
pharmaceuticals

Review

A Comprehensive Review and Perspective on Natural Sources
as Dipeptidyl Peptidase-4 Inhibitors for Management
of Diabetes

Sibhghatulla Shaikh 1,2,† , Eun-Ju Lee 1,2,† , Khurshid Ahmad 1,2 , Syed-Sayeed Ahmad 1,2, Jeong-Ho Lim 1

and Inho Choi 1,2,*

����������
�������

Citation: Shaikh, S.; Lee, E.-J.;

Ahmad, K.; Ahmad, S.-S.; Lim, J.-H.;

Choi, I. A Comprehensive Review

and Perspective on Natural Sources

as Dipeptidyl Peptidase-4 Inhibitors

for Management of Diabetes.

Pharmaceuticals 2021, 14, 591.

https://doi.org/10.3390/ph14060591

Academic Editors: Magdalena
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Abstract: Type 2 diabetes mellitus (T2DM) is an increasing global public health problem, and its
prevalence is expected to rise in coming decades. Dipeptidyl peptidase-4 (DPP-4) is a therapeutic
target for the management of T2DM, and its inhibitors prevent the degradation of glucose-dependent
insulinotropic peptide and glucagon-like peptide 1, and thus, maintain their endogenous levels
and lower blood glucose levels. Various medicinal plant extracts and isolated bioactive compounds
exhibit DPP-4 inhibitory activity. In this review, we discussed different natural sources that have been
shown to have anti-diabetic efficacy with a particular emphasis on DPP-4 inhibition. Furthermore,
the effect of DPP-4 inhibition on pancreatic beta cell function, skeletal muscle function, and the
glucose-lowering mechanisms were also discussed. We believe that scientists looking for novel
compounds with therapeutic promise against T2DM will be able to develop antidiabetic drugs using
these natural sources.

Keywords: diabetes; dipeptidyl peptidase-4; medicinal plants; natural compounds

1. Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic condition marked by a prolonged
hyperglycemic state caused by a combination of underlying defects, which include insulin
tolerance in muscle and liver, and reduced insulin production by pancreatic beta cells [1,2].
T2DM is the most prevalent form of diabetes and accounts for about 91% of all cases,
and the disease has been predicted to affect about 366 million people by 2030 [3]. T2DM
is marked by enhanced blood glucose (BG) levels and microvascular and macrovascu-
lar complications that substantially enhance disease-associated morbidity and mortality,
and epidemiological data show that people with diabetes are at slightly higher risk of
developing various types of cancer, and musculoskeletal, cardiovascular, and psychiatric
disorders [4–7]. Dipeptidyl peptidase-4 (DPP-4) has emerged as a target in T2DM, and as a
result, its inhibitors are attracting increased research interest. DPP-4 accelerates the degra-
dations of the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose-dependent
insulinotropic peptide (GIP) by removing a dipeptide from their N termini, resulting in al-
tered glucose homeostasis. Interestingly, DPP4 knockout mice are resistant to diet-induced
obesity and have better postprandial glucose balances than their counterparts [8,9].

Insulin controls the metabolism of carbohydrates, fats, and proteins [10], and thus, any
defects in insulin synthesis or its activities cause severe metabolic complications. Insulin is
produced by pancreatic beta cells, and as T2DM progresses, beta cell functions decline due
to rising hyperglycemia and insulin resistance. This cellular decline can start early during
the course of T2DM and worsens due to compensatory overload, which accelerates disease
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progression. Beta cell dysfunction results from deficient glucose sensing, and thus, insulin
release, which increases glucose concentrations [11,12].

Many plants have been used to treat diabetes, and interest in medicinal plants as a
source of medicines has increased [13,14]. Herbal medicines are considered to importantly
complement oral hypoglycemic agents for the management of T2DM, and to have played
important roles in the management of diabetes in several countries by preventing diabetic
complications and fixing metabolic irregularities [15,16]. We undertook the present review
to provide an update on the latest advances made to develop DPP-4 inhibitors derived
from natural resources.

