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Introduction: In the last decades, we have seen a rapid increase in the prevalence of

allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, and food allergies.

The environmental changes caused by industrialization, urbanization and modernization,

including dramatic increases in air pollutants such as particulate matter (PM), diesel

exhaust, nitrogen dioxide (NO2), ozone (O3), alarming effects of global warming, change

and loss of biodiversity, affect both human health and the entire ecosystem.

Objective: In this review, we aimed to discuss the effects of the external exposome

on epithelial barriers and its relationship with the development of allergic diseases by

considering the changes in all stakeholders of the outer exposome together, in the light

of the recently proposed epithelial barrier hypothesis.

Method: To reach current, prominent, and comprehensive studies on the subject,

PubMed databases were searched. We included the more resounding articles with

reliable and strong results.

Results: Exposure to altered environmental factors such as increased pollution,

microplastics, nanoparticles, tobacco smoke, food emulsifiers, detergents, and

household cleaners, and climate change, loss and change in microbial biodiversity,

modifications in the consumption of dietary fatty acids, the use of emulsifiers,

preservatives and the decrease in the antioxidant content of the widely consumed

western diet may disrupt the epithelial barriers of the skin, respiratory and gastrointestinal

tracts, making us more vulnerable to exogeneous allergens and microbes. Epithelial cell

activation, microbial dysbiosis and bacterial translocation disrupt the immune balance

and a chronic Th2 inflammation ensues.

Conclusion: Dramatic increases in air pollution, worrisome effects of global warming,

dysbiosis, changing dietary habits and the complex interactions of all these factors affect
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the epithelial barriers and local and systemic inflammation. We want to draw attention

to the emerging health effects of environmental changes and to motivate the public to

influence government policies for the well-being of humans and the nature of the earth

and the well-being of future generations.

Keywords: air pollution, climate change, epithelial barrier, microbiome, nutrition, exposome

INTRODUCTION

The concept of the exposome covers all environmental exposures
throughout an individual’s life span (1, 2). These exposures
can be sub-grouped into three categories: general external
environment (climate, biodiversity, urban environment, social
and economic factors), specific external environment (allergens,
microbes, diet, tobacco, pollutants, and toxic substances),
and host-dependent internal environment (metabolic factors,
inflammation, and oxidative stress) (1, 3). The bidirectional effect
of the environment on human beings and the effect of humans on
all other living systems and genomes has been recently referred to
as the meta-exposome (4).

A high biodiversity has been proposed to enrich the
human microbiome, maintain immune homeostasis, and protect
against allergic and inflammatory diseases (5). After the
industrial revolution in the 19th century, air pollutants increased
significantly in all areas with industrial sectors, especially in
urban areas. These contribute to global warming, and loss of
biodiversity not only in human microbiota but also in the
ecosystem (3, 6, 7). Westernized (modern urban life) diets are
characterized by low antioxidants and fiber intake and high
fatty acid content. In addition, processed foods with additives,
such as preservatives, enzymes, and emulsifiers have become an
important part of the diet (8, 9). The “epithelial barrier hypothesis”
has been recently proposed to explain the detrimental effect of all
these factors on human health, attributing it to the damage of
these substances to the epithelial barriers of the skin, respiratory
and gastrointestinal tracts and reshaping of the microbiome,
leading to initiation of peri epithelial inflammation (8).

In this review, we discuss how these environmental and
lifestyle changes including climate change, microbial dysbiosis,
altered diet preferences, processed food additives, and increased
exposure to environmental insults and pollutants (detergents,
airborne allergens, particulate matter (PM), ozone, microplastics,
nanoparticles, and tobacco smoke) affect the development of
allergic diseases in relation with the recently proposed “epithelial
barrier hypotheses” (Figure 1).

