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Background
Chronic, non-healing wounds can be caused by a variety of 
diseases, ranging from vascular disease, infection, diabetes, and 
metabolic disease1; thus, accurate diagnosis is very challenging 
and time-consuming. In recent years, metagenomic whole-
genome shotgun (mWGS) sequencing has emerged as a new 
technology for the diagnosis of pathogens without the need for 
culture.2-4 Several studies have used metagenomics for identi-
fying pathogens in diabetic foot ulcers,5 skin and soft tissue 
infections.6 However, the concordance rate between mNGS 
and culture validation is still inadequate.7

The major challenge of applying mWGS in clinical diagnosis 
is the enormous amount of contaminating DNA from the host. 
In order to reduce host DNA, specific PCR can effectively enrich 
the pathogens of interest, but this is only applicable when targets 
are known.8,9 The adaptive sequencing of Oxford Nanopore plat-
forms can theoretically remove host DNA during sequencing.10 
However, the technology is still too expensive and the accuracy is 
insufficient for clinical usage. Herein, we combine deep metagen-
omic sequencing with analysis techniques for the identification of 
underlying pathogens within a chronic wound.

Methods
Patient presentation, sampling, and sequencing

A 55-year-old woman was admitted to the hospital because of 
painful ulcerating lesions over right lower third medial shin 
accompanied with fever for 9 months. The ulcerating wound 

evolved despite multiple debridement and antibiotics treat-
ment. She underwent below-knee amputation 8 months after 
the onset of this condition. Due to poor wound healing, above-
knee amputation was done in 10 months. The tissue was sam-
pled during surgical debridement, which was done before 
amputation and fixed in 10% buffered formalin.

The tissue sample was firstly grounded and mixed with 1 g 
of 0.5-mm diameter glass beads and then placed on a vortex 
mixer for 30 minutes at 3000 rpm. DNeasy Blood and Tissue 
Kit (Qiagen, Valencia, CA, USA) was used for DNA extraction 
in 300 μl of the sample following the manufacturer’s instruc-
tions. We used an enzymatic method to fragment the DNA 
into 150-200 bp in length. The DNA library was built through 
end-repaired adapter and polymerase chain reaction amplifica-
tion. We applied the DNA Qubit Assay (Thermo Fisher) to 
determine the DNA concentrations and used an Agilent 2100 
system (Agilent Technologies, Santa Clara, CA) to evaluate 
DNA quality electrophoretically. The DNA library was built 
through end-repaired adapter and polymerase chain reaction 
amplification using MGIEasy FS DNA Library Prep Kit 
(MGI). We then transformed the single-strand circularized 
DNA library into DNA nanoballs (DNBs) and sequenced by 
DNBSeq-G50 with average read length equal to 50 bp.

Bioinformatics analysis

The sequencing reads were preprocessed by removing low-
quality (ie, reads <80% phred score Q30), duplicated, and 
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reads shorter than 35 bp in length. The remaining high-quality 
reads were BWA-aligned against the human genome (hg38) to 
remove human-derived sequences.11 The non-human reads 
were BWA-aligned to the NCBI microbial reference genomes 
(RefSeq) for taxonomic classification. The species of lower read 
counts are considered as reagent/environmental contamination 
or alignment errors due to short-read mapping ambiguity.

In order to classify the EBV into type 1 or type 2, the viral 
reads were 6-frame translated and mapped to 6 type-differentiat-
ing protein sequences by Diamond: EBNA-1, EBNA-2, 
EBNA-3A, EBNA-3B, EBNA-3C, and LMP-1.12 The average 
nucleotide identity of our strain with respect to others was com-
puted by mapping reads onto the corresponding EBV genomes 
and parsing the alignment (CIGAR) via custom scripts.

Ethical approval

The study was conducted according to the guidelines of the 
Declaration of Helsinki, and approved by the Institutional 

Review Board in Taichung Veterans General Hospital (No. 
CE20004B).

Results
Metagenomic sequencing and validation of EBV in 
the chronic wound

We applied deep metagenomic sequencing (168 million reads) 
to the gDNA extracted from a chronic wound tissue lasting for 
10 months (Figure 1, see Method). 99.45% of reads were 
human-derived sequences, and the remaining reads were used 
for taxonomic classification (Figure 1a). Of them, 40 279 
(4.34%) were mapped to known microbial references (Table 1). 
Among the known microbial reads, the top hit detected was 
EBV with 193 reads (0.47%), followed by Pseudomonas aerugi-
nosa with 189 reads, and Staphylococcus epidermidis with 88 
reads. Subsequent in situ hybridization (ISH) confirmed posi-
tivity for EBV-encoded small RNAs (EBER) in wound cells 
(Figure 1b). Serologic testing of this patient revealed past EBV 

Figure 1.  (a) Illustration of metagenomic sequencing and analysis. Reads are first classified into human and non-human sequences. The non-human 

sequences are mapped to known microbial genomes, revealing presence of EBV; (b) These wound cells are positive for EBER expression by ISH (original 

magnification ×100)); (c) Atypical lymphocytes infiltration around vessels with destruction of vascular wall (original magnification ×200).
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infection. That is, positive for viral capsid antigen (VCA) IgG, 
and negative for VCA IgM and EBV nuclear antigen (EBNA).

