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proven diabetic kidney disease
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Aims: Abnormalities of glucolipid metabolism are critical mechanisms involved

in the progression of diabetic kidney disease (DKD). Bile acids have an essential

role in regulating glucolipid metabolism. This study investigated the

clinicopathological characteristics of DKD patients with different bile acid

levels and explored the relationship between bile acids and renal outcomes

of DKD patients.

Methods: We retrospectively reviewed and evaluated the histopathological

features and clinical features of our cohort of 184 patients with type 2 diabetes

mellitus and biopsy-proven DKD. Patients were divided into the lower bile acids

group (≤2.8 mmol/L) and higher bile acids group (>2.8 mmol/L) based on the

cutoff value of bile acids obtained using the time-dependent receiver-

operating characteristic curve. Renal outcomes were defined as end-stage

renal disease (ESRD). The influence of bile acids on renal outcomes

and correlations between bile acids and clinicopathological indicators

were evaluated.

Results: Bile acids were positively correlated with age (r = 0.152; P = 0.040) and

serum albumin (r = 0.148; P = 0.045) and negatively correlated with total

cholesterol (r = -0.151; P = 0.041) and glomerular class (r = -0.164; P =0.027).

During follow-up, 64 of 184 patients (34.78%) experienced progression to

ESRD. Lower levels of proteinuria, serum albumin, and bile acids were

independently associated with an increased risk of ESRD (hazard ratio,

R=5.319; 95% confidence interval, 1.208–23.425).

Conclusions: Bile acids are an independent risk factor for adverse renal

outcomes of DKD patients. The serum level of bile acids should be

maintained at more than 2.8 mmol/L in DKD patients. Bile acid analogs or
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their downstream signaling pathway agonists may offer a promising

strategy for treating DKD.
KEYWORDS

bile acids, diabetic kidney disease, glucolipid metabolism, end-stage renal
disease, renal outcomes, risk factors
Introduction

Data collected from 142 countries comprising 97.3% of the

worldwide population showed that the global prevalence of

diabetes among patients with end-stage renal disease (ESRD)

increased from 19.0% in 2000 to 29.7% in 2015, and that the

proportion of patients with ESRD attributable to diabetes

increased from 22.1% to 31.3% (1). Diabetic kidney disease

(DKD) is a significant microvascular complication that has

become the leading cause of chronic kidney disease and ESRD,

resulting in large health and economic burdens worldwide (2–4).

The management of risk factors, such as hyperglycemia,

hypertension, dyslipidemia, and the use of renin-angiotensin-

aldosterone system blockers, has helped to delay the progression

of DKD. Recently, new therapeutic agents, including sodium-

glucose transporter 2 inhibitors, endothelin antagonists,

g l u c a gon - l i k e p ep t i d e - 1 r e c ep t o r a gon i s t s , a nd

mineralocorticoid receptor antagonists, have provided

additional treatment options for patients with DKD (5).

Although more treatment options are available, a significant

number of patients still experience progression to ESRD.

Therefore, it is urgent to actively explore the pathogenesis of

DKD to find more effective intervention targets.

Abnormalities of glycolipid metabolism are crucial in the

development and progression of DKD. Bile acids are the main

components of bile (approximately 50% of the organic bile

composition) and are mainly synthesized by the liver;

furthermore, they have been confirmed to regulate glycolipid

metabolism (6, 7). The improvement of glycolipid metabolism

has been proven to be renoprotective; therefore, bile acids may

indirectly exert renoprotective effects by improving glycolipid

metabolism. Additionally, many studies have shown that bile

acid signaling molecules exert metabolic effects by interacting

with nuclear receptors (farnesoid X receptor [FXR], pregnane X

receptor, vitamin D receptor, G-protein-coupled receptors

[TGR5]), and cellular signal transduction pathways (e.g., c-Jun

N-terminal kinase and extracellular signal-regulated kinase) (8).

This suggests that bile acids and their analogs may exert direct

physiological effects by activating receptors in other organs.

Some studies confirmed that bile acid derivatives or analogs

can directly act on the bile acid receptors (TGR5/FXR) of the
02
kidney to protect the kidney (9–13). Whether improving glucose

and lipid metabolism or modulating energy metabolism or

directly activating renal bile acid receptors, bile acids are

closely related to the prognosis of DKD patients; therefore,

bile acid analogs are likely to become a new treatment for DKD.