2. Dipeptidyl Peptidase-4

DPP-4 (also termed cluster of differentiation 26, CD26) is a serine exopeptidase, a
220 kDa homodimeric type II transmembrane glycoprotein, found on the surfaces of
different cell types. DPP-4 cleaves X-proline dipeptides from polypeptides including
chemokines, neuropeptides, and peptide hormones at their N-termini, and is expressed
in a variety of tissues, including endothelial cells in various vascular beds, which makes
it particularly accessible to peptide substrates in gut, stomach, kidney, and liver [17].
The DPP4 gene encodes a 766-amino-acid protein and is located on chromosome 2q23 in
man [18]. After being synthesized, DPP4 is immediately integrated into plasma membranes.
It is a type II surface protein, which means most of the structure, including its C-terminal
domain, is located in the extracellular domain. However, DPP4 can be released from
the membrane in response to certain stimuli, such as insulin resistance, tumor necrosis
factor-alpha, and chronic low-grade inflammation, resulting in its soluble form [19].

3. Incretin Hormones

Incretins are a class of metabolic hormones that stimulate a drop in BG levels. Incretin
deficiency/resistance plays a vital role in the progression of T2DM. GLP-1 and GIP are the
two main human incretins that control the maintenance of glucose homeostasis. GLP-1 is
released by intestinal endocrine L-cells, which are often found in ileum and colon, whereas
GIP is secreted by intestinal K-cells in the more proximal regions (duodenum and jejunum)
of the small intestine [20]. In response to nutrient consumption and/or enhanced BG levels,
GLP-1 and GIP are released from the gastrointestinal tract. These two incretins enhance the
action of insulin, inhibit the release of glucagon, and reduce liver glucose production, which
in healthy individuals lowers BG levels. GLP-1 and GIP are the best-characterized DPP-4
substrates in terms of metabolic effects. In T2DM, endogenous GLP-1 is quickly degraded
by DPP-4, and thus, its insulinotropic function is lost. On the other hand, preventing
this degradation results in higher GLP-1 levels and enhanced pancreatic islet response,
and improved glucose homeostasis. DPP-4 also effectively cleaves GIP, and inhibiting
DPP-4 enhances GIP levels and its effects [20]. Therefore, DPP-4 is viewed as an important
therapeutic target for the management of T2DM (Figure 1).
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Figure 1. Proposed mechanism of DDP-4 inhibition. In response to nutrient intake and/or an enhanced BG level, incretins 
(GLP-1 and GIP) are released from the gastrointestinal tract. These two incretins enhance insulin synthesis and secretion 
and inhibit the release of glucagon, and thus, reduce BG levels in healthy individuals. However, in T2DM, DPP-4 rapidly 
degrades both incretins and renders them inactive. DPP-4 inhibitors act by preventing DPP-4-induced incretin degrada-
tion, increasing intact GLP-1 and GIP levels, and improving glucose homeostasis. 

4. Commercialized DPP-4 Inhibitors for the Treatment of Diabetes 
GLP-1 and GIP both control insulin release in a glucose-dependent manner. How-

ever, endogenous GLP-1 and GIP have plasma half-lives of ~7 and 1 to 2 min, respectively, 
due to their rapid enzymatic deactivations by DPP-4. The biological activities of these two 
peptides are determined by the Xaa-pro and Xaa-ala sequences, which also act to prevent 
non-specific proteolysis [21,22]. Several DPP-4 inhibitors, such as gliptin, are currently 
approved for the treatment of T2DM. The first DPP-4 inhibitor approved by the FDA was 
sitagliptin [23], which was followed by vildagliptin [24], saxagliptin [25], alogliptin [26], 
and linagliptin [27]. More recently, the following inhibitors were approved; anagliptin 
[28], gemigliptin [29], and teneligliptin [30] in 2012; evogliptin [31], omarigliptin [32], and 
trelagliptin [33] in 2015; and gosogliptin [34] in 2016. While their binding characteristics 
and pharmacokinetic properties vary, all DPP-4 inhibitors are orally active, selective for 
DPP-4, and have a high affinity for the enzyme [35]. Table 1 lists commercialized DPP-4 
inhibitors along with their brand name and approval year. 

Table 1. Commercial DPP-4 inhibitors. 

