
Frontiers in Oncology | www.frontiersin.org

Edited by:
Bo Gao,

Affiliated Hospital of Guizhou Medical
University, China

Reviewed by:
Chuanming Li,

Chongqing Medical University, China
Zhongxiang Ding,

Zhejiang University, China

*Correspondence:
Nan Hong

hongnan1968@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Cancer Imaging and Image-

directed Interventions,
a section of the journal
Frontiers in Oncology

Received: 22 May 2020
Accepted: 21 September 2020

Published: 16 October 2020

Citation:
Yin P, Mao N, Chen H, Sun C, Wang S,
Liu X and Hong N (2020) Machine and

Deep Learning Based Radiomics
Models for Preoperative Prediction of
Benign and Malignant Sacral Tumors.

Front. Oncol. 10:564725.
doi: 10.3389/fonc.2020.564725

ORIGINAL RESEARCH
published: 16 October 2020

doi: 10.3389/fonc.2020.564725
Machine and Deep Learning Based
Radiomics Models for Preoperative
Prediction of Benign and Malignant
Sacral Tumors
Ping Yin1†, Ning Mao2†, Hao Chen1†, Chao Sun1, Sicong Wang3, Xia Liu1

and Nan Hong1*

1 Department of Radiology, Peking University People’s Hospital, Beijing, Beijing Municipality, China, 2 Department of
Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China, 3 Pharmaceutical Diagnostics, GE Healthcare,
Shanghai, China

Purpose: To assess the performance of deep neural network (DNN) and machine
learning based radiomics on 3D computed tomography (CT) and clinical characteristics
to predict benign or malignant sacral tumors.

Materials and methods: This single-center retrospective analysis included 459 patients
with pathologically proven sacral tumors. After semi-automatic segmentation, 1,316
hand-crafted radiomics features of each patient were extracted. All models were built
on training set (321 patients) and tested on validation set (138 patients). A DNNmodel and
four machine learning classifiers (logistic regression [LR], random forest [RF], support
vector machine [SVM] and k-nearest neighbor [KNN]) based on CT features and clinical
characteristics were built, respectively. The area under the receiver operating
characteristic curve (AUC) and accuracy (ACC) were used to evaluate different models.

Results: In total, 459 patients (255 males, 204 females; mean age of 42.1 ± 17.8 years,
range 4–82 years) were enrolled in this study, including 206 cases of benign tumor and
253 cases of malignant tumor. The sex, age and tumor size had significant differences
between the benign tumors and malignant tumors (c2sex = 10.854, Zage = −6.616, Zsize =
2.843, P < 0.05). The radscore, sex, and age were important indicators for differentiating
benign and malignant sacral tumors (odds ratio [OR]1 = 2.492, OR2 = 2.236, OR3 =
1.037, P < 0.01). Among the four clinical-radiomics models (RMs), clinical-LR had the best
performance in the validation set (AUC = 0.84, ACC = 0.81). The clinical-DNN model also
achieved a high performance (an AUC of 0.83 and an ACC of 0.76 in the validation set) in
identifying benign and malignant sacral tumors.

Conclusions: Both the clinical-LR and clinical-DNN models would have a high impact on
assisting radiologists in their clinical diagnosis of sacral tumors.
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INTRODUCTION

Although sacral tumors are rare, all components of sacrum can
give rise to benign or malignant tumors (1, 2). Given the
prominent hematopoietic function of the sacrum, it is one of
the most common sites for bone metastatic tumors (3). Primary
malignant bone tumors of the sacrum include chordoma,
myeloma, lymphoma, chondrosarcoma, osteosarcoma, and
Ewing’s sarcoma, teratoma, etc. Chordoma is the most
common primary malignant tumors of the sacrum, accounting
for about 40% of all primary tumors (4, 5). Benign tumors mainly
include giant cell tumors (GCTs), schwannoma, neurofibroma,
aneurysmal bone cysts, bone cyst, cavernous hemangioma,
solitary fibroma, osteoid osteoma, and osteoblastoma, etc.
Among them, GCTs are the most common, accounting for
about 13% (4).