No study has confirmed whether bile acids are associated

with renal outcomes of patients with DKD. Therefore, during

this retrospective cohort study, we explored whether bile acid

levels could predict the renal prognosis of Chinese patients with

type 2 diabetes mellitus (T2DM) and biopsy-proven DKD.
Materials and methods

Study design and patients

This was a retrospective cohort study including T2DM

patients with biopsy-confirmed DKD at the West China

Hospital of Sichuan University from April 2009 to December

2021. The diagnosis and classification of T2DM were based on

the criteria of the American Diabetes Association (14). DKD was

diagnosed according to the standards of the Renal Pathology

Society in 2010. The inclusion criteria were age 18 years or older,

diagnosis of T2DM, and diagnosis of DKD proven by renal

biopsy. The exclusion criteria were malignant tumors,

coexistence with other glomerular diseases, hepatobiliary

disease (active hepatitis, cirrhosis, hepatobiliary stones),

estimated glomerular filtration rate (eGFR) <15 mL/min/1.73

m2 or dialysis, and incomplete data (Figure 1). This study was

approved by the ethics committee of West China Hospital of

Sichuan University. The study protocol complied with the

ethical standards of the 1964 Declaration of Helsinki and its

later amendments. Written informed consent was obtained from

all patients.
Clinical and pathologic characteristics

Clinical and pathologic characteristics were collected from the

electronic medical records at the time of renal biopsy. Subsequent

follow-up evaluations of these patients were performed two to
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four times per year depending on the patient’s condition. The

renal outcomes were defined by ESRD, which was considered the

requirement for renal replacement therapy (kidney

transplantation and/or hemodialysis and/or peritoneal dialysis),

and/or eGFR <15 mL/min/1.73 m2. The eGFR was calculated

using the creatinine-based Chronic Kidney Disease Epidemiology

Collaboration equation. Bile acid tests were performed using an

enzymatic cycling assay. All biopsy specimens were routinely

examined by light immunofluorescence. The histological lesions

were evaluated according to the criteria of the Renal Pathology

Society (15).
Statistical analysis

All statistical tests were analyzed using SPSS version 26.0

(SPSS Inc., Chicago, IL, USA). The normally distributed
Frontiers in Endocrinology 03
continuous variables were expressed as the mean ± standard

deviation or median and interquartile range. Categorical data

were presented as the number and percentage. The time-

dependent receiver-operating characteristic curve (ROC) was

used to evaluate the prognostic accuracy of bile acids, and the

cutoff value was calculated using R4.03 (R Foundation for

Statistical Computing, Vienna, Austria). When comparing two

groups, we used the t test, Mann–Whitney U test, and chi-square

test, as appropriate. Correlations between bile acids and clinical

and pathological findings were calculated using correlation

analysis. Pearson’s correlation was used for normally distributed

numerical variables, and Spearman’s correlation was used for

other variables. The renal survival curves were assessed using the

Kaplan–Meier method and compared using the log-rank test. Cox

proportional hazard models were performed to analyze the

influence of bile acids on renal outcomes. A two-sided P < 0.05

was considered statistically significant.
FIGURE 1

Flowchart of included patients in this study.
frontiersin.org
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Results

Baseline characteristics

This study cohort comprised a total of 184 individuals with

biopsy-proven DKD (Figure 1). Clinical data are provided in

Table 1. The median bile acid level was 2.80 mmol/L (1.60−4.85

mmol/L) for all patients. The median age was 51.0 years (44.0

−56.0 years), and 74.5% of patients were male. The median

duration of diabetes was 108.00 months (60.00−144.00 months).

Complications of diabetic retinopathy were observed in 53.06%

of patients. Comorbidities of hypertension were observed in

85.33% of patients. The mean proteinuria and eGFR levels were

5.16 ± 4.27 g/d and 63.21 ± 26.59 mL/min/1.73 m2, respectively.

The patients had more severe proteinuria and lower eGFR.

Furthermore, 78.0% of the patients used renin-angiotensin

system inhibitors (RASI). A restricted cubic spline was used to

calculate the cutoff value of bile acids (Figure 2). Then, patients

were divided into the lower bile acids group (≤2.8 mmol/L) and

the higher bile acids group (>2.8 mmol/L) according to the cutoff

value. Compared with the lower bile acids group, the higher bile

acids group had lower total cholesterol levels, lower low-density

lipoprotein cholesterol levels, older ages, higher serum albumin

levels, and higher eGFR levels (Table 1). There were no

significant differences in the pathologic changes and use of

RASI (Table 2).
Frontiers in Endocrinology 04
Clinical and pathological features
associated with bile acids