S.No. DDP-4 Inhibitor Brand Name Year of Approval 
1.  Sitagliptin Januvia 2006 
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12.  Gosogliptin Satyor 2016 

 

Figure 1. Proposed mechanism of DDP-4 inhibition. In response to nutrient intake and/or an enhanced BG level, incretins
(GLP-1 and GIP) are released from the gastrointestinal tract. These two incretins enhance insulin synthesis and secretion
and inhibit the release of glucagon, and thus, reduce BG levels in healthy individuals. However, in T2DM, DPP-4 rapidly
degrades both incretins and renders them inactive. DPP-4 inhibitors act by preventing DPP-4-induced incretin degradation,
increasing intact GLP-1 and GIP levels, and improving glucose homeostasis.

4. Commercialized DPP-4 Inhibitors for the Treatment of Diabetes

GLP-1 and GIP both control insulin release in a glucose-dependent manner. However,
endogenous GLP-1 and GIP have plasma half-lives of ~7 and 1 to 2 min, respectively, due
to their rapid enzymatic deactivations by DPP-4. The biological activities of these two
peptides are determined by the Xaa-pro and Xaa-ala sequences, which also act to prevent
non-specific proteolysis [21,22]. Several DPP-4 inhibitors, such as gliptin, are currently
approved for the treatment of T2DM. The first DPP-4 inhibitor approved by the FDA was
sitagliptin [23], which was followed by vildagliptin [24], saxagliptin [25], alogliptin [26],
and linagliptin [27]. More recently, the following inhibitors were approved; anagliptin [28],
gemigliptin [29], and teneligliptin [30] in 2012; evogliptin [31], omarigliptin [32], and
trelagliptin [33] in 2015; and gosogliptin [34] in 2016. While their binding characteristics
and pharmacokinetic properties vary, all DPP-4 inhibitors are orally active, selective for
DPP-4, and have a high affinity for the enzyme [35]. Table 1 lists commercialized DPP-4
inhibitors along with their brand name and approval year.

Table 1. Commercial DPP-4 inhibitors.

S.No. DDP-4 Inhibitor Brand Name Year of Approval

1. Sitagliptin Januvia 2006

2. Vildagliptin Galvus 2007

3. Saxagliptin Onglyza 2009

4. Alogliptin Nesina and Vipidia 2010

5. Linagliptin Tradjenta, Trajenta 2011

6. Anagliptin Suiny 2012

7. Gemigliptin Zemiglo 2012

8. Teneligliptin Tenelia 2012

9. Evogliptin Suganon 2015

10. Omarigliptin Marizev 2015

11. Trelagliptin Zafatek 2015

12. Gosogliptin Satyor 2016
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5. DPP-4 Inhibition and Pancreatic Beta Cell Function

DPP-4 antagonists provide long-term, reliable, and effective treatments for T2DM
that provide strong glycemic control. GLP-1 and GIP act on G-protein coupled receptors,
which are expressed on pancreatic beta and alpha cells and in peripheral tissues, to lower
glucose levels [20]. GLP-1 enhances insulin secretion, insulin gene transcription, and
insulin biosynthesis by acting on pancreatic beta cells [36].

T2DM causes a gradual reduction in beta cell activity, and thus, to reverse insulin
secretory defects, beta cell activity must be restored. Given that GLP-1 has been reported
to induce the proliferation and inhibit the apoptosis of beta cells in rodents and to induce
beta cell differentiation from human precursor cells [37,38], it seems safe to assume that
DPP-4 inhibition enhances GLP-1 levels, and thus, improves beta cell mass and survival.
Animal studies have shown that DPP-4 inhibitor promotes islet neogenesis, beta cell
regeneration, and/or improved insulin biosynthesis, and thereby preserves or increases
beta cell numbers [37,39]. Accordingly, histological analysis of pancreases after DPP-4
inhibitor treatment revealed elevated numbers of islets and beta cells [37].

DPP-4 inhibition has been shown to reduce T2DM-induced beta cell dysfunction and
apoptosis in in vitro and in pre-clinical studies. DPP-4 is present in mouse and human
islets, and inhibiting islet DPP-4 activity has been shown to have a direct stimulatory
effect on GLP-1-dependent insulin secretion [40,41]. A similar effect was demonstrated
in db/db diabetic mice after 2 weeks of des-F-sitagliptin treatment, which resulted in
enhanced insulin exocytosis by beta cells [42]. In addition, DPP-4 inhibition has been
related to beta cell mass and functional increases in several T2DM models [43,44], and the
transcriptional activations of anti-apoptotic and pro-survival genes have also been linked
to these positive effects in beta cells [45]. Furthermore, the DPP-4 inhibitor linagliptin
has been shown to protect isolated human islets from gluco- and lipotoxicity [46], and
interestingly, vildagliptin has been shown to have antioxidant properties, as evidenced
by dose-dependent reductions in nitric oxide concentrations in serum and pancreatic
homogenates of diabetic rats [47].