CLIMATE CHANGE

Anthropogenic activities are increasing the emissions of
carbon dioxide (CO2), methane (CH4), nitrogen oxides (NOx),
fluorinated gases and PM in the atmosphere and cause global
warming by trapping heat on Earth, the greenhouse effect, which
is the biggest threat to our planet including all ecosystems (9).
As a result, natural disasters are becoming more frequent and
severe as observed in recent years with record numbers of heat

waves, wildfires, thunderstorms, sandstorms, droughts, floods,
blizzards, and hurricanes (10, 11). A warmer and more humid
environment changes the cycle and seasonal nature of plants in
some regions, prolongs the pollen season, increases the quantity
of pollen, and alters the distribution, timing, dispersion of some
pollen species (i.e., ragweed in Europe), which may lead to
increase in the prevalence and severity of allergies (3, 9, 11).
In addition, rising levels of CO2 and other air pollutants may
increase pollen outputs and allergenicity (3, 12–14). Besides
increased urbanization, global warming has created warm and
humid conditions, which provide a suitable environment for
the growth of both indoor allergens and outdoor molds (15,
16). The protease activities of house dust mites and Aspergillus
fumigatus have been shown to damage the epithelial barriers (17).
There are many unknowns on the impact of climate change on
human health and further research is warranted to elucidate the
causative relationship between climate change and different types
of allergies or other inflammatory conditions. For instance, it has
been shown that pollen, independent of allergens, alters innate
immunity and especially impairs antiviral defense by changing
the immunological barrier functions of airway epithelial cells,
interfering with NF-κB signaling in dendritic cells, reducing
interferon-λ and proinflammatory chemokine responses (22,
23).

The prevalence of peanut and tree nut allergies has increased
during the last few decades, but there is insufficient evidence to
link this phenomenon solely to climate change or an increase
in CO2 concentration in the atmosphere (24). Elevated CO2
concentrations may alter the allergenic potential of peanuts,
possibly by increasing the amount of the main peanut allergen,
Ara h 1 (25).

Global warming and air pollution are closely linked with
inflammation in the upper and lower airways, exacerbating
allergic airway diseases (12, 18). The association between
exposure to air pollutants early in life and asthma is
well-established (19–21). A recent study has suggested that
almost 11% of childhood asthma cases are preventable if the
recommended precautionary measures are taken (22, 23). It has
been proposed that thunderstorms, due to heavy rain, wind gusts,
static electricity, and lightning strikes might cause the pollen
grains to be ruptured by osmotic shock and form small-sized
allergenic particles that can penetrate deep into the lower airways,
thereby triggering asthma attacks (3, 25, 26). Recently, there have
been multiple acute asthma attacks triggered by thunderstorms
during pollen seasons in cities and regions around the world,
disrupting the health system (27). Moreover, wildfire smoke
induces epithelial barrier dysfunction, causing T cell skewing to
T helper (Th) 2 cells, in turn inducing asthma exacerbations (28,
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29). Albeit being larger in size, particles in dust storms enhance
inflammatory responses and worsen respiratory symptoms (30).

With the effect of climate change, stratospheric ozone is
decreasing and the more harmful UVB reaches the surface of
the Earth, while increased cloud cover, dust and smoke reduce
UV light penetration (31, 32). Ultraviolet (UV) light, cold and
dry weather, and floods may aggravate atopic dermatitis (AD).
Floods are thought to affect the exacerbations of childhood AD
by increasing the levels of indoor molds and contaminated water
(33). Moreover, increased concentrations of air pollutants and
pollen counts aggravate the severity of AD symptoms (34, 35).

EPITHELIAL BARRIER HYPOTHESIS

To date, several hypotheses have been proposed to explain
the complex interplay between the immune system, allergens,
environmental triggers, and epigenetics. Damage to the epithelial
barriers of the skin, airways and gastrointestinal tract by exposure
to harmful substances has been brought to light by the recently
proposed “epithelial barrier hypothesis” (8). Our journey toward
understanding the role of the epithelial barrier in allergic diseases
began in 1998 with the first demonstration of keratinocyte
apoptosis induced by activated T cells in the pathogenesis of
atopic dermatitis (36), asthma and chronic rhinosinusitis (37, 38).
In common, these diseases were characterized by the death of
highly activated local tissue epithelial cells by apoptosis, which
is an important finding in terms of the tissue responses in the
physiopathology of these diseases. We demonstrated a chronic
epithelial barrier defect, such as spongiosis in the skin, epithelial
desquamation in asthma and sinusitis (36–38). Interestingly,
highly activated epithelial cells were dying, thereby decreasing
the local tissue inflammatory burden. The epithelial barrier was
opening and local subepithelial inflammation was draining to
the lumens of mucosal surfaces to reduce the epithelial barrier
burden. Similarly, dermal inflammation was being drained away
from the skin due to spongiotic morphology. Transepidermal
water passage, the so-called transepidermal water loss (TEWL),
increased in eczema lesions of AD, which contained all the
inflammatory cells, cytokines, and chemokines. All these events
were decreasing the epithelial inflammatory burden leading to
the chronicity of the diseases with a continuous exacerbation
and healing process. The opening of the epithelial barrier as
an extrusion mechanism also allows for the concomitant entry
of allergens, microbes, and toxic substances into deeper tissues
(8, 39).