Sacral tumors are often difficult to diagnose due to
overlapping clinical symptoms, diverse pathologic findings, and
complex imaging features (6). Besides, the treatment of sacral
tumors is often a challenging process and varies in approach. For
all primary malignant sacral tumors and benign lesions involving
lower segments when preservation of both S3 roots is possible,
wide resection should be selected. Serial embolization may be
worthwhile for benign sacral tumors that extend above S3 (7).
Accurate preoperative identification of benign or malignant
sacral tumors is essential for individualized treatment. Since
sacral tumors are rare and similar on conventional imaging, a
noninvasive and highly accurate preoperative diagnostic tool is
needed for radiologists.

Machine learning-based tools have developed rapidly in
medical imaging in recent years, especially in oncology.
Various machine learning algorithms have been applied to
create decision models that aid in clinical diagnosis and
treatment (8, 9). Few recent studies have used radiomics
analysis to identify sacral tumors with a relatively small sample
size (1, 5, 10). Yin et al. (1) compared three different feature
selection methods and three machine learning classifiers to
identify primary sacral chordoma and GCT based on computed
tomography (CT) features. Their study demonstrated that the
least absolute shrinkage and selection operator (LASSO) +
generalized linear models perform best. Deep neural network
(DNN), as a deep architecture, has shown excellent performance
in classification tasks and is increasingly being used in various
areas of cancer research (11, 12). Early studies on the application
of deep learning to the detection or classification of lesions have
shown that it performs better than traditional techniques and
even better than radiologists on some tasks (13–18). Ren et al.
(19) proposed a novel manifold regularized classification DNN to
enhance CT image-based lung nodule classification. Feng et al.
(20) developed an end-to-end DNN model that can achieve
promising performance in breast cancer cell nuclei classification.
Abbreviations: GCT, Giant cell tumors; CT, Computed tomography; DNN, Deep
neural network; LASSO, Least absolute shrinkage and selection operator; LR,
Logistic regression; RF, Random forest; SVM, Support vector machine; KNN, k-
nearest neighbor; ICC, intra- and interclass correlation coefficients; Radscore,
Radiomics score; mRMR, minimum redundancy maximum relevance; AUC, Area
under the receiver operating characteristic curve; ACC, Accuracy.
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Considering the fact that deep learning requires a larger sample
size than radiomics, we were interested to find out how these
machine and deep learning algorithms performed to identify
benign and malignant sacral tumors based on our relatively
large sample size.

Therefore, the aim of our study was to determine the
performance of DNN and four machine learning classifiers
(logistic regression [LR], random forest [RF], support vector
machine [SVM] and k-nearest neighbor [KNN]) based on CT
features and clinical characteristics to predict benign or
malignant sacral tumors.
MATERIALS AND METHODS

Patients and Data Acquisition
This single center retrospective study was approved by our local
ethics committee and waived written informed consent. A total
of 505 patients with pathologically confirmed sacral tumors in
our institution from January 2007 to December 2019 were
retrospectively analyzed. All patients had a single sacral tumor
that was detected on CT within 1 month before the initial
surgery. Patients had sacral tumors without preoperative CT
images (n = 41), or with obvious artifacts (n = 5) were excluded.
Finally, a total of 459 patients with sacral tumor were included in
the study. Sex, age and maximal tumor size of patients were
also analyzed.

All CT images were acquired on each patient using multi-
detector row CT systems (Philips iCT 256, Philips Medical System;
GE Lightspeed VCT 64, GE Medical System). The acquisition
parameters were as follows: 120 kV, 685 mAs, slice thickness =
5 mm, matrix = 512 × 512 mm, field of view = 350 × 350 mm. The
CT images were reconstructed with a standard kernel.

Tumor Segmentation
MITK software version 2018.04.2 (www.mitk.org) was used for
the semi-automatic segmentation of all tumors (21). First, we
manually delineated the edge of the lesion at the axial, sagittal,
and coronal sites, respectively. Then, a three-dimensional lesion
was automatically formed and manually corrected by a
musculoskeletal radiologist with 5 years of experience and a
senior musculoskeletal radiologist with 20 years of experience.