6. DPP-4 Inhibitors Improve Blood Glucose Response

DPP-4 inhibitors have been shown to decrease BG levels in T2DM patients by continu-
ous glucose monitoring (CGM) [48–50]. In addition, various randomized controlled trials
have shown by CGM that DPP-4 inhibitors suppress BG levels more efficiently than other
agents such as sulfonylureas [51,52] or sodium glucose cotransporter 2 inhibitors [53–55]
when used in combination with insulin administration [56,57]. DPP-4 inhibitors that
enhance insulin secretion and decrease prandial glucagon levels have been shown to
improve BG levels [49], and reductions in prandial glucagon levels are considered to un-
derlie improvements in BG levels by DPP-4 inhibitors [58]. Vildagliptin was reported to
lower postprandial glucagon levels and improve hyperglycemia in T2DM patients [58],
and DPP-4 inhibitors were observed to increase the abilities of alpha and beta cells to
detect and respond to hypoglycemia [59]. Furthermore, DPP-4 inhibitors can improve
both hyperglycemia and hypoglycemia [60,61]. Moreover, when DPP-4 inhibitors block
persistent glucagon oversecretion [58], glucagon responds normally to a drop in BG level
and ameliorates hypoglycemia [59]. Overall, these studies show that DPP-4 inhibitors can
improve hypoglycemia/hyperglycemia and BG levels in T2DM patients.

7. DPP-4 Inhibition and Skeletal Muscle Function

Skeletal muscles (SM) comprise the largest organ in the body, and thus, process
the largest amounts of administered drugs [62]. Furthermore, muscle has recently been
reported to release DPP-4 [63]. SM cell cultures were observed to release DPP-4 during
differentiation [64], and DPP-4 activity in the bathing medium from intact SM was found to
be enhanced by whey protein in situ [65]. DPP-4 inhibitors were also found to reduce SM
loss in T2DM patients [66]. Recently, sitagliptin was reported to increased muscle mass and
muscle/fat ratio in T2DM [67], and natural DPP-4 inhibitors such as chrysin and galangin
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were reported to promote SM cell proliferation [68,69]. Furthermore, in a diabetic animal
model, myricetin administration reduced DDP-4 expression in muscle [70]. Overall, these
studies revealed that DPP-4 inhibitors have a positive effect on SM, increasing SM cell
proliferation and the muscle/fat ratio in diabetic patients.

8. DDP-4 Inhibitors from Natural Sources

Nature is a plentiful source of medicinal herbs, and several natural foods that contain
bioactive components with health benefits are commonly used as herbal remedies for
many life-threatening diseases [71–73]. Herbal remedies offered a valuable resource for
pharmacological agents for diabetes even before insulin and other pharmacological drugs
were discovered, and have become an increasingly important aspect of searches for curative
and adjunctive treatments [74]. Below, we detail plants with extracts that inhibit DPP-4
and their corresponding IC50 values; a summary is also provided as a list in Table 2.

8.1. Urena lobata

Urena lobata (Caesar weed or Congo jute) is a traditional herb found in many countries
and has promising biological activities. U. lobata root extract had antihyperglycemic effects
on streptozotocin-induced diabetic rats [75], and in vitro, an ethanolic extract of U. lobata
showed 4-fold greater DPP-4 inhibitory activity (IC50 = 1.65 mg/mL) than water extract
(IC50: 6.49 mg/mL) [76].

8.2. Anogeissus latifolia and Aegle marmelos

Anogeissus latifolia and Aegle marmelos are members of the Combretaceae and Rutaceae
families, respectively, and are used traditionally to treat diabetes, hemorrhages, diarrhea,
asthma, dysentery, skin diseases, leprosy, and hepatopathy [77,78]. A. latifolia and A.
marmelos extracts inhibited DPP-4 with IC50 values of 754 and 790 µg/mL, respectively, and
improved glucose homeostasis and insulin release in high-fat diet (HFD)-diabetic rats [79].