Keep away, wash away, and suppress constitute the main
barrier functions of the mucosal tissue, which include multiple
immune and tissue cell-relatedmechanisms (39). First, keep away
factors are related to allergen ignorance: increased basement
membrane (lamina reticularis) thickness that acts as a physical
barrier between allergens and the immune system cells (40),
mucosal secretory IgA production against allergens (41), and
mucus production in physiological quantities (42). The wash
away function involves the clearance of inflammatory cells and
cytokines. Mechanisms include opening of the epithelial barriers
and clearance of airway tissue inflammatory cells by migration

cells, debris and proinflammatory cytokines and chemokines
toward the lumen (43), and induction of bronchial epithelial cell
apoptosis and their shedding (44). The third function is immune
suppression, which includes cells and cytokines that are related
to the suppression of inflammation, such as the generation of
regulatory dendritic cells (DCs), Treg and Breg cells and their
suppressor cytokines (45).

A defective epithelial barrier and the dysregulated interaction
between the epithelium, immune cells and microbiota is
implicated in the development of multiple allergic conditions
(46, 47). The epithelial barrier plays a critical role in maintaining
homeostasis through various physiological functions and it acts
as the first-line of physical defense and immune response. A leaky
epithelium results in dysbiosis of microbial contents which are
translocated into interepithelial and subepithelial compartments
inducing local tissue inflammation (8). IL-25, IL-33 and thymic
stromal lymphopoietin (TSLP) secreted by epithelial cells in
response to various stimuli activate local dendritic cells, group 2
innate lymphoid cells and T cells and cause a skew in immune
response to Th2 type (48). Th2 cells and their cytokines IL-4
and IL-13, and ILC2s, disrupt epithelial barrier integrity through
IL-13 (49, 50).

Both genetic and environmental factors are implicated in the
epithelial barriers function. The epidermal barrier in the skin
consists of the stratum corneum and TJs. Decreased expression
of TJ proteins, such as claudins and occludins, and changes in
the composition and dysfunction of lipids (ceramides, free fatty
acids and cholesterol) and structural proteins (filaggrin), high
skin pH and loss of microbiome diversity may contribute to
the epidermal barrier defect observed in patients with atopic
dermatitis (51, 52). Loss-of-function mutations in filaggrin also
pose risks for the development of food allergy, AR, and asthma.
The development of sensitivity to various foods in infants with
severe atopic dermatitis, prior to introduction of complementary
foods, indicates that this may be associated with an inflamed and
impaired epithelial barrier (53).

Damage of the epithelial barrier integrity by toxic substances
initiates a cascade of events that includes changes in themicrobial
composition and colonization of opportunistic pathogens
(Figure 2). A continuous expulsion response develops against
microbiota translocating below the epithelium such as the
expulsion response to parasites in Loffler’s pneumonia (8, 54),
which results in microbial dysbiosis and decreased biodiversity.
Airway epithelial cells not only form a physical barrier against
inhaled particles, but also recruit and activate other effector
cells by producing antimicrobial peptides, chemokines, and
cytokines to scavenge pathogenic insults (55). Studies have shown
that the expression of TJ proteins such as claudin-1, occludin
and ZO-1 is significantly reduced in patients with asthma and
upper respiratory diseases such as nasal polyps and chronic
rhinosinusitis (56, 57). Claudin-18 expression, a TJ protein
required for maintaining the integrity of the airway epithelial
permeability, was also lower in asthmatics compared to healthy
controls (58, 59).

