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Abstract: Plant Ecological Unit’s (PEUs) are the abstraction of vegetation communities that occur on 
a site which similarly respond to management actions and natural disturbances. Identification and 
monitoring of PEUs in a heterogeneous landscape is the most difficult task in medium resolution 
satellite images datasets. The main objective of this study is to compare pixel-based classification 
versus object-based classification for accurately classifying PEUs with four selected different algo-
rithms across heterogeneous rangelands in Central Zagros, Iran. We used images of Landsat-8 OLI 
that were pan-sharpened to 15 m to classify four PEU classes based on a random dataset collected 
in the field (40%). In the first stage, we applied the following classification algorithms to distinguish 
PEUs: Minimum Distance (MD), Maximum Likelihood Classification (MLC), Neural Network-
Multi Layer Perceptron (NN-MLP) and Classification Tree Analysis (CTA) for pixel based method 
and object based method. Then, by using the most accurate classification approach, in the second 
stage auxiliary data (Principal Component Analysis (PCA)) was incorporated to improve the accu-
racy of the PEUs classification process. At the end, test data (60%) were used for accuracy assess-
ment of the resulting maps. Object-based maps clearly outperformed pixel-based maps, especially 
with CTA, NN-MLP and MD algorithms with overall accuracies of 86%, 72% and 59%, respectively. 
The MLC algorithm did not reveal any significant difference between the object-based and pixel-
based analyses. Finally, complementing PCA auxiliary bands to the CTA algorithms offered the 
most successful PEUs classification strategy, with the highest overall accuracy (89%). The results 
clearly underpin the importance of object-based classification with the CTA classifier together with 
PCA auxiliary data to optimize identification of PEU classes. 

Keywords: object-based classification; machine learning algorithms; principal component analysis; 
plant ecological units mapping 
 

1. Introduction 
Accurate vegetation maps of the distribution and extent of vegetation communities 

across heterogeneous landscapes are invaluable for management of landscape changes 
and conservation planning [1], natural resources [2] and ecosystem services [3]. Vegeta-
tion community maps also provide important information related to changes in environ-
mental conditions, climate and biodiversity studies [4,5]. Land cover assessment and clas-
sification for quantitative detection of sparse vegetation and production of vegetation 
maps are important tasks in optical remote sensing [6]. Due to field data limitations and 
temporal inconsistencies of field datasets, the needed vegetation maps for management 
and monitoring are often updated only every few years [7]. Plant Ecological Units (PEUs), 
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being the fundamental unit of natural habitats, are defined as frequently co-occurring 
plant species that differ from other areas in the ability to produce mixtures of plant species 
[8]. Moreover, PEUs are considered as the ecological units, which similarly respond to 
management actions and natural disturbances [9]. Therefore, PEUs are commonly consid-
ered relevant indicators of ecosystem services, mapping ecosystem services [10] and as-
sessing the conservation status of a site [11]. 

Although the concept of PEUs in rangeland monitoring and assessment is generally 
accepted, the importance and benefits of PEUs monitoring are poorly understood. Over 
four decades of satellite remote sensing application to assessment and vegetation map-
ping using satellite image processing for quantitative detection of sparse vegetation, dis-
tinction of PEUs remains problematic and challenging [12]. Generally, PEUs behave spec-
trally alike and due to low inter-class separability, form complex spatial structures within 
the heterogeneous landscape [13]. The production of reliable and accurate PEUs maps in 
heterogeneous landscapes is typically based on the classification of raw satellite imagery. 
Yet, these heterogeneous vegetation communities impose challenges to spectral classifier 
methods [14,15]. In order to optimize classification of PEUs from optical data, the selection 
of an ideal classification method needs to be considered. Previous studies indicated that 
the selection of the best classifier methods depends mainly on the satellite images, char-
acteristics of the study area, the classification system and selected algorithm performance 
[16]. When medium spatial resolution imagery (e.g., Landsat images) is used for the clas-
sification of large areas, the approach of analyzing pixels individually can produce mis-
classifications. Especially in PEUs with spectral similarity, because in pixel-based meth-
ods each pixel is classified into only one class based on the digital values. Consequently, 
pixel-based approaches may produce poor classification results. One possible solution is 
using the Object Based Classification Method (OBCM) [17]. In this way, image segmenta-
tion merges pixels into objects, and classification is conducted based on the objects instead 
of an individual pixel [18]. Many classifiers from statistical-based approaches such as MD 
(Minimum Distance) and MLC (Maximum Likelihood Classification) to artificial intelli-
gence and machine learning approaches such as ANN (Artificial Neural Network), RF 
(Random Forest), and DT (Decision Tree) are commonly used for vegetation classification 
[16,19,20], whereby machine learning methods increasingly replace traditional statistical 
analysis methods. For instance, a variety of machine learning algorithms were applied to 
land cover mapping across a range of spatial scales [21,22]. Such algorithms can substan-
tially reduce the cost and time of constructing land cover maps. At the same time, several 
studies recommended incorporating auxiliary spatial data to help distinguish land cover 
features from satellite images [5,23].  