Histologic examination revealed an EBV-associated 
NK/T cell lymphoma

As EBV is often associated with cancers, histology examina-
tion was performed. Analysis revealed atypical lymphocytes 
infiltration around vessels with destruction of vascular wall 
(angiocentricity and angiodestruction), accompanying exten-
sive coagulative necrosis in the skin, soft tissue, and muscle 
(Figure 1c). These atypical lymphocytes were medium-sized 
with irregular nuclear contours and pale cytoplasm. 
Immunohistochemical analysis showed that the tumor cells 
were positive for CD3 and T-cell intracellular antigen-1, and 
negative for CD20 and BCL-2. As a consequence, extranodal 
NK/T-cell lymphoma was reported as the etiology of the 
chronic wound.

Classif ication of type 1 EBV by type-specif ic 
proteins

These viral reads were evenly distributed across the entire EBV 
genome (Figure 2a), implying they were not artifacts of PCR 
amplification. For classifying EBV Types 1 or 2, the viral reads 
were mapped to 6 type-differentiating proteins (eg, EBNA-2, 
EBNA-3A, see Methods). The protein of type 1 EBNA-3A 
was mapped by 6 reads of nearly all of them showing 100% 
identity (Figure 2b), while protein type 2 EBNA-3A was only 
mapped by 4 reads with lower nucleotide identities (81.25%-
93.75%) (Supplemental Figure 1). Hence, the virus in the 
wound sample was classified as type 1 EBV.

Similarity of EBV strains shaped by geographical 
proximity

Thanks to the uniformly-distributed reads across the EBV 
genome, 69 mutations were detected in the wound strain by 
mapping reads against the EBV reference (B95-8). We investi-
gated the average nucleotide identity of our strain (B95-8-LT) 
with respect to other Type 1 EBV strains across a range of geo-
graphic locations and tissue types (Figure 2c). The results indi-
cated that the B95-8-LT strain isolated in Taiwan was more 
similar to those EBV strains identified within Asia (eg, Hong 
Kong, Japan) than to those outside strains detected and identi-
fied outside Asia. Although the AG876 strain (in Ghana) was 
also originated from a lymph tumor, the genome was dissimilar 
when compared to our B95-8-LT strain. As a consequence, the 
similarity of EBV genomes is mainly shaped by geographic 
proximity rather than tissue types.

Discussion
Using ultra-deep metagenomic sequencing enables researchers 
to identify viruses and bacteria although human DNA material 
is highly abundant. In our study, we recovered no less than 193 
viral reads belonging to EBV that were uniformly distributed 
across the genome. Uniform distribution increased the chance 
of identifying type-specific mutations and comparison of 
strains from a variety of geographical locations. The strain 
detected in our study belonged to type 1 EBV and 69 muta-
tions were detected when compared to the EBV reference 
genome (B95-8).

In vitro data suggests that type 1 EBV is more capable 
than type 2 EBV to sustain lymphoblastoid cell proliferation. 
Differences between the 2 types of EBV are also found in the 

Table 1.  The numbers and percentages of human and microbial reads in the metagenomic sequencing.

Samples Number of reads Percentage (%)

Metagenomic reads Human 167 681 458.00 99.45

Non human 927 348.00 0.55

Total 168 608 806.00 100

Non-human reads Unknown 887 069 95.66

Microbe 40 279 4.34

Total 927 348 100

Microbial reads Pseudomonas aeruginosa 189 0.47

Candida tropicalis 4 0.01

EBV 193 0.48

Others 39 893 99.04

Total 40 279 100
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regulatory regions or coding regions of a variety of other 
genes, including EBNA1, LMP1, and ZTA, as well as other 
viral proteins which have been identified and play a role in 
the proliferation of lymphoblastoid cell lines.13,14 Previous 
studies suggest that the type 1 EBV is most commonly iden-
tified in tumors and is responsible for causing acute infec-
tious mononucleosis, while the type 2 virus has been 
identified in some African Burkitt lymphoma (BL) and some 
AIDS-associated lymphoma.13 Hence, detecting the type 1 
EBV in this study is in agreement with previous findings and 
associations.

Epidemiological studies regarding geographical distribu-
tion demonstrate that EBV type 1 distributes worldwide while 
type 2 strains are less common.15-17 Our analysis using EBV 
genomes from Asia, America, Africa, and Europe revealed that 
EBV strains form clusters according to their geographical 
proximity. Analysis using the fragments covered (not complete 
genome) of the strain detected in this study (Taiwan) reveals 

higher nucleotide similarity with strains detected and identi-
fied in Asia than to those found outside Asia.

We note that initial analysis using incomplete EBV genomes 
in NCBI failed to reveal the geographical clusters. Therefore, 
the correctness of phylogenetic analysis of EBV seems heavily 
affected by the completeness of viral genomes. We ever con-
ducted a phylogenomic analysis by constructing a hybrid 
genome which replaced the EBV reference with our 193 reads 
(Supplemental Figure S2). While the phylogeny reconstructed 
was concordant with geographical clusters implied by ANI 
(Supplemental Figure S2), the genomic distances measured by 
the hybrid genome were still untrue. Hence, as most microbial 
genomes in clinical metagenomic sequencing are incomplete, 
better distance estimation and/or recalibration methods are 
necessary for producing accurate phylogeny.

Consent for Participation and Publication
Informed consent was obtained from the subject.

Figure 2.  (a) Distribution of 193 EBV reads on the EBV genome; (b) Illustration of 6 reads mapped to the proteins of type one-half EBNA-3A. The 

alignments of 2 reads are enlarged on the top; (c) Distances measured by the average nucleotide identity of Type 1 EBV strains from different 

geographical regions.
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