The gastrointestinal epithelial barrier is comprised of
desmosomes, adherence junctions and TJs. It represents
the largest mucosal surface in contact with foreign
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FIGURE 1 | The effect of external exposome on epithelial barriers of skin lung and intestine. Due to climate change, extreme weather events have become more

frequent and more intense. The air was polluted, and biodiversity was lost. Dietary preferences have shifted toward increased consumption of processed foods, n-6

fatty acids and GM foods. Exposure to environmental substances such as, detergents, PM, ozone, diesel exhaust, nanoparticles, microplastics, environmental

tobacco smoke and airborne allergens were increased. Finally, the microbiome was affected, and increase in harmful commensals resulted in dysbiosis. All these

factors affect and disrupt the epithelial barriers of skin, lung and gastrointestinal system and cause allergic diseases.

antigens and toxins, acting as a selective barrier that
absorbs and exchanges nutrients, water, and electrolytes
(60). Oral intolerance to foods has been demonstrated
to be associated with an impaired intestinal barrier
function in various experimental models and clinical trials
(61, 62).

ENVIRONMENTAL SUBSTANCES

There is a long list of toxic substances that directly damage the
respiratory, skin, and gut epithelium. Over 200 000 chemicals
have been introduced since the 1960s with insufficient data on
their toxicity. Our studies have demonstrated that many of these
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FIGURE 2 | Interaction between environmental factors, epithelium, microbiota, and the immune system. Dysregulation of the epithelial barrier by genetic and

environmental factors has been hypothesized to cause a leaky epithelium, which causes dysbiosis of microbial content, including commensals and opportunistic

pathogens. Translocation of this content to interepithelial and subepithelial compartments and colonization of the opportunistic pathogens inducing peri-epithelial

chronic inflammation. Finally chronic wound and continuous regeneration process ensues [adapted from reference (10)].

substances damage the epithelial barriers in various tissues, such
as those present in cigarette smoke, diesel exhaust, detergents
and surfactants, cleaning products, microplastics, nanoparticles,
enzymes and emulsifiers in processed food, as well as particulate
matter and ozone (63–71). Along with these factors and climate
changes, the increasing concentrations and allergenicity of a set of
airborne pollens (i.e., oak, ragweed) also needs to be considered
(13, 14).

Particulate matter (PM2.5 and PM10) are one of the
most common pollutants, disrupt the epithelial barriers by
degrading tight junction proteins (TJ) downregulating occludin
and claudin-1, suppressing E-cadherin levels, decreasing
transepithelial electrical resistance and increasing paracellular
permeability (65, 72). They also disrupt structural proteins such
as cytokeratin, filaggrin and cause an increase in lysosomal
membrane permeability, lipid peroxidation, and FOXP3
methylation (73). Black carbon produced by incomplete
combustion of fuel is an important component of atmospheric

PM. Many studies have shown a relationship between exposure
to black carbon and the risk of developing asthma (74, 75). In
addition, exposure to black carbon has been shown to trigger the
development of AR by increasing oxidative stress and inducing
the expression of interleukin IL-1β in human nasal epithelial
cells (76, 77).

An important traffic-related pollutant, NO2, can deeply
penetrate and disrupt the epithelial barriers of the upper and
lower airways and increase the risk of developing respiratory
diseases (74, 75). As another air pollutant, nanoparticles pass
the alveolocapillary membrane and can enter the systemic
circulation. They directly stimulate epithelial cells, macrophages,
and fibroblasts to secrete proinflammatory and profibrotic
mediators. Various nanoparticles induce overexpression of
immature neurotrophins, destroy phospholipid membranes,
endothelial cell junctions and even lysosomal membranes by
interacting with lipid-rich structures resulting in epithelial cell
death (76). They also disrupt the integrity of the skin and
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intestinal epithelial barrier with cytotoxic effects by altering
cell junctions, inducing proinflammatory cytokines and causing
mitochondrial and lysosomal dysfunction (77).

Exposure to ozone can aggravate respiratory diseases by
passing through the lower respiratory tract and even to the
capillary endothelium, leading to cell stress, desquamation, and
cell death by oxidative damage via reactive oxygen species (66,
71, 78). In chronic exposure, ozone induces collagen deposition
in epithelial and subepithelial areas causing peribronchial
fibrosis (78).

There are extensive in-vivo and ex-vivo studies demonstrating
the health hazards of tobacco smoking and e-cigarettes.
The toxic chemical substances present induce rapid lipid
peroxidation, airway epithelial cell death, impairment of
macrophage functions, alter bronchial epithelial cell cytokine
secretion patterns and disrupt bronchial epithelial barrier
integrity (79, 80).