Feature Extraction and Selection
In total, 1,316 radiomics features of each patient were extracted
from the CT images using the Artificial Intelligence Kit software
version 3.3.0 (GE Healthcare, China) based on the open-source
Pyradiomics python package, which including 18 first-order
histogram features, 24 gray-level co-occurrence matrix features,
14 shape features, 14 gray-level dependence matrix features, 16
gray-level size-zone matrix features, 16 gray-level run-length
matrix features, 744 wavelet features, 5 neighboring gray-tone
difference matrix features, 186 Laplacian of Gaussian
(LoGsigma=2.0/3.0) features, and 279 local binary pattern features.

We preprocessed the data and normalized the extracted
features. When the data value exceeded the range of mean
October 2020 | Volume 10 | Article 564725
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value and standard deviation, the median of specific variance
vector was used to replace the outliers. In addition, we
standardized the data in a specific interval. The consistency of
features from different machines was evaluated by using intra-
and interclass correlation coefficients (ICC). An ICC greater than
0.75 was considered as good agreement.

To reduce overfitting or selection bias in our radiomics
model, we used minimum redundancy maximum relevance
(mRMR) and LASSO to select the features. At first, mRMR
was performed to eliminate redundant and irrelevant features,
and 20 features were retained. Then, LASSO was conducted to
choose the optimized subset of features. After the number of
features was determined, the most predictive radiomics features
were chosen to construct the final model.

Model Building and Validation
First, we randomly divided the patients into the training (n =
321) and validation (n = 138) sets by a ratio of 7:3. Then, we built
four different radiomics models (RMs) by using LR, RF, SVM,
and KNN. Finally, we also built a DNN model based on selected
features with a hidden layer number of 3. The number of hidden
layer nodes in each layer is 4, 3, and 2, respectively.

Clinical features were compared via univariate analysis, and
variables with P value < 0.05 were included in the clinical model.
When combined RMs and DNN with clinical data, we also
constructed the clinical-RMs and clinical-DNN model. Models
were trained with the training set by using the repeated 10-fold
cross-validation method, and estimation performance was
evaluated with the validation set.

The performance of different models was assessed using the
area under the receiver operating characteristic curve (AUC).
The accuracy (ACC), sensitivity, and specificity values were also
reported for both the RMs and DNN model. Comparisons
between AUCs were made by using DeLong test. The
calibration curves and Hosmer–Lemeshow test were used to
investigate the performance of the nomogram. The clinical
usefulness of the nomogram was evaluated using decision
curves analysis. Figure 1 showed the workflow of this study.

Statistical Analysis
Statistical analysis was performed on R software (R Core Team,
Vienna, Austria) version 3.4.3. Mann-Whitney U test was
performed to compare continuous variables, while chi-squared
test was used for classify variables between groups. All statistical
tests were two-sided, and a P value less than 0.05 was considered
statistically significant.
RESULTS

Patient Characteristics
A total of 459 patients (255 males, 204 females; mean age of
42.1 ± 17.8 years, range 4–82 years) were included in this study
(Table 1). We found significant statistical differences in terms of
sex, age and tumor size of patients with benign and malignant
Frontiers in Oncology | www.frontiersin.org 3
tumors (P < 0.01). There was a significant difference in the sex
ratio between the two groups (c2 = 10.854, P = 0.001), in which
the proportion of male patients with malignant tumors was
significantly higher than that of female patients. The median
age of benign tumor patients (38.0, in the range of 29.0–49.1) was
significantly lower than that of the malignant tumor patients
(53.0, 37.0–63.0) (Z = −6.616, P < 0.01). In addition, the size of
the benign tumor was significantly larger than that of the
malignant tumor (Z = 2.843, P < 0.01). Multivariable LR
analyses showed that radscore, sex, and age (odds ratio [OR]
1 = 2.492, OR2 = 2.236, OR3 = 1.037, P < 0.01) were important
predictors of benign or malignant sacral tumors (Table 2).

