell proliferation and differentiation during
embryonic development.29–33

The major functions of cell junctions are to strengthen
mechanical connections and permit the exchange of mate-
rials between cells to maintain physiological homeostasis.
In this review, we summarize recent studies investigating
the action of viruses on host cell junctions (Fig 1) and sug-
gest that the molecules involved in this interaction are
potential therapeutic targets for the treatment of viral
diseases.

Rotavirus (RV) and tight junctions

Rotavirus (RV) is the most common cause of severe
vomiting and diarrhea in infants and young children.34 RV
is an enterovirus with a wheel-like structure that is assem-
bled in the lumen of the endoplasmic reticulum (ER); sub-
viral particles germinate until the cells are lysed, with the
mature virus remaining in the ER. RV enters cells via
receptor-mediated calcium-dependent endocytosis, which
causes calcium ions (Ca2+) to move from the endocytic
vesicle to the cytoplasm.35 Once the Ca2+ concentration in
the endocytic vesicle decreases below a certain threshold,
the coat proteins of endocytic vesicles are degraded and
the virus enters the cytosol.36

The tight junction protein occludin is distributed in the
margins of adjacent cells under normal conditions.

However, this arrangement is perturbed upon RV infec-
tion.37 For instance, in infantile diarrhea caused by RV, the
structure and function of tight junctions are disrupted,
leading to changes in cell membrane permeability that
enable RV to invade host cells.38 In Caco-2 cells, the distri-
bution of the tight junction proteins occludin and claudin-
1 was altered by incubation with RV.39 Meanwhile,
MDCKII cells were infected with RV through the basal
surface, suggesting that this area harbors RV receptors.40

The primary site of RV infection is along the edge of intes-
tinal epithelial cells.41,42 The binding of the RV coat protein
viral protein 8 to receptors located on the intestinal cell
surface leads to the destruction of tight junctions by acti-
vating the host cell RhoA/ROCK / MLC signaling pathway,
which stimulates the translocation of viral receptors from
the basolateral to the apical surface and further increases
RV invasion.43,44 RhoA and its downstream effector Rho
kinase (ROCK) are key molecules that mediate destruction
of tight junction when RV infection.45 Thus, disruption of
tight junctions may play an important role in the patho-
genesis diarrhea caused by RV.46

Hepatitis C virus (HCV) and tight junctions

Hepatitis C is an infectious disease caused by HCV that
mainly affects the liver.47 HCV is a small, enveloped,
positive-strand RNA virus that spreads through tight

Figure 1 Different viruses invade host cells
through specific cell junctions. Rotavirus and
Hepatitis C virus disrupt the structure and
function of tight junction. Human papilloma
virus-induced changes in the organization of
adherens junction proteins. Human immuno-
deficiency virus spread damaged signals to
the adjacent cells through gap junction.
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junctions and infects liver cells. Cellular entry of HCV is
accomplished by its binding to tight junction-associated
coreceptors on hepatocytes and subsequent endocytosis.48

The tight junction proteins occludin and claudin-1 are the
key molecules involved in this process. HCV was shown to
readily infect and escape hepatocellular carcinoma (HCC)
cells that were modified to express claudin-1 and
occludin.49 The GTPase protein dynamin II plays an
important role in HCV internalization by forming a com-
plex with occludin, which serves as a bridge between dyna-
min II and viral particles.50

The tetraspanin molecule CD81 and human scavenger
receptor class B member 1 are HCV receptors that cooper-
ate with tight junction proteins to facilitate HCV entry into
liver cells.51 Viral particles first bind to glycosaminoglycans
or low-density lipoprotein receptor on the host cell.52 This
is followed by interaction with claudin-1 at tight junctions
and CD81 and the lateral migration of the virus through
the plasma membrane, which continues until the virus has
recruited a sufficient number of receptors to initiate the
signaling required for internalization.53 The combination of
HCV and CD81 will promote the movement of the virus
to tight junction associated proteins claudin-1 and
occludin-1. Intracellular CD81 and claudin-1 are col-
ocalized on the plasma membrane and transported on the
plasma membrane. CD81 and claudin-1 containing vesicles
fused to Rab5 expressing endosomes.54,55 However, it
remains to be determined whether claudin or occludin pro-
tein mediate endocytosis of the virus.56 Clarifying the pre-
cise role of tight junction proteins at different stages of
HCV infection can inspire new strategies to prevent and
treat hepatitis C.