Direct contact or inhalation of detergents disrupt the epithelial
barriers of the skin and respiratory tract, even at very high
dilutions or in contact with residues remaining on the laundry
after rinsing (7). Surfactants damage the epithelial barrier
integrity directly by insulting TJs and related molecules (63,
64) facilitating transepidermal water loss, decreasing stratum
corneum hydration and inducing Th2 inflammation (63,
81). Dietary emulsifiers have been demonstrated to alter the
microbiota composition in the gut promoting bacteria with
an inflammatory potential and facilitates bacterial penetration
though the intestinal mucus layer (82).

Microplastics and nanoplastics derived from petroleum can
easily infiltrate tissues and interact with cellular structural
molecules (83). Microplastics were first solely considered as a
pollutant of the oceans. There is increasing evidence indicating
high levels of daily human exposure to micro- and nano-plastics
through inhalation and ingestion. Once in our respiratory
system, nanoplastics can modify the cell lipid membrane
structure and secondary structures of proteins, up-regulate
pro-inflammatory cytokines, alter the expression of cell cycle-
associated proteins, induce inflammatory gene transcription and
apoptosis (84).

Overall, particulate air pollutants specially damage the
respiratory tract epithelium but also disrupt the skin and
gastrointestinal barriers triggering various allergic and
inflammatory diseases. Finally, protease activities of airborne
allergens such as molds, pollens, cockroaches, and house
dust mites have detrimental effects on the TJ molecules in
the airway epithelium. In addition, food cysteine proteases
also impair the intestinal barrier and increase intestinal
permeability (85). Disruption of epithelial barrier integrity
facilitates the presentation of allergens and initiates type 2
inflammation (86–88).

MICROBIAL DYSBIOSIS

After the development of peri-epithelial inflammation, microbial
dysbiosis and decreased biodiversity in the affected tissues are
taking place. This has been predominantly attributed to the

colonization of opportunistic pathogens in leaky barrier tissues
and the mounted immune response against these pathogens.
Fundamental changes in modern environments, hygiene and
lifestyles reduce microbial biodiversity, leading to more unstable
and less resilient microbiota (89). This condition, known as
dysbiosis, alters the balance maintained by the gut, skin, and
respiratory microbiomes, impairs immune homeostasis and is
implicated in many chronic inflammatory diseases, including
asthma, allergic diseases such as allergic rhinitis, AD, and food
allergy (8, 89–92).

Early exposure to protective commensals contributes to the
development of tolerogenic responses (93, 94). The fetal immune
system is being influenced and shaped during intrauterine
and postnatal periods by maternal infections, microbiota, diet,
antibiotics, mode of delivery, breastfeeding, and environmental
exposures. These factors may alter the development of lung
immunity associated with dysbiosis, contributing to the
development of asthma (89, 90, 95). Continuous contact
with farm animals increases indoor endotoxin concentrations
and this increased exposure promotes an immune regulatory
stimulus (96). In addition, microbiota-host interactions have
been suggested to play a role in the development of chronic
lung diseases. Gut-derived microbiota produce metabolites
that reach the lungs (gut-lung axis) and shift the Th2, Treg
(Th2-Treg) balance toward Tregs, thereby protecting the host
from the development of asthma (89). In a study following 10
years of atopic sensitization and allergic diseases in 180 children
aged 7–11 years from Finland and Russia Karelia (both with
similar climates, the former is a more Westernized region, the
second is a non-Westernized region), Finnish Karelian children
were found to be 10 times more likely to develop allergies.
Additionally, the bacterial and fungal populations in the nasal
mucosa of these participants were less and less diverse than
their Russian counterparts. In conclusion, it was stated in this
study that exposure to environmental microbiota at an early
age may be biologically related to allergic symptoms at younger
ages (97). In a different study of young adults in the Karelian
region, the number of allergic individuals was found to be lower
on the Russian side compared to the Finnish side, which could
not be explained by the genotypic difference. This difference was
found to be associated with the diversity in the skin and nasal
epithelial microbiota of the Russian side and the suppression of
the innate immunity by the abundance of acinetobacter on their
skin (98, 99)).

Skin microbiome composition and diversity differs between
patients with eczema and healthy individuals. There is a decrease
in numbers of commensal bacteria in atopic skin, and increased
pathogen density in patients with AD is positively correlated with
the severity of skin lesions and disease (100). Moreover, intestinal
bacterial dysbiosis affects the skinmicrobiota via the gut-skin axis
and leads to a systemic imbalance in the Th2-Treg lymphocyte
ratio (101).