Altogether, this study aims to compare pixel-based and object-based approaches 
with selected four different classifier algorithms for PEUs mapping. Two specific objec-
tives were addressed: (1) the first stage aimed to evaluate the use of Minimum Distance 
(MD), Maximum Likelihood Classification (MLC), Neural Network-Multi Layer Percep-
tron (NN-MLP) and Classification Tree Analysis (CTA) algorithms for pixel- and object-
based methods Fj to identify PEUs. (2) In the second stage, auxiliary data (PCA) were used 
to make the most accurate PEUs classification map based on the best performing algo-
rithm. This study will eventually provide insights into the classification strategies for the 
PEUs mapping in the semi-arid rangelands. 

2. Materials and Methods 
2.1. Study Area 

Semi-steppe rangelands Marjan is located within the Central Zagros in Southwest, 
Iran. The area covers 7736.24 ha extending from 51°18′53″ to 51°19′12″E and 32°03′56″ to 
32°04′05″N and with a mean elevation of 2697.48 m a.s.l (Figure 1). The climate is arid 
(temperate and cold winters, and warm and dry summers), characterized by an average 
annual rainfall (1988–2018) of 220 mm. Various PEUs thrive in the study area. Despite its 
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low average annual rainfall (220 mm), due to appropriate implementing management 
practices, much of the area has suitable vegetation conditions, whereby perennial grasses 
and shrubs dominate. PEUs can be straightforwardly observed in this study area due to 
narrow ecotones and relatively sharp borders between them. 

 
Figure 1. The location of the study area: (a)—Iran border; (b)—Central Zagros border; and (c)—Study area border (Mar-
jan). A set of sampling points of PEUs recorded in the field which later divided into two groups of training (40%) for 
classification and ground truth (60%) for accuracy testing. 

2.2. Field Measurements of PEU 
Four PEU classes were identified in the study area (Table 1), namely: (1) PEU1 

(Astragalus verus Olivier (As ve)), (2) PEU2 (Bromus tomentellus Boiss (Br to)), (3) PEU3 
(Scariola orientalis Sojak (Sc or)), and (4) PEU4 (Astragalus verus Olivier—Bromus tomentel-
lus Boiss (As ve—Br to)). Canopy cover data could potentially be used to identify PEUs 
from structural, compositional or combination of both, the so-called physionomic-floristic 
classification, to have a sound and accurate perspective on PEUs. We sampled the four 
identified PEUs using three replicates, in each of which canopy cover was sampled along 
three transects of 100 m that were evenly distributed throughout the Marjan. The sam-
pling was systematic-randomly (the first node was selected systematically but the rest 
were randomly distributed along the transects). We collected species-based canopy cover 
within each quadrat. In each PEU, canopy cover percentage was calculated and the PEU 
types were named according to their dominant floristic composition. For this purpose, 
first, the dominant plant species of each PEU was identified and then its accompanying 
species was determined with having 50% or more canopy cover of previously dominant 
species cover. Thus, each PEU was named based on a physiognomic–floristic method.  
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Table 1. The identified PEUs and their vegetational characteristics in the study area. 

Code Dominant Species * Field Photos Abbreviation Structure Accompanied Species * 
Dominant Soil 

Type 

PEU1 Astragalus verus Olivier. 
(23.4%) As ve Scrubby 

Alyssum linifolium Steph. ex Wild. (2.5%) 
Echinophora platyloba DC. (2.5%) 

Scariola orientalis (Boiss)Sojak. (2.5%) 
Eurotia ceratoides (L.) C.A. Mey. (2%) 

Heteranthelium piliferum Hochst. ex Jaub. (1.8%) 
Cousinia bachtiarica Boiss. & Hausskn. (1.8%) 

Bromus tectorum L. (1.6%) 
Astragalus macropelmatus Bunge. (1.3%) 

Taeniatherum crinitum (Schreb.) Nevski. (1%) 
Acanthophyllum spinosum (Desf.) C.A.Mey. (0.8%) 

Sandy loamy to 
loamy clay 

PEU2 Bromus tomentellus Boiss. 
(8.9%) 

 

Br to Grassland 

Phlomis olivieri Benth. (3%) 
Bromus danthoniae Trin. (3%) 

Stipa hohenackeriana Trin & Rupr. (2.6%) 
Alyssum marginatum Steud. (2.5%) 

Bromus tectorum L. (2.4%) 
Achillea wilhelmsii C. Koch, L. (1.8%) 

Astragalus microcephalus Willd. (1.5%) 
Centaurea aucheri (DC.) Wagenitz. (1.2%) 

Gypsophila struthium. (1%) 
Ajuga chamaecistus Ging. (0.5%) 

loamy and Silty 
Loamy 
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PEU3 
Scariola orientalis (Boiss.) 