Human papilloma virus (HPV) and
adherens junctions

HPV is a spherical DNA virus that stimulates the prolifera-
tion of squamous epithelial cells of skin mucosa in
humans.57–61 Infection of cervical epithelial cells with HPV
leads to cervical cancer in women.62 This is a result of a
loss of cell adhesion and polarity, allowing the invasion
and migration of tumor cells.63–65 This metastatic transfor-
mation involves alterations in adherens junction proteins
that undermine epithelial cell structure.66 During the
epithelial-to-mesenchymal transition, epithelial cells lose
polarity and their connection to adjacent cells and the
basement membrane, which increases their migratory and
invasive capacities.67 At the molecular level, this process
involves the rearrangement of adherens junction proteins
including β-catenin, which links E-cadherin to the actin
cytoskeleton and is involved in cancer-related signaling
and inflammatory responses.68–71 Thus, HPV-induced

changes in the organization of adherens junction proteins
promotes infection.

Human immunodeficiency virus (HIV) and
gap junctions

HIV is the causative agent of acquired immunodeficiency
syndrome (AIDS).72–74 During infection, HIV targets the
cytomembrane and penetrates the epithelial barrier by
destroying cell junctions.75 The blood-brain barrier (BBB)
is a highly selective semi-permeable boundary that sepa-
rates circulating blood from extracellular fluids in the brain
and central nervous system (CNS).76,77 The pericytes and
perivascular astrocytes that constitute the BBB differen-
tially modulate neurovascular function in neuroAIDS path-
ogenesis.78 Gap junctions, which are composed of connexin
proteins, are abundant in the cells of the BBB and mediate
intercellular communication in the CNS.
Astrocytes are the most widely distributed cells in the

mammalian brain and the largest type of glial cell. Adja-
cent astrocytes are separated by a narrow space containing
interstitial fluid. HIV uses channels containing connexins
including connexin 43 in astrocytes to spread toxic factors
to and induce apoptosis in uninfected cells, even in the
absence of active viral replication.79–81 Although the rate of
viral replication in astrocytes is too low to be detected, dis-
ruption of connexin channels by HIV can exacerbate neu-
rological pathophysiology.82 This opens the possibility of
mitigating HIV-associated neurological dysfunction by
targeting gap junctions in astrocytes.
Pericytes are located below the brain microvascular

endothelial cells, covering approximately 30% of the
abluminal surface.83 Pericytes in the human brain express
C-X-C chemokine receptor type (CXCR)4 and CCR5,
which are the two major co-receptors participating in the
HIV-1 infection process. CXCR4 and CXCR5 contribute to
HIV-induced CNS impairment when the BBB is com-
promised, which is associated with increased microvascular
permeability.84 Thus, gap junctions in pericytes mediate
HIV-induced loss of BBB integrity. Additionally, although
HIV infects only a small fraction of pericytes, the damage
that it inflicts is amplified by gap junctions that spread
viral factors to adjacent uninfected cells (Fig 2).
HIV does not primarily disrupt the cell junction of the

BBB. It also has a disruptive effect on the cell junction of
other tissues. HIV-1 can damage the human retinal pig-
ment epithelium (HRPE) barrier. HIV-1 particles can
induce cells to release proinflammatory cytokines IL-6 and
MCP-1, which down-regulate the expression of ZO-1 and
claudin-1 in the HRPE barrier, leading to the destruction
of HRPE cell junction and impaired cell monolayer
integrity.85–87 HIV also disrupts cellular junctions in oral
epithelial tissue. The long-term interaction between HIV

Thoracic Cancer 11 (2020) 519–525 © 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd 521

D. Dong et al. Cell junction role in viral infection



capsid protein and polarized oral epithelial cells destroys
tight junctions and adherens junctions of epithelial cells
through the mitogen-activated protein kinase signaling
pathway.88 HIV also infects intestinal epithelium, gastric
epithelium and other tissues by affecting cell junctions. It
is of great significance to study the key sites of cell junc-
tions during HIV invasion.89,90

Conclusions

Nonenveloped viruses initiate the infection cycle through
binding of their capsid proteins to a viral receptor on the
surface of target cells. This activates intracellular signaling
pathways, which is often accompanied by the lateral trans-
location of the virus across the plasma membrane to cell
junctions prior to their internalization via caveolar endocy-
tosis. The interaction of the virus with specific cell junction
proteins such as occludin, claudin, or connexin suggests
the possibility that proteins at the precise point of cellular
entry can be targeted by therapeutics. Blockers of these cell
junction proteins can provide protection against viral
infection. The mechanism by which cell junctions amplify
viral invasion signals and dysfunctional signals increases
the rates of viral amplification, so these cells with this par-
ticular mechanism should be detected and may be applied
to the expansion and delivery of drug therapy signals.91–94

On the other hand, as-yet unidentified junctional proteins
could contribute to the process of cell invasion by viruses.
Elucidating the mechanisms by which viruses exploit host

cell junctions to propagate can provide a basis for the
development of effective strategies to treat viral infectious
diseases.
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