No significant statistical difference was observed between the
training and validation sets in terms of age, sex, and tumor
location (P > 0.05). The 206 benign tumors were composed of 95
GCTs, 47 schwannomas, 44 neurofibromas, 6 solitary fibromas, 3
ependymomas, 3 hemangiomas, 3 chondroblastomas, 3
aneurysmal bone cysts, 1 bone cyst, and 1 paraganglioma. The
253 malignant tumors included 71 metastatic tumors, 84
chordomas, 16 osteosarcomas, 20 chondrosarcomas, 28
Ewing’s sarcomas, 15 multiple myelomas, 4 malignant
teratomas, 5 lymphomas, 5 liposarcomas, 2 undifferentiated
sarcomas, 1 synovial sarcoma, 1 epithelioid sarcoma, and 1
malignant granulosa cell tumor, respectively.

Performance of Different Models
The reproducibility of radiomics features of different machines
was satisfactory (ICC, ranged from 0.76 to 0.91).

Among the four RMs, RF had the best performance
(AUC = 1, ACC = 0.98), followed by KNN (AUC = 0.90,
ACC = 0.83), SVM (AUC = 0.85, ACC = 0.80) and LR (AUC =
0.80, ACC = 0.75) in the training set (Figure 2, Table 3).
When combined with clinical features, a similar result was
found; clinical-RF performed best, with an AUC value of 1 and
an ACC value of 0.99.

In validating set, the performance of SVM (AUC = 0.83,
ACC = 0.75) was the best among the four RMs, followed by LR
(AUC = 0.80, ACC = 0.69), RF (AUC = 0.78, ACC = 0.72), and
KNN (AUC = 0.70, ACC = 0.64). When combined with clinical
features, however, clinical-LR had the best performance, with
an AUC of 0.84 and an ACC of 0.81. Clinical-KNN performed
the worst (AUC = 0.78, ACC = 0.72). Furthermore, clinical-
RMs (AUC, ranged from 0.78 to 0.84; ACC, ranged from 0.72 to
0.81) performed better than individual RMs (AUC, ranged
from 0.70 to 0.83; ACC, ranged from 0.64 to 0.75) and
clinical model (AUC = 0.64, ACC = 0.62) in the validation
set. Figure 3 showed LR-based clinical-radiomics nomogram
and decision curves.

The DNN model achieved an AUC of 0.75 and an ACC of
0.72 in the validation set. When combined with clinical data, the
clinical-DNN model based on CT features exhibited an AUC of
0.84 and an ACC of 0.87 in the training set, and an AUC of 0.83
and an ACC of 0.76 in the validation set. In addition, no
significant difference was found in terms of AUCs between the
clinical-LR model and clinical-DNN model in the training (P =
0.889) and validation sets (P = 0.762).
October 2020 | Volume 10 | Article 564725
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DISCUSSION

In this study, we found that radscore, sex, and age were
important indicators for differentiating benign and malignant
sacral tumors. Among the four clinical-RMs, clinical-LR had the
best performance in the validation set. The best-performing
clinical-LR model exhibited an AUC of 0.84 and an ACC of
0.81 in the validation set. In addition, the clinical-DNN model
also had a high performance in identifying benign and malignant
sacral tumors. Our clinical-DNN and clinical-RMs would have a
high impact on assisting radiologists in their clinical diagnosis of
sacral tumors.

Patients with sacral tumor share many similar clinical
symptoms and disease course, which increases the difficulty of
preoperative diagnosis. In this study, we found that sex, age and
tumor size were important indicators for differentiating benign
and malignant sacral tumors. The size of the benign tumor was
Frontiers in Oncology | www.frontiersin.org 4
significantly larger than that of the malignant tumor. What’s
more, the mean age of patients with sacral malignant tumors was
higher than that of patients with benign tumors. The possible
reason is that the largest proportion of patients with sacral
malignant tumors are metastatic tumors and chordomas,
which are most common in patients over 40 years old (2, 22).
Furthermore, the proportion of males in patients with malignant
tumors was higher than that in patients with benign tumors, with
a significant statistical difference. The incidence of chordoma is
higher in men than in women, which is consistent with previous
study (10).