Sojak. 
(9.25%) 

 

Sc or Semi-scrub 

Noaea mucronata (Forsk.) Aschers et. Sch. (2.5%) 
Onobrychis cornuta (L.) Desv. (1.6%) 

Astragalus microcephalus Willd. (1.5%) 
Polygonum aridum Boiss. & Hausskn. (1.5%) 

Taeniatherum crinitum (Schreb.) Nevski. (1.5%) 
Cousinia crispa, Jaub & Spach. (1.2%) 

Stachys inflata Benth. (1.2%) 
Tragopogon longirostris Bischoff ex Sch.Bip. (1%) 

Acanthophyllum spinosum (Desf.) C.A.Mey. (0.5%) 
Chardinia orientalis (L.) Kuntze. (0.5%) 

Clay loam 

PEU4 
Astragalus verus Olivier 

(8.6%)—Bromus tomentellus 
Boiss (5.4) 

 

As ve-Br to 
Scrubby-
grassland 

Noaea mucronata (Forsk.) Aschers et. Sch. (2%) 
Alyssum marginatum Steud. (1.5%) 

Euphorbia azerbadjhanica Bordz. (1.5%) 
Phlomis persica Boiss. (1.5%) 

Turginia latifolia (L.) Hoffm. (1.5%) 
Astragalus effusus Bunge. (1.3%) 
Bromus danthoniae Trin. (1.2%) 

Stachys lavandulifolia Vahl. (1%) 
Cichorium intybus L. (0.5%) 

Achillea wilhelmsii C. Koch, L. (0.5%) 

loamy and Silty 
Loamy 

* Canopy cover percentage of dominant and accompanied species that was calculated on transects. 
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2.3. Remotely Sensed Data 
We downloaded ortho-rectified (L1T) Landsat Operational Land Imager (OLI) im-

ages acquired on 10 June 2018. The image location corresponds with path 164, row 38 from 
the USGS (https://earthexplorer.usgs.gov/). This date almost represents a peak in the phe-
nological development for the majority of PEUs in the area. Bands uninformative for veg-
etation mapping (cirrus, coastal aerosol and thermal-TIR bands) were excluded [24]. The 
Dark Object Subtraction method (DOS) was used to obtain image surface reflectance and 
to remove the atmospheric effects [25]. This method is a simple atmospheric correction 
that subtracts the lowest image digital values (DN) from all other DN values across an 
image. In other words, DOS subtracts the minimum DN existing in the image, considering 
it as the constant path irradiance (mostly in the pure water bodies), which is assumed to 
be systematically distributed over the image. 

Since, in this study, we aimed at merely distinguishing the qualitative value of PEUs 
(not, for instance, their quantitative forage yield that is more dependent on the image cor-
rection method), therefore, DOS was found appropriate to apply over the image [2]. Fi-
nally, the study area boundary was cut using the digital border map of the area. 

2.4. Methodology 
2.4.1. Multispectral Image’s Pan Sharpening 

The Landsat OLI-8 images spatial resolution vary from 30 m (multispectral bands) to 
15 m (panchromatic band). By having the opportunity to exploit the panchromatic band 
(having a wider spectral wavelength and higher spatial resolution) and consequently en-
hancing the possibility to discern PEUs border, multispectral bands of the 30 m resolution 
were pan-sharpened using the corresponding panchromatic band of 15 m spatial resolu-
tion. Atmospherically corrected raw bands of the multispectral Landsat-8 data (bands 2–
7) were stacked into a set of datasets and named “Raw bands”. 

2.4.2. Sampling PEUs and Classification System 
After distinguishing dominant PEUs within the study area, for each identified PEUs 75 

sample sites were observed and recorded by field excursion. The XY position of each repre-
sentative PEUs points were recorded using a Garmin eTrex 32× Handheld GPS. In total, 300 
samples were recorded for the four PEUs (Figure 1). The sample sites were then divided 
into two groups of 120 sites (40%) used for classification as the “training sites” and 180 sam-
ple sites (60%) used for the validation of classification results as the “testing sites”. 

2.4.3. PEUs Classification Using Different Classification Algorithms 
The goal of this study was to determine the most accurate PEU classification strategy 

by evaluating the accuracy of pixel- and object-based classifications using distinct classi-
fication algorithms. Although multiple classification approaches can be applied, the one 
that provides superior classification results for a specific study area and different factors 
mapping (land cover) is yet to be deduced. Four distinct classifiers were selected due to 
their different conceptual and mathematical designs, being: (1) Minimum Distance (MD), 
(2) Maximum Likelihood Classification (MLC), (3) Neural Network-Multi Layer Percep-
tron (NN-MLP), and (4) Classification Tree Analysis (CTA). These algorithms are briefly 
outlined below. 

MD undertakes a Minimum Distance to mean classification of data based on the in-
formation contained in a set of signature files. The MD to means classification is based on 
the mean reflectance on each band for a signature. Pixels are assigned to the class with the 
mean closest to the value of that pixel [26]. 

MLC is a traditional and statistical-based algorithm that due to its robustness and its 
availability is widely used in remote sensing classification applications [15]. In this classi-
fication algorithm pixels are determined to the most likely class based on a comparison of 
the posterior probability that it belongs to each of the signatures being considered [27]. 
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Neural networks are an interconnected group of nodes. Each node represents an arti-
ficial neuron with a connection from the output of one neuron to the input of another. Using 
the training dataset, weights are established for each neuron and the model is able to capture 
the non-linear relationships of the model. One of the most popular neural networks used in 
remote sensing is the feed-forward Multi-Layer Perceptron (MLP) neural network trained 
via backpropagation (BP) algorithm. The results are based on information from training 
sites. MLP also performs a regression analysis between input variables and one dependent 
variable with the output containing one output neuron, i.e., the predicted memberships. A 
typical MLP network contains one input layer, one output layer, and one or more hidden 
layers (though, one hidden layer is generally adequate for most problems) [6,28]. 