The bile acid level was positively correlated with age (r =

0.152; P = 0.040) and serum albumin (r = 0.148; P = 0.045) and

negatively correlated with total cholesterol (r = -0.151; P = 0.041)

and glomerular class (r = -0.164; P =0.027) (Figure 3,

Supplementary Table 1).
Risk of progression to ESRD

During the median follow-up of 19.02 months (8.65-32.39

months), 64 of 184 (34.78%) patients experienced progression to

ESRD. Compared with patients with lower bile acid levels, those

with higher bile acid levels were likely to have a lower incidence

of ESRD (Table 1). A Kaplan-Meier analysis indicated that

patients with lower bile acid levels at baseline were at

significantly higher risk for progression to ESRD. The time-

dependent ROC was used to evaluate the prognostic accuracy of

bile acid levels of patients with DKD and showed that the

predictive ability of bile acids for ESRD was relatively stable

over time (Figure 4, Supplementary Figure 1). The Cox

regression analysis evaluated the association between baseline

clinicopathological variables and the renal prognosis. Univariate

analyses revealed that bile acids, diabetic retinopathy (DR), body
TABLE 1 Baseline clinical features of 184 DKD patients.

Variables All (n=184) Lower bile acids (n=93)≤2.8mmol/L Higher bile acids (n=91)>2.8mmol/L p-value

Age (years) 51.00 (44.00−56.00) 50.00 (43.00−53.00) 54.5 (46.5−59.5) 0.002

Gender (male, %) 137 (74.5) 69 (74.2) 68 (74.7) 0.934

DR [n (%)] 52 (53.1) 27 (54. 0) 25 (52.1) 0.849

Duration of diabetes (Months) 108.00 (60.00−144.00) 96.00 (60.00−156.00) 108.00 (60.00−138.00) 0.936

BMI (kg/m2) 24.74 (22.23−26.89) 24.38 (21.51−26.53) 25.01 (22.41−27.97) 0.413

Hypertension [n (%)] 157 (85.3) 82 (88.2) 75 (82.4) 0.270

Initial proteinuria (g/day) 5.16 ± 4.27 5.45 ± 4.23 4.81 ± 4.34 0.379

e-GFR (ml/min/1.73m2) 63.21 ± 26.59 58.94 ± 25.30 67.46 ± 27.31 0.030

Serum creatinine (mg/dL) 133.42 ± 107.91 148.65 ± 141.96 118.02 ± 51.92 0.055

Serum albumin (g/L) 35.35 ± 7.38 33.08 ± 6.87 37.67 ± 7.20 <0.001

Hemoglobin (g/L) 120.54 ± 22.53 117.99 ± 22.51 123.15 ± 22.38 0.120

HbA1c (%) 7.89 ± 1.99 7.76 ± 2.25 8.02 ± 1.67 0.411

FBS (mmol/L) 7.15 (5.70−10.09) 7.03 (5.71−13.88) 7.71 (5.63−9.80) 0.816

Triglyceride (mmol/L) 2.12 ± 1.22 2.08 ± 1.14 2.25 ± 1.64 0.410

Total cholesterol (mmol/L) 5.08 ± 1.64 5.56 ± 1.54 4.59 ± 1.60 <0.001

LDL-c (mmol/L) 2.92 ± 1.34 3.37 ± 1.34 2.47 ± 1.18 <0.001

HDL-c (mmol/L) 1.36 ± 0.67 1.43 ± 0.73 1.28 ± 0.60 0.128

RASI [n (%)] 142 (78.0) 71 (78.0) 71 (78.0) 1.000

Progressed to ESRD (%) 64 (34.8) 40 (43.0) 24 (26.4) 0.018
fronti
DR, diabetic retinopathy; e-GFR, estimated glomerular filtration rate; FBS, fasting blood sugar; LDL, low density lipoprotein; HDL, high density lipoprotein; RASI, renin-angiotensin system
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FIGURE 2

The optimal cut-point value of variables by restricted cubic spline.
TABLE 2 Baseline pathologic features of 184 DKD patients.