Previous studies have compared the performance of deep
learning and radiomics in differentiating benign and malignant
breast lesions (13, 15), predicting lymph node metastases of
breast cancer (14), identifying of spinal metastases originated
from the lung and other cancers (16), predicting of survival of
patients with high-grade gliomas (17), and predicting the
FIGURE 1 | The workflow of this study.
October 2020 | Volume 10 | Article 564725
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A B
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FIGURE 2 | The ROC curve of different models. (A, B), the ROC of LR-based clinical-RM in the training set (A) and validation set (B). The blue line indicates
radiomics model, the green line represents clinical model, and the red line is the LR-based clinical-RM; (C–F), the ROC of RF-based clinical-RM (C), SVM-based
clinical-RM (D), KNN-based clinical-RM (E), and clinical DNN model (F). The dotted blue line represents the RM (C–E) or DNN (F) model in the training set, and the
solid blue line represents the RM (C–E) or DNN (F) model in the validation set. The dotted red line represents the clinical-RM (C–E) or clinical-DNN (F) model in the
training set, and the solid blue line represents the clinical-RM (C–E) or clinical-DNN (F) model in the validation set.
TABLE 1 | Clinical characteristic of patients.

Variable Benign tumor Malignant tumor c2/Z value P value

Sex
Female 109(52.91%) 95(37.55%) 10.854 0.001
Male 97(47.09%) 158(62.45%)

Age (years) 38.00(29.00, 49.05) 53.00(37.00, 63.00) −6.616 <0.001
Tumor size (cm) 8.60(6.70, 11.01) 7.90(5.90, 10.00) 2.843 0.004
Tumor type – –

Metastatic tumor – 71(28.06%)
Chordoma – 84(33.20%)
GCT 95(46.12%) –

Osteosarcoma – 16(6.32%)
Chondrosarcoma – 20(7.91%)
Schwannoma 47(22.82%) –

Neurofibroma 44(21.36%) –

Ewing’s sarcoma – 28(11.07%)
Multiple myeloma – 15(5.93%)
Other types 20(9.70%) a 19(7.51%) b
Frontiers in Oncology | www.frontiersin.o
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GCT, giant cell tumor. a, the other types included 6 solitary fibromas, 3 ependymomas, 3 hemangiomas, 3 chondroblastomas, 3 aneurysmal bone cysts, 1 bone cyst, and 1
paraganglioma. b, the other types included 4 malignant teratomas, 5 lymphomas, 5 liposarcomas, 2 undifferentiated sarcomas, 1 synovial sarcoma, 1 epithelioid sarcoma, and 1 malignant
granulosa cell tumor.
TABLE 2 | Multivariable logistic regression analyses.