Classification Tree Analysis (CTA) successively splits training data to form homoge-
nous subsets resulting in a hierarchical tree of decision rules. In other words, the CTA 
algorithm is a top-down inductor of decision trees that expands nodes in depth-first order 
for each step using the divide-and-conquer strategy [29]. 

2.4.4. Segmentation 
In the object-based approach, the main step is to prepare image data apt for segmen-

tation. In our research, pan-sharpened multispectral bands of Landsat-8 images (as raw 
reflectance bands) were partitioned into homogeneous objects using a segmentation algo-
rithm in TerrSet ver.18, software. Segmentation groups adjacent pixels into image seg-
ments according to their spectral similarity and creates highly homogeneous image ob-
jects while minimizing the average heterogeneity at an arbitrary resolution [30]. Segmen-
tation employs a divide delineation strategy to partition input imagery based on their 
variance. A derived variance image is treated as a surface image allocating pixels to par-
ticular segments based on variance similarity. The objects created can be used as the base 
of the map classification and other processing procedures. During the segmentation pro-
cess, the weighting of input data and parameters such as weight mean and the variance 
factors must be controlled for evaluating the similarity between neighboring segments. In 
addition, the width and height of the moving window from which the module will derive 
a variance image of each layer and similarity tolerance must be specified [31]. To obtain 
the segmentation parameters with the greatest precision for each study, their ability to 
delineate PEU in various scenarios must be evaluated. Several parameters were initially 
tested: the most satisfactory combination for weight mean factor, weight variance factor, 
window width and similarity tolerance values were set as 0.5, 0.5, 3 and 5, respectively. 

2.4.5. Auxiliary Data and Prediction Assessment 
After selecting the most accurate algorithms identified in the previous stages, PCA 

bands (first three principal components) were subsequently incorporated to arise the ac-
curacy of PEUs classification process. This approach is intended to optimize the classifi-
cation accuracy in the sparsely vegetated arid rangeland with relatively similar reflec-
tance. These PCAs were generated using the spectral information and explained >99% of 
the data variation. 

For each classification process, the mapping accuracy was evaluated by means of the 
confusion matrix resulting from crossing ground truth image of “testing sites” and out-
come map of classification process. We built confusion matrices and estimated Kappa In-
dex of Agreement (KIA), Overall Accuracy (OA), Producer’s Accuracy (PA), and User’s 
Accuracy (UA). The producers and users’ accuracies for individual PEU classes were com-
pared in order to understand the best accuracy of the PEUs classes using auxiliary data 
(PCA). The OA is determined by dividing the total number of correctly classified pixels 
and indicates the percentage of correctly classified pixels. The Kappa coefficient usually 
serves to assess the statistical difference between classifications that indicate a more con-
servative estimation than simple percent agreement value. The Equations used to calcu-
late the KIA (1), OA (2), PA (3) and UA (4) are given as follows: 
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(KIA) =  ∑    ∑     ∑   (1)

OA =  ∑  (2)

PAj =  ,∑ ,  (3)

UAi =  ,∑ ,  (4)

where n is the total number of all classifications; Xij, is an element, located at ith row and 
jth column of the confusion matrix (or error matrix); PAj represents PA of class j, and UAi 
represents UA of class i. 

2.4.6. Statistical Comparison of Classification Algorithms 
As the confusion matrix only gives the performances of PEUs maps based on valida-

tion samples, we additionally computed the Friedman test. This test enabled us to assess 
whether there was a statistically significant difference between different classification al-
gorithms when using either pixel- or object-based approaches. 

Figure 2 shows the conducted workflow to assess the effects of different classification 
algorithms for PEUs classification accuracy. As depicted in this Figure, firstly multispec-
tral and panchromatic bands of Landsat OLI-8 images were downloaded and pan-sharp-
ened to modify the spatial resolution from 30 to 15 m. Then, by selecting the most accurate 
algorithms identified in the previous stage, auxiliary data (PCA) were subsequently in-
corporated in the second step to improve accuracy of PEUs classification process. So, PCA 
analysis was run to extract the first three principal components (PCAs) of the raw Landsat 
bands. The collected field samples were split into training (40%) and test data (60%); the 
first was used for signature development for classification and the latter for accuracy as-
sessment. Finally, the obtained maps from the different classification algorithms were val-
idated using in-field collected test data. 
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Figure 2. Workflow of mapping PEUs through combining images classification methods with clas-
sification algorithms. 

3. Results 
3.1. Pixel-Based Classification 

As shown in Figure 3, the four classifier algorithms led to varying classification re-
sults. On the whole, the maps as obtained by MLC, MD, and CTA classifiers showed sim-
ilar spatial patterns of PEUs. These algorithms showed that PEU1 and PEU4 mostly dis-
tributed in margins and sloping of the study area. PEU2 is mostly distributed at the center 
and flat area, but PEU3 is distributed in almost all regions with varying amounts. The map 
of the NN-MLP classifier allocated flat areas to PEU2 and steep areas to PEU1 and very 
little to the PEU4. Nevertheless, PEU3 was removed from the study area. The overall ac-
curacy results of each classifier, which is used in pixel-based PEUs classification. The over-
all accuracy for MLC, MD, NN-MLP and CTA was 78%, 57%, 55% and 67% respectively. 
The best pixel-based classification results are from the MLC, and machine learning algo-
rithms NN-MLP and CTA cannot improve overall pixel-based classification accuracies. 
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Figure 3. Comparison of pixel-based classification method: (A) Minimum Distance (MD); (B) Maximum Likelihood Clas-
sification (MLC); (C) Neural Network-Multi Layer Perceptron (NN-MLP); and (D) Classification Tree Analysis (CTA). The 
diagram shows the overall accuracy resulting from classifier performance, which is used in pixel based PEUs classifica-
tions. 