8.3. Castanospermum austral

Castanospermum austral (also called black bean) is an herb that grows in Australian
coastal regions and rainforests. C. australe seed extract inhibited DPP-4 with an IC50 of
13.96 µg/mL, while the control compound diprotin A had an IC50 of 1.543 µg/mL. In
addition, in a T2DM animal model, C. australe seed extract lowered BG levels, prevented
hyperinsulinemia, and increased glucose tolerance [80].

8.4. Fagonia cretica and Hedera nepalensis

Fagonia cretica (FC) belongs to the Zygophyllaceae (Caltrop) family, and Hedera nepalen-
sis is a member of the family Araliaceae and is found in Nepal and Bhutan, Afghanistan,
Pakistan, India, China, Myanmar, Thailand, and Vietnam. The crude extracts of FC and H.
nepalensis strongly inhibited DPP-4 with IC50 values of 38.1 and 17.2 µg/mL, respectively.
Four compounds (quinovic acid, quinovic acid-3β-O-β-D-glycopyranoside, quinovic acid-
3β-O-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester, and stigmasterol) isolated
from FC had IC50 values of 30.7, 57.9, 23.5, and >100 µg/mL, respectively [81].

8.5. Eugenia jambolana and Pterocarpus marsupium

Eugenia jambolana is an evergreen, tropical, fruit-producing tree found in South Asia
and South America, while Pterocarpus marsupium is native to India, Nepal, and Sri Lanka.
Both P. marsupium and E. jambolana had potent inhibitory effects on DPP-4 with IC50 values
of 273.73 and 278.94 µg/mL, respectively [82].

8.6. Chenopodium quinoa Willd

Quinoa (Chenopodium quinoa Willd) is a flowering plant of the amaranth genus Ama-
ranthaceae. Quinoa is a gluten-free grain that has a greater protein content than other
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grains including wheat, rice, maize, oat, and barley. Analysis of quinoa protein hydrolysate
revealed potent DPP-4 inhibitory activity (IC50 0.88 mg/mL) [83].

8.7. Allium sativum

Allium sativum (garlic), a member of the Alliaceae family, is widely used as a spice and
as a treatment for a variety of diseases and physiological conditions [84]. Its bulb extract
inhibits DPP-4 activity (IC50 70.9 µg/mL) and enhances SM cell proliferation [85].

8.8. Pilea microphylla

Pilea microphylla (the gunpowder plant) is an annual herb found in Florida, Mexico, and
tropical Central and Southern America. In vitro, P. microphylla inhibited DPP-4 with an IC50
of 520.4 µg/mL. In addition, in an HFD/streptozotocin-induced diabetic rat, P. microphylla
reduced plasma glucose and prevented beta cell destruction [86].

8.9. Mangifera indica

Mangifera indica (MI) is an ayurvedic herb that belongs to the Anacardiaceae family.
MI leaf extract has been shown to have hypoglycemic properties [87]. The extract of its
leaves was tested in vitro for DPP-4 inhibitory activity, and the results reveal an IC50 of
182.7 µg/mL [88]. The main phytochemical in MI is mangiferin. In HFD/streptozotocin-
induced diabetic rat, lower serum DPP-4 levels were associated with improved insulin
resistance and improved beta cell function [89].

8.10. Lilium longiflorum

Lilium longiflorum (Liliaceae) bulbs are used as food ingredients and herbal medicines
in East Asia. Treatment with the ethyl acetate fraction of L. longiflorum was shown to inhibit
DPP-4. Five compounds were purified from the ethyl acetate fraction of L. longiflorum, and
compounds 2 and 5 were found to exhibit DPP-4 inhibitory activity with IC50 values of
46.19 and 63.26 µM, respectively [90].

8.11. Coreopsis lanceolata

Coreopsis lanceolata is a perennial herb of the Compositae family. A methanol extract
of the flowers of C. lanceolata was found to inhibit DPP-4 activity by 87.2%. Among the
various compounds isolated, compounds 2–4, 6, and 7 inhibited DPP-4 in a concentration-
dependent manner, with IC50 values ranging from 9.6 to 64.9 µM [91], which suggests
that flowers of C. lanceolata and their active components have potential for the treatment
of T2DM.