Intercept and variable CT

Coefficient OR (95% CI) P

Intercept −2.1372 – 0.0001
Radscore 0.9130 2.492 (1.937,3.206) <0.0001
sex 0.8048 2.236 (1.3,3.848) 0.0036
age 0.0366 1.037 (1.02,1.054) <0.0001
size 0.0122 1.012 (0.935,1.096) 0.7639
OR, odds ratio; CI, confidence interval.
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invasiveness risk of Stage-I lung adenocarcinomas (18). Dong et al.
(23) recently compared the DNN model, LR and SVM to predict
lymph node status in operable cervical cancer, and they also found
that DNN performed best. Bibault et al. (24) found that their DNN
model was 80% accurate in predicting complete response after neo-
adjuvant chemoradiotherapy in locally advanced rectal cancer,
which was better than LR and SVM models. Due to the rarity of
primary sacral tumors, only a few previous studies have identified
sacral tumor types using machine learning methods (1, 5, 10). In
this study, we proposed a DNN model to identify benign and
malignant sacral tumors. DNN has multiple hidden layers, which
can extract features step by step, simplify problems and improve
efficiency (12, 25). Song et al. (26) compared three types of DNN for
classification of lung nodules on CT images. In this study, we
trained four clinical-RMs and one clinical-DNN model based on a
relatively large sample of data and found that clinical-LR performed
best in the validation set. Similarly, Lang et al. (16) found that the
accuracy of radiomics analysis and convolutional neural network
(CNN) was similar in the identification of spinal metastases
originated from the lung and other tumors. LR is one of the most
commonly used algorithms in radiomics analysis and has been
proved to be effective (27–30). Despite nomogram’s visualization, it
has limited power for future big data era. On the contrary, deep
learning is like a “black box”, its development trend is inevitable and
Frontiers in Oncology | www.frontiersin.org 6
more conducive to the analysis of big data (23). In this study, we
found no significant difference in terms of AUCs between the
clinical-LR and clinical-DNN models. Therefore, we still have no
reason not to recommend the deep learning model. Our clinical-
DNN model can also provide a convenient and accurate tool for
radiologists to identify benign and malignant sacral tumors.

Our study has certain limitations. First, all images were collected
from one center over the past decade or so. And we excluded some
patients who did not have preoperative CT, which may lead to
selection bias. A larger sample data from multicenter is needed in
the further study to improve our models. Second, all images were
obtained on the same type of plain CT scan. In the future, we will
evaluate our models on more heterogeneous image data. Third, we
only compared several common machine learning algorithms with
DNN, andmore algorithms (e.g., CNN)may be added in the future.

In conclusion, both the clinical-LR and clinical-DNN models
could be used for assisting radiologists in their clinical diagnosis
of sacral tumors.
DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the article/
supplementary material.
A B

FIGURE 3 | LR-based clinical-radiomics nomogram (A) and decision curves (B). (A) The final total points were calculated by summing the score of each point
represented for each feature. The nomogram showed that radscore was the most important factor. (B) The green line represents the clinical model. The red line
represents the clinical-radiomics model. Decision curves showed that clinical-radiomics model achieved more clinical utility than clinical model.
TABLE 3 | Performance of different models in training set and validation set.

AUC ACC Sensitivity Specificity PPV NPV

LR 0.80(0.80) 0.75(0.69) 0.81(0.76) 0.67(0.61) 0.76(0.68) 0.73(0.71)
RF 1(0.78) 0.98(0.72) 0.99(0.76) 0.95(0.66) 0.96(0.73) 0.99(0.70)
SVM 0.85(0.83) 0.80(0.75) 0.85(0.75) 0.74(0.76) 0.80(0.79) 0.80(0.71)
KNN 0.90(0.70) 0.83(0.64) 0.88(0.62) 0.76(0.66) 0.82(0.69) 0.83(0.59)
DNN 0.89(0.75) 0.88(0.72) 0.90(0.70) 0.84(0.74) 0.87(0.79) 0.88(0.64)
Clinics 0.71(0.64) 0.67(0.62) 0.76(0.66) 0.59(0.59) 0.61(0.54) 0.74 (0.70)
Clinical-LR 0.84(0.84) 0.75(0.81) 0.88(0.85) 0.65(0.78) 0.64(0.77) 0.88(0.85)
Clinical-RF 1(0.83) 0.99(0.77) 0.99(0.82) 0.99(0.71) 0.99(0.78) 0.99(0.76)
Clinical-SVM 0.85(0.84) 0.79(0.76) 0.83(0.76) 0.74(0.76) 0.80(0.80) 0.78(0.72)
Clinical-KNN 0.87(0.78) 0.78(0.72) 0.74(0.68) 0.83(0.76) 0.85(0.78) 0.72(0.66)
Clinical-DNN 0.84(0.83) 0.87(0.76) 0.91(0.80) 0.82(0.73) 0.85(0.72) 0.89(0.81)
October
 2020 | Volume 10 | Arti
AUC, area under curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value. Training set, in front of the brackets. Validation set, in brackets.
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