3.2. Object-Based Classification 
Unlike the pixel-based approach, no significant visual difference can be observed be-

tween object-based maps in spatial patterns of the PEUs. MLC, MD, NN-MLP and CTA 
classifiers led to similar spatial patterns of PEUs (Figure 4). All of the algorithms revealed 
that PEU1 and PEU4 mostly distributed in margins and sloping of the study area, PEU2 
mostly distributed at the center and flat areas, and PEU3 almost distributed in all regions. 
According to the overall PEUs accuracy assessment results among four classification al-
gorithms using the object-based approach, the best overall accuracy of 86% was obtained 
using the CTA classifier. The overall accuracy for MLC, MD and NN-MLP were 78%, 59% 
and 72%, respectively. 
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Figure 4. Comparison of Object-based classification method: (A) Minimum Distance (MD); (B) Maximum Likelihood Classi-
fication (MLC); (C) Neural Network-Multi Layer Perceptron (NN-MLP); and (D) Classification Tree Analysis (CTA). The 
diagram shows the overall accuracy resulting from classifier performance, which is used in Object based PEUs classifications. 

3.3. Comparing Supervised Classification Methods 
Accuracy assessments of the PEUs classification using different classification algo-

rithms are shown in Table 2. Of the 8 classification strategies evaluated, except for the 
MLC algorithm, there is not any significant difference between the object-based and pixel-
based approaches. So that in both methods of classification OA is 78%. While in other 
algorithms (MD, NN-MLP and CTA) the object-based approach outperformed the pixel-
based approach. 

MLC classification algorithm led to the highest overall kappa and overall accuracy 
(70% and 78%, respectively) when using the pixel-based approach. Also, in the object-
based approach, the CTA classification algorithm led to highest overall kappa and overall 
accuracy (80% and 86%, respectively). The results of this algorithm revealed an improve-
ment of the classification accuracy around 8%, 27% and 14% when comparing the MLC, 
MD and NN-MLP object-based classifiers, respectively. 

The overall accuracy for object-based classification with MD, NN-MLP, and CTA al-
gorithms than the pixel-based classification increased with 2%, 17% and 19%, respectively. 
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Table 2. Classification accuracies of PEUs using different classification algorithms. 

  MD MLC NN-MLP CTA 
 Type PA  UA  KIA  PA  UA  KIA  PA  UA  KIA  PA  UA  KIA  

PBCM 

PEU1 89 80 73 89 91 87 97 67 55 80 86 80 
PEU2 49 67 55 72 79 70 97 49 31 63 64 51 
PEU3 45 36 13 85 67 55 5 100 100 67 58 43 
PEU4 41 47 28 71 84 78 23 5 33 57 61 48 

OK = 42% OA = 57% OK = 70% OA = 78% OK = 39% OA = 55%   OK = 55% OA = 67%  

OBCM 

PEU1 89 84 77 89 93 90 93 91 88 97 90 86 
PEU2 63 61 47 72 75 65 69 58 43 93 80 72 
PEU3 32 34 100 83 64 51 65 50 32 83 81 73 
PEU4 50 52 35 69 86 81 41 90 86 69 96 95 

OK = 44% OA = 59% OK = 71% OA = 78% OK = 61% OA = 72%  OK = 80% OA = 86% 
Classification algorithms. MD: Minimum Distance, MLC: Maximum Likelihood Classification, (NN-MLP) Neural Net-
work-Multi Layer Perceptron, CTA: Classification Tree Analysis. Methods of classification: PBCM: Pixel-based Classifica-
tion Method, OBCM: Object-based Classification Method, PA%: Producer’s Accuracy, UA%: User’s Accuracy, KIA%: 
Kappa Index of Agreement, OA%: Overall Accuracy, and OK%: Overall Kappa. 

3.4. Impact of Auxiliary Data on PEUs Classification Accuracy 
While the first step determined the best classification methods and classification al-

gorithms for obtaining the most accurate PEU classification maps, in the second step, 
PCAs were additionally used as auxiliary data to improve accuracy in operational PEUs 
classification. The maps are shown in Figure 5. These data include Landsat OLI-8 false 
color-composite (RGB= bands 3 (green), 4 (red), 5 (infrared)) and the first three principal 
components of raw bands. 

 
Figure 5. (A) Landsat OLI-8 false color-composite (RGB); (B) PCA Index, used as auxiliary data to improve accuracy in 
operational PEUs classification. 