The gut microbiome is continuously reshaped by external
factors such as diet and dysbiosis of the gut microbiome has
been associated with the development of food allergy (102). Poor
microbiota richness is associated with increased food sensitivity
in infants up to 1-year-old (103). Diversity and different taxa
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were also found to be higher in early life gut microbiota of
children with egg allergy (104). This supports the role of specific
microbiota in food allergies, opening an avenue for microbiota-
targeted therapies.

DIETARY PREFERENCES

There is mounting evidence suggesting that the transition from
a traditional diet to a Western diet and increased ratio of n-
6/n-3 polyunsaturated fatty acid consumption are associated
with the development of allergic diseases. Arachidonic acid
(AA), one of the n-6 fatty acid metabolites, aggravates allergic
responses through eicosanoids (thromboxane A2, prostaglandin
E2 and leukotriene B4) (105). On the other hand, n-3 fatty acids
compete with AA and prevent the formation of inflammatory
agents through resolvins (especially resolvin E1) (106). Increased
consumption of fast food and n-6 fatty acid-derived vegetable
oils are the primary dietary insults associated with allergic
diseases (107). Although there are limited and some conflicting
data, consumption of processed/fast food has been reported
to increase the risk of AD (108). A high n-6/n-3 fatty acid
ratio induces asthma by causing airway inflammation and
bronchoconstriction (109). Contrary to n-6 fatty acids, n-3
fatty acids mainly exert a protective effect on allergic diseases
by reducing the inflammatory response, mostly through pro-
resolving mediators (110). For example, n-3 fatty acid-derived
Protectin D1, generated from docosahexaenoic acid in asthma,
ameliorates airway inflammation (111). Administration of n-3
fatty acid supplementation has been found to reduce disease
severity in patients with AD (112). In contrast, a different study
did not find an association between n-3 fatty acid intake and
AD (113). The effect of n-3 fatty acids on food allergy during
pregnancy and/or lactation is contradictory. However, n-3 fatty
acid supplementation in early pregnancy has been shown to
reduce allergic sensitivity to food proteins in the infants (114). In
addition, high fecal butyrate levels were associated with a reduced
risk of atopic sensitization and the development of asthma and
food allergy (115). Moreover, butyrate and propionate have been
shown to restore epithelial barrier functions in eosinophilic
esophagitis (116).

Oxidative stress is well-recognized to contribute to
the pathophysiology of allergic diseases (117). Systemic
oxidative stress can aggravate inflammatory responses. Dietary
antioxidants and vitamin supplementation have been suggested
for reducing the incidence or morbidity of allergic diseases
(118). Processed foods contain low levels of antioxidants such
as vitamin A, vitamin C and vitamin E and have been suggested
to increase the susceptibility to allergic diseases (119). The
increase in reactive oxygen species due to insufficient intake of
antioxidant vitamins makes individuals susceptible to asthma,

AR and AD (120–122). Contrary to these results, there are
also studies that don’t show any beneficial effects of vitamin
supplementation in allergic diseases (123, 124). A diet high in
fruits and vegetables, which are good sources of vitamins A, C
and E, during lactation and pregnancy and in the infant’s diet
are protective against the development of food allergy (125).
In contrast, high-sugar and fat diets and diet-induced low fecal
SCFA levels have been associated with the development of
FA (126).

There has been recent controversy on the allergenicity of
Genetically Modified (GM) products (127, 128). Some studies
have suggested that transgenic crops may have allergic effects,
but some do not (129, 130). Long-term studies are warranted
to evaluate the risks of consumption of GM foods on the
development of food allergies.

In recent years, artificial sweeteners and food additives used
to improve taste, color and stability of food products have
been increasingly consumed and this may be associated with
and increased risk of food allergy, AD, childhood asthma and
AR (129–132).

CONCLUSION

The external exposome concept is a collective model that
not only considers all exposures but also takes into account
all of the proven or potential interactions between these
environmental factors. Data obtained shows that the rapid
increase in the prevalence of allergic diseases and other immune-
mediated conditions can be explained by the concept of external
exposomes. However, there are gaps in our scientific knowledge
on this subject and these need to be answered. For now,
it is imperative that we raise awareness of the effects of
environmental changes on health to motivate people that will
influence governmental policies, for our own well-being and that
of future generations.
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