Variables All (n=184) Lower bile acids (n=93)≤2.8mmol/L Higher bile acids (n=91)>2.8mmol/L p-value

Glomerular class [n (%)] 0.130

I 10 (5.4) 5 (5.4) 5 (5.5)

IIa 38 (20.7) 14 (15.1) 24 (26.4)

IIb 34 (18.5) 16 (17.2) 18 (19.8)

III 74 (40.2) 39 (41.9) 35 (38.5)

IV 28 (15.2) 19 (20.4) 9 (9.9)

IFTA [n (%)] 0.118

0 2 (1.1) 1 (1.1) 1 (1.1)

1 78 (42.4) 35 (37.6) 40 (47.3)

2 74 (40.2) 36 (38.7) 38 (41.8)

3 30 (16.3) 21 (22.6) 9 (9.9)

Interstitial inflammation [n (%)] 0.118

0 4 (3.1) 3 (5.0) 1 (1.5)

1 89 (70.1) 38 (60.0) 53 (79.1)

2 32 (25.2) 20 (33.3) 12 (17.9)

3 2 (1.6) 1 (1.7) 1 (1.5)

Arteriolar hyalinosis [n (%)] 0.353

0 8 (5.6) 3 (4.4) 5 (6. 6)

1 75 (52.0) 32 (47.1) 43 (56.6)

2 61 (42.4) 33 (48.5) 28 (36.8)
Frontiers in Endocrinology
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mass index (BMI), eGFR, hemoglobin, serum albumin, initial

proteinuria, glomerular class, interstitial fibrosis, and tubular

atrophy, and the use of RASI were risk factors for progression to

ESRD (P < 0.05) (Supplementary Table 2). Lower bile acid levels

remained independently associated with a higher risk of
Frontiers in Endocrinology 06
progression to ESRD with DKD after adjusting for baseline

age, sex, BMI, DR, hypertension, DM duration, eGFR, initial

proteinuria, hemoglobin, serum albumin, glomerular class,

interstitial fibrosis and tubular atrophy, and RASI use (in

model 3). The hazard ratio for the lower bile acids group was
A B

DC

FIGURE 3

Correlations of bile acids with (A) Age, (B) serum albumin, (C) total cholesterol, (D) Glomerular class.
FIGURE 4

The prediction of bile acids for ESRD in DKD patients.
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5.319 (95% confidence interval, 1.208−23.425; P = 0.027)

(Table 3). Additionally, initial proteinuria and serum albumin

levels were independent risk factors for renal outcomes of

patients with DKD.
Discussion

To the best of our knowledge, this is the first cohort study to

relate bile acids to renal outcomes of patients with DKD. We

explored the associations among bile acids, clinicopathological

features, and renal outcomes of 184 patients with T2DM and

biopsy-proven DKD. The results indicated that bile acids are an

independent predictor of DKD progression to ESRD in T2DM

patients in addition to traditional factors, including proteinuria

and serum albumin levels, that serum bile acid, as a noninvasive

marker, was associated with adverse renal outcomes, and that

bile acid analogs and their targeting downstream signaling

pathway might be promising therapeutic agents for the

treatment of DKD.

Bile acids are synthesized intrahepatically from cholesterol

and are the major organic component of bile. Eating foods that

are high in protein can lead to increased bile acid secretion.

Vagus nerve excitation can also lead to increased bile acid

secretion. Humoral factors such as gastrin, pancreatin,

cholecystokinin, and bile salts, can cause increased bile acid

secretion. Pathological factors such as hepatobiliary disease can

also lead to increased bile acid secretion. Additionally, studies

have suggested that metformin (16, 17) and metabolic surgery

(18, 19) increase bile acid levels.

There have been no reports of the relationship between bile

acids and the renal prognosis of patients with DKD. We found

that the risk of ESRD decreased with increasing bile acid levels.

We obtained the cutoff value using the restricted cubic spline.

Patients with DKD and bile acid levels less than 2.8 mmol/L

have a poor renal prognosis. Additionally, the cutoff value is a
Frontiers in Endocrinology 07
reference value for discriminating those at clinically higher risk

for ESRD. However, we believe that there is an upper limit to

the bile acid level that is beneficial to renal outcomes.

Exceeding the upper limit, however, may mean that more

bile acid receptors will be activated and more side effects may

occur, thus leading to more harm than good. The time-

dependent ROC was used to evaluate the prognostic accuracy

of bile acid levels of patients with DKD and showed that the

predictive ability of bile acids for ESRD was relatively stable

over time. The survival analysis performed during our study

confirmed that patients with higher bile acid levels have a

better renal prognosis. Furthermore, the risk of ESRD was

5.319-times higher for patients with lower bile acid levels

compared to those with higher bile acid levels, suggesting the

importance of bile acids to patient outcomes. Further

exploration of the mechanisms of their protective effects

is necessary.