Remote Sens. 2021, 13, 3433 13 of 20 
 

 

The summary results of confusion matrices for the PEUs classifications achieved 
from object-based classification algorithms of raw bands (first step) as well as of raw bans 
and auxiliary data (second step) are presented in Table 3. In this table, producer accura-
cies, user accuracies, and kappa index of the agreement for each PEUs, overall kappa and 
overall accuracy of each classification process are reported. When raw bands were ap-
plied, PEU4 had the highest UA and KIA with 96 and 95%, respectively. However, PEU2 
led to the lowest UA and KIA with 80 and 72%, respectively. The overall kappa was 80 
and overall accuracy 86%. Merging the auxiliary data (PCAs) to the raw bands led to the 
improvement of object-based classification accuracies. The performance of auxiliary data 
showed that PCA returned the overall kappa accuracy to 85% and overall accuracy 89%. 
PEU1 led to the highest UA, PA, and KIA with 100, 97 and 100%, respectively, and PEU2 
led to lowest UA and KIA with 81 and 74%, respectively when PCAs bands in addition to 
raw bands were used for classification. The side-by-side comparison of the performance 
of raw bands and auxiliary data revealed that auxiliary data improved overall accuracy 
of 5% and overall kappa accuracy of 4% (Table 3). 

Table 3. Confusion matrix. Summary of classification accuracy for each PEU by raw bands and auxiliary data. 

Accuracy Assessment Results Based on Raw Bands Using Classification Tree Analysis 
Type PEU1 PEU2 PEU3 PEU4 PA  UA  KIA  
PEU1 44 0 0 5 97 90 86 
PEU2 0 42 8 3 93 80 72 
PEU3 0 3 37 6 83 81 73 
PEU4 1 0 0 30 69 96 95 

Overall Kappa: 80% Overall Accuracy: 86% 
Accuracy Assessment Results Based on Raw Bands + PCA Using Classification Tree Analysis 

Type PEU1 PEU2 PEU3 PEU4 PA UA  KIA 
PEU1 44 0 0 0 97 100 100 
PEU2 0 42 6 4 93 81 74 
PEU3 0 3 37 4 83 85 78 
PEU4 1 0 2 36 82 92 89 

Overall Kappa: 85% Overall Accuracy: 89% 
Auxiliary data. PCA: Principal Component Analysis, PA: Producer’s Accuracy %, UA: User’s Accuracy %, and, KIA: 
Kappa Index of Agreement %. 

Figure 6 reveals the effect of auxiliary data (PCAs) from raw bands on the accuracy 
of classification of PEUs. As shown in this Figure, the classification of most of the PEUs 
were neutral to auxiliary data while PEU4 significantly profits from the auxiliary data in 
terms of PA. As indicated in figure, all the PEUs significantly profit from the auxiliary 
data up to 10%, in terms of UA. Classification of most of the PEUs benefits from auxiliary 
data up to 14% in terms of KIA; however, the auxiliary data negatively affect KIA of PEU4 
by 6%. 

Figure 7 illustrates the most accurate map resulting from raw bands and auxiliary 
data PCAs using object-based classification that produced the highest overall Kappa ac-
curacy (85%) and overall accuracy (89%). In this map PEU4 is a combination of Shrub -
Tallgrass species that accounted for 45% of the entire study area. While PEU3 is a semi-
shrub species that covers little area, accounting for only 12%. PEU1 are shrub species and 
PEU2 are tallgrass species that accounted for 17% and 24%, respectively. 
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Figure 6. Effects of auxiliary data (PCA) on the accuracy of classification of PEUs. PA: Producer’s 
Accuracy, UA: User’s Accuracy and KIA: Kappa Index of Agreement. 

 
Figure 7. Result of the most accurate PEUs map classifications obtained from Classification Tree 
Analysis (CTA) algorithm and auxiliary data (PCA) using object-based classification method. 
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3.5. Statistical Comparison 
Based on the “Friedman test with the corresponding post-hoc” the Producer Accu-

racy, User Accuracy and Kappa index of agreement for PEUs Classes were calculated (Ta-
ble 4). Likewise, the comparison of the classifier algorithms used in pixel based and object-
based PEUs classification methods are illustrated in Table 1. We used the Friedman test 
to examine whether the differences between the different classifier algorithms are signifi-
cant. For the UA and KIA, statistically significant (sig < 0.05) differences appeared be-
tween PEUs classes. In addition, the PA is marginally (close to) significant. 

Table 4. Results of statistically significant comparison between PEUs accuracy and classifier algorithms accuracy. 

PEUs Accuracy Sig  
  Classification Algorithms PBCM-Sig OBCM-Sig 

User’s Accuracy (UA) 0.021 * 

MLC-MD 0.036 0.03 
MLC-NN 0.071 0.34 
MLC-CTA 0.22 0.66 
MD-NN 0.77 0.22 
MD-CTA 0.38 0.009 
NN-CTA 0.56 0.17 

Kappa Index of Agreement (KIA) 0.039 * 

MLC-MD 0.043 0.030 
MLC-NN 0.083 0.38 
MLC-CTA 0.24 0.66 
MD-NN 0.77 0.19 
MD-CTA 0.38 0.009 
NN-CTA 0.56 0.19 

Producer’s Accuracy (PA) 0.095    
The symbol “*” indicates that the difference is statistically significant, because the significant level is 0.05. 

4. Discussion 
The construction of an accurate, fast and simple model for extracting land cover in-

formation and vegetation maps is of concern to natural resources managers and ecol-
ogists. With the purpose of accurately classifying PEUs across heterogeneous rangelands 
at the landscape level, four different classifier algorithms were evaluated using pixel-
based and object-based approaches. The classification scheme used for separating PEUs 
is based on the premise that each class is the result of a distinct combination of index 
species. These index species are the compositional and ecological factors used to separate 
the PEUs classes. We started with the four dominant PEU classes that account together of 
the study area: PEU1 (Astragalus verus Olivier (As ve)), PEU2 (Bromus tomentellus Boiss 
(Br to)), PEU3 (Scariola orientalis Sojak (Sc or)) and PEU4 (Astragalus verus Olivier—Bro-
mus tomentellus Boiss (As ve—Br to). Extraction of PEUs maps is challenging due to the 
complex spatial structure of the landscape and similar spectral behavior. The OLI sensor 
images have already demonstrated their utility for vegetation mapping due to its high 
temporal and spatial resolution and temporal resolution and high quantization [32]. Nev-
ertheless, in our region, the OLI spatial resolution of 30 m likely reflects numerous mixed 
pixels and consequently low precision specifically at subclass of rangeland land-cover i.e., 
PEUs. In an attempt to circumvent this mixed-pixels problem, the images were pan-sharp-
ened using panchromatic band (band 8) to improve the spatial resolution of the bands. 

4.1. The Selection of Pixel-Based and Object-Based Approaches in PEUs Classification 
Based on four classification methods applied to PEUs mapping using the Landsat 8 

pan-sharpened bands, it was revealed that object-based methods clearly outperformed 
pixel-based methods. Similarly, previous studies (e.g., [19,33]) have demonstrated that 
object-based classification methods can provide superior classification accuracy than 
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pixel-based classification methods. As shown in Figure 3 the classification maps produced 
by the pixel-based classification method presented a noticeable “salt-and-pepper” appear-
ance. In the pixel-based classification method, many of the pixels were assigned to classes 
that were different from those of the adjacent membership, and usually exploit only spec-
tral information. Therefore, the PEUs showed nonhomogeneous coverage and were char-
acterized by a salt-and-pepper effect that makes it difficult to separate PEUs classes. Con-
versely, the object-based classification methods were less exposed to these problems. Clas-
sified PEUs based on this method had distinct partition zones of PEUs and provided PEU 
class uniformity (Figure 4). In the object-based approach, the optimization of segmenta-
tion parameters, especially the scale parameter, improved the accuracy of the classifica-
tion map [34]. 

4.2. Selection Best Classification Algorithm 
For the MD, NN-MLP and CTA algorithms, the object-based strategy outperformed 

the pixel-based one, while the MLC algorithm revealed no significant differences between 
both strategies. Hence, these results suggest that with MLC both pixel/object-based meth-
ods can be used to classify PEUs with respect to overall classification accuracy. Similarly, 
in the study of Xie [16] it was concluded that when spectral bands were used for classifi-
cation, MLC outdid machine learning algorithms. However, the CTA algorithm, followed 
by NN-MLP, led to the most accurate results that were reached with the object-based ap-
proach, with improvements of overall accuracy up to 19% and 17%, respectively. Tree-
based algorithms such as Decision Trees, Gradient Boosting and Random Forest are con-
sidered among the most powerful machine learning classifiers. The CTA algorithm, some-
times referred to as decision trees (DT) or classification and regression tree analysis 
(CART), has shown promise for improving classification accuracy, and has received in-
creasing attention. For instance, [17] found that for landform classification the DT algo-
rithm yielded most accurate results. Likewise, Decision tree analysis, such as CTA, holds 
advantages over traditional supervised algorithms such as maximum likelihood classifi-
cation. This algorithm being insensitive to noise in input data generally tends to perform 
fast, robust and efficient [35]. In addition, the CTA algorithm can perform well at an opti-
mal segmentation scale, and is sensitive to segmentation scale variation. Additionally, it 
can easily handle missing values and can incorporate continuous variables as well as cat-
egorical auxiliary data. It makes sense that the CTA algorithm was evaluated as the most 
reliable method for PEUs discrimination. In addition, here the CTA algorithm showed an 
obvious preference towards object-based classification strategies for PEUs classification. 
At the same time, probably further gain in accuracy can be achieved when moving to-
wards Random Forest (RF). RF is an automated iteration of CTA, i.e., it generates multiple 
decision trees for developing the classification model. This algorithm is especially power-
ful for situations when having a large dataset available, and the interpretability of the 
model is not a major concern [2]. 

4.3. Impact of Auxiliary Data on PEUs Classification Accuracy 
The second model is based on auxiliary data along with raw bands to obtain the most 

accurate map of PEUs. PCAs is a linear transformation method, which is valuable in im-
proving PEUs classification accuracy. The results of the second stage (Table 3) showed 
combinations of PCA with raw bands can improve overall classification accuracy. The 
comparison of the performance of raw bands and auxiliary data showed that auxiliary 
data improved overall accuracy 3% and overall kappa of 5%. 