A better renal prognosis for DKD patients with higher bile

acid levels might be achieved by improvements in glucose

metabolism disorders. Increasing studies have shown that bile

acids are involved in glycometabolism. Wang et al. (20)

demonstrated that bile acids can regulate postprandial glucose

metabolism levels, suggesting a direct role of bile acids in the

regulation of blood glucose. Sang et al. (21) demonstrated an

increased risk of dysglycemia for Chinese community-dwelling

individuals who underwent cholecystectomy, indirectly

suggesting that bile acids have an important role in

maintaining blood glucose. Many studies have shown that

regulating blood glucose can delay DKD progression. The

United Kingdom Prospective Diabetes Study was a landmark

randomized, multicenter trial of glycemic therapies for 5102

patients with newly diagnosed T2DM that was conducted for 20

years (1977-1997) at 23 clinical sites in the United Kingdom and

conclusively showed that intensive control can reduce the risk of

microvascular complications, including progression to DKD

(22–24). The ACCORD (25), ADVANCE (26), and VADT

(27) studies also confirmed the same conclusion for patients

with T2DM. Furthermore, a meta-study evaluated seven trials

involving 28,065 adults who were monitored for 2 to 15 years

and showed that compared with conventional control, intensive

glucose control reduced the risks of microalbuminuria and

macroalbuminuria (28). However, our study showed no

correlation between bile acid levels and HbA1c and fasting

blood sugar levels of patients with DKD. This may have

occurred because most patients had been treated with glucose-

lowering therapy. In our study, glucose-lowering therapy,

including the use of insulin and oral hypoglycemic agents, was

used for 89.9% of the patients. Therefore, we think that the renal

protective effects of bile acids may be attributed to improved

glucose metabolism.

The better renal prognosis for DKD patients with higher bile

acid levels might be achieved by their improved glycolipid

metabolism disorders. We initially recognized that the primary
TABLE 3 Associations between bile acid levels and renal outcomes.

Hazard Ratio (95% Confidence Interval)

Lower bile acids Higher bile acids p-value
(≤2.8mmol/L) (>2.8mmol/L)

Unadjusted 2.311 (1.386-3.852) 1 0.001

Model 1a 6.006 (1.512-23.857) 1 0.011

Model 2b 6.338 (1.555-25.834) 1 0.10

Model 3c 5.319 (1.208-23.425) 1 0.027
Model 1a adjusted for baseline age, gender, BMI, hypertension (yes or no), DR (yes or no),
DM duration, e-GFR, and proteinuria, Hemoglobin, Serum albumin. Model 2b adjusted
for covariates in model 1 plus renal pathological findings (the glomerular class, IFTA).
Model 3c adjusted for covariates in model 2 plus RASI use. CI, confidence interval; DR,
diabetic retinopathy; e-GFR, estimated glomerular filtration rate; IFTA, interstitial
fibrosis and tubular atrophy; RASI, renin-angiotensin system inhibitor.
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role of bile acids is to promote the digestion and absorption of lipid

nutrients, thus serving as amphipathic biological detergents for lipid

metabolism (6). Bile acids are the end products of cholesterol

catabolism and have an important role in maintaining cholesterol

homeostasis and preventing the build-up of toxic metabolites and

the accumulation of cholesterol (7). However, hyperlipemia is a

traditionally recognized risk factor for cardiovascular disease for

patients with T2DM and DKD (29). Several studies have shown

that high triglyceride levels and/or low high-density lipoprotein

cholesterol levels are independent risk factors for DKD in patients

with the recommended target values of blood glucose and blood

pressure for type 1 diabetes mellitus and T2DM (30). Muntner et al.

(31) investigated the relationship between plasma lipids and kidney

disease indicated by an increase of ≥0.4 mg/dL in the serum

creatinine level of the large cohort of the Atherosclerosis Risk in

Communities study that included patients with T2DM. The United

Kingdom Prospective Diabetes Study investigating baseline clinical

risk factors associated with the later development of kidney

dysfunction in more than 4000 participants, all with T2DM,

identified that higher triglyceride and low-density lipoprotein

cholesterol levels significantly and independently predicted

incident renal impairment (32). The Early Treatment Diabetic

Retinopathy Study revealed that increased serum triglyceride and

total cholesterol levels were independently associated with kidney

outcomes (33). The role of bile acids in regulating lipid metabolism

was also confirmed during our study. We found that there was a

negative correlation between bile acids and total cholesterol with

DKD. Therefore, we consider that the renoprotective effect of bile

acids may be attributable to the improved lipid metabolism of

patients with DKD.