The purpose of PCA is to reduce the number of dimensions by gathering the most 
useful variations. When considering the first three PCAs, more than 99% of spectral infor-
mation is presented, thereby reducing noise and therefore improving classification accu-
racies [36]. Likewise, it seems that these auxiliary data compensate for the effects of bare 
soil reflectance on the received signals by the sensors of the raw bands and presents more 
pure pixels associated to PEUs. PEU1 benefited most from auxiliary data (10%). In the 
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study area PEU1 is a shrubby species (As ve) and distributed in more steep slopes (Figure 
7). Due to their higher canopy cover and consequently delivering pure pixels, therefore, 
spatial distribution of PEU1 was improved. So, PEU1 was well extracted, especially in the 
object-based CTA algorithm and auxiliary data. PEU2 is a tallgrass species (Br to) and 
distributed mainly in the flat areas. As shown in Table 3, PEU2 is the most difficult class 
to identify due to its wide and complex presence in the vegetation structure. Meanwhile, 
the highest classification accuracy of the PEU2 with 81% UA was well portrayed by the 
object-based CTA algorithms and auxiliary data. PEU3 are semi-shrub species that cover 
little areas (Figure 7). PEU3 is dominated by semi-shrub species (Sc or) that cover little 
areas. This class is characterized by irregular and sparse distribution with areas of bare 
soil frequently visible between plants ranging from a few square centimeters to several 
square meters to even some meters in some cases. Ultimately, sensors record the reflec-
tance of a mixture of vegetation and soil, and the error rate increases in this PEU. This 
class benefited by including PCA (up to 4% UA). Likewise, the highest classification ac-
curacy of the PEU3 with 85% UA was well portrayed by the object-based CTA algorithms 
and auxiliary data. It seems that these auxiliary data compensate for the effects of bare 
soil reflectance on the received signals by the sensors of the raw bands and presents more 
pure pixels of these PEUs. PEU4 is the combination of shrub-tallgrass species (As ve—Br 
to) and occurs evenly almost throughout the whole study area. This class, by the object-
based classification with CTA algorithm, had the highest classification accuracy with 95% 
accuracy. As shown in Figure 7, PCA negatively affects PEU4. This class consists of two 
dominant species, having dissimilar spectral behavior due to life-form differences; also, 
PEU4 occurs evenly almost throughout the whole study area, therefore, causing more pix-
els that are mixed. The PCA components cannot detect and eliminate these errors and 
were mostly negative for the classification of PEU4. So far, most of the land classification 
process has been implemented on the main land cover classes using medium resolution 
images e.g., Macintyre [1] with OA, 50–74%, Pflugmacher [24] with OA, 75.1%, Feng [23] 
with OA, 76%, Isabel [17] with OA, 72%. In these studies, thanks to the existence of phe-
nomena with distinct spectral behaviors identification and isolation of various phenom-
ena have been achieved with high accuracy and led to accurate classification maps. 

Here, the similar spectral behavior of PEUs species in the heterogeneous rangelands 
complicated the accurate identification of the PEUs boundaries. Subclasses of a land cover, 
such as PEUs as a subclass of rangeland cover, are more spectrally similar than that of a 
higher hierarchical land cover, especially when medium spatial resolution imagery like 
Landsat OLI-8 data is used for mapping. Furthermore, since this study was conducted in 
a relatively arid region, surface reflectance values of PEUs are often mixed with infor-
mation of background soil reflectance. Bare soil reflectance imposes a significant impact 
on the spectral behavior of PEUs characterized by sparse vegetation cover, and usually 
hides the spectral responses of patches of vegetation covers. Likewise, in a related study 
about land use/cover classification in arid rangelands, Genbatu Ge [37] observed that 
rangelands were composed of herbs and shrubs with high spectral similarity, which com-
plicated the classification result. Another remark is that we only exploited reflectance 
from a single date Landsat image with overall classification accuracies of 89%, suggesting 
that improvements can be obtained when including temporal data. For instance, Stumpf 
[38] emphasized that seasonal time-series images contain the temporal aspects of natural 
phenomena on the grassland surface, and are beneficial for discriminating different land 
cover types and monitoring vegetation dynamics. Finally, also geographical location plays 
a role in the accuracy of PEUs classification. The ecological factors of the plant system will 
be obviously different due to changes in soil, climate and topography. It implies that the 
here developed classification models may not be directly transferable to other regions. 
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5. Conclusions 
Our analysis provides insights into the way advanced classification algorithms can 

identify heterogeneous vegetation communities with similar spectral behavior and a com-
plex landscape structure. The presented results underline that in a heterogeneous land-
scape accurate PEUs mapping is determined according to the type of supervised classifi-
cation, pixel-based or object-based methods, and the choice of the classifier algorithm. 
Four classification algorithms applied to PEUs classification revealed that the results of 
the classification algorithms varied considerably, so that the CTA algorithm yielded the 
most accurate results, followed by MLC and NN-MLP. In addition, the object-based meth-
ods clearly outperformed the pixel-based ones. Not all spectral bands offered valuable 
information in the classifications. Merging auxiliary PCA bands derived from the original 
Landsat imagery together with the raw bands offered the most valuable information to 
distinguish PEUs, with an overall accuracy of 89%. The development of a comprehensive 
classification procedure and deep learning algorithms may stimulate new research direc-
tions for accurate PEUs mapping. 
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