Bile acids may improve renal outcomes of patients with DKD

by directly activating renal FXR or TGR5. In human and animal

models, tubular cells and glomerular cells of the kidney highly

express FXR, and FXR is downregulated in diabetic kidney disease

(9). Wang et al. (10) demonstrated accelerated renal injury in

diabetic FXR knockout mice. In contrast, treatment with the FXR

agonist INT-747 improved renal injury by decreasing proteinuria,

glomerulosclerosis, and tubulointerstitial fibrosis and modulating

renal lipid metabolism. Similarly, Jiang et al. (11) reported that FXR

modulates renal lipid metabolism, fibrosis, and DKD. Many studies

have suggested that FXR activation inhibits inflammation in DKD

(12). Moreover, FXR activation improves diabetic tubular function

and tubular toxicity (34–36). TGR5 was identified as a membrane

receptor for bile acids which is highly expressed in tubules,

podocytes, and mesangial cells in the kidney (37, 38). It has been

confirmed that the TGR5 agonist INT-777 induced mitochondrial

biogenesis, decreased oxidative stress, increased fatty acid beta

oxidation, and decreased renal lipid accumulation (39). We found

that the bile acid level was negatively correlated with the severity of

the glomerular injury, suggesting that bile acids may activate

receptors and downstream signaling pathways in glomerular cells.

Therefore, the direct relationship between bile acids and kidney

injury must be explored.
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Metformin can increase bile acid levels and the glucose-

lowering effect, which may benefit the kidneys. Possible

mechanisms for metformin-induced suppression of active bile

acid reabsorption in the ileum are inhibition of the apical sodium-

dependent bile acid transporter and modulation of the

transcriptional activity of FXR via an AMPK-mediated

mechanism in enterocytes (16). However, metformin is

contraindicated for many individuals with impaired kidney

function because of concerns of lactic acidosis (40).

Nevertheless, many studies have suggested that metformin may

have renoprotective effects on DKD. A recent retrospective study

confirmed that metformin for advanced chronic kidney disease

patients decreased the risk of all-cause mortality and incident

ESRD. Additionally, metformin did not increase the risk of lactic

acidosis. However, because of the remaining bias even after

propensity score matching, further randomized, controlled

experiments with large samples are necessary to change real-

world practice (41). Therefore, metformin may exert

renoprotective effects through bile acids in DKD, but the

specific mechanism requires further invest igat ion.

Unfortunately, our data lacked information regarding

metformin treatment, and it was impossible to analyze the

relationship between metformin and bile acids during our study.

Bariatric and metabolic surgeries, including Roux-en-Y

gastric bypass and vertical sleeve gastrectomy, are known to

increase bile acid secretion and alter bile acid composition,

particularly after Roux-en-Y gastric bypass (18, 19). The

mechanisms underlying the benefits of bariatric and metabolic

surgeries likely involve the bile acids signaling pathway mediated

mainly by nuclear FXR and the membrane TGR5, the

interaction of bile acids and gut microbiota, and exosomes (18,

19). Bariatric and metabolic surgeries have been shown to

improve hyperglycemia, insulin sensitivity, and hyperlipidemia

(19). These renoprotective effects may be closely related to the

bile acid and glycolipid metabolic benefits associated with

bariatric and metabolic surgeries. However, the effects on

important endpoints of kidneys, such as ESRD and eGFR

changes, must be further confirmed by randomized controlled

experiments with large samples. Furthermore, the mechanism of

action in DKD requires more research for further elucidation.

Higher levels of bile acids with better renal outcomes may be

attributed to the indirect effects of bile acids that result in

improved glycolipid metabolism and the direct effects of

activating bile acids receptors to protect the kidney.

We also found a negative correlation between bile acid levels

and age; this may have occurred because the synthesis and

secretion of bile acids are different in individuals of different

ages. We found a positive correlation between bile acid and

serum albumin levels; however, more studies exploring the

possible mechanism are necessary.

This study had some limitations. First, this was a

retrospective study; therefore, some selection bias was

inevitable. Second, the patients had biopsy-proven DKD, and
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the sample size was insufficient. Finally, we did not control all

therapeutic interventions (such as glucagon-like peptide-1 and

sodium-glucose transporter 2), which could have been

confounders of the results.

In conclusion, our study describes a novel marker for

predicting the renal outcomes of DKD and indicates that the

serum level of bile acids should be maintained at more than 2.8

mmol/L in patients with DKD. Our study also predicted that bile

acid analogs and their targeting downstream signaling pathway

might be promising therapeutic agents for the treatment of DKD.
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