8.12. Psidium guajava L.

Psidium guajava L. (Guava) is a member of the Myrtle family (Myrtaceae). Guava
leaves have a long history of use in traditional and conventional medicine that spread from
South America to tropical Asia and Africa. Ethanolic guava leaf extract (IC50 380 µg/mL)
and flavonol glycosides isolated from the extract inhibited DPP-4 in a dose-dependent
manner [92].

8.13. Melicope glabra

Melicope glabra is a tree of the Rutaceae family herb and an important source of
flavonoids and coumarins. The plant is native to Sumatra, Peninsular Malaysia, Singapore,
Java, and Borneo. The chloroform extract of the leaves of M. glabra effectively inhibited
DPP-4 with an IC50 of 169.40 µg/mL. Computational analysis showed that compounds (8)
and (7) in this extract are potent DPP-4 inhibitors based on their binding affinities and
extensive interactions with important DPP-4 residues [93]. The phytochemical profiles of
these compounds indicated their potential as DPP-4 inhibitors.
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8.14. Hibiscus rosa-sinensis

Hibiscus rosa-sinensis (HRS) is a tropical flowering plant that is common in Asia and is
used in herbal medicine to treat a variety of ailments, such as cough, diarrhea, and diabetes.
An ethanol extract of HRS significantly inhibited DPP-4 activity, increased insulin release,
and thus, improved glucose tolerance in type 2 diabetic rats [94].

8.15. Annona squamosa

Annona squamosa, commonly called ‘Ata’, is a small tree that belongs to the Annonaceae
family and is native to Bangladesh. This herb is well known for its various medicinal
properties, which include antioxidant, anti-diabetic, and hepatoprotective effects [95]. Hot
water extract of A. squamosa was recently reported to promote cellular glucose absorption
and the secretion/action of insulin, and to suppress DPP-4 activity [96].

8.16. Emblica officinalis

Emblica officinalis, commonly known as Indian gooseberry (amla), is a member of the
Phyllanthaceae family and used as a folk medicine to treat various diseases, including
diabetes. Amla fruit extract inhibited DPP-4 (IC50 3770 µg/mL) and alpha-glucosidases
and exhibited antioxidant properties [97].

8.17. Berberis aristata

Berberis aristata belongs to the Berberidaceae family and is a shrub native to the
Himalayas in India and Nepal. The roots of this plant have antibacterial, anti-inflammatory,
analgesic, antioxidant, and hepatoprotective properties, and its crude bark extract inhibited
DPP-4 activity with an IC50 of 14.4 µg/mL [98].

8.18. Avena sativa

Avena sativa, also called the common oat, is a member of the Poaceae family and is
widely cultivated in Western China as a staple food. A. sativa is considered a functional
food due to its health-promoting properties. Oat flour was found to inhibit DPP-4 with an
IC50 of 0.99 mg/mL [99].

8.19. Camellia sinensis

Camellia sinensis is a member of the Theaceae family and native to China and South-
east Asia. The principal component of C. sinensis is caffeine, which acts as a secondary
metabolite. Extract of C. sinensis leaves inhibited DPP-4 activity with an IC50 value of
227 µg/mL [100].

8.20. Vitis thunbergii var. taiwaniana

The leaves and fruit of the small-leaf grape (Vitis thunbergii var. taiwaniana, VTT) are
smaller than those of Vitis vinifera (standard grape). VTT is used in folk medicine to treat
hepatitis, jaundice, diarrhea, and arthritis, and ethanol extracts of the stems and leaves
of VTT inhibited DPP-4 activity by 26 and 11%, respectively. The VTT ethanol extracts
treatment improved the impaired glucose tolerance of diet-induced obese animals [101].

8.21. Prunus amygdalus

Prunus amygdalus (also called badaam) is a member of the Rosacease family and is
widely distributed in India, especially in the Himalayan region. P. amygdalus has several
health benefits, which include antioxidative, lipid-reducing, anti-cancer, anti-inflammatory,
and immunostimulatory effects. P. amygdalus extract inhibited DPP-4 activity with an IC50
of 162.9 µg/mL [102].
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8.22. Ferula assa-foetida

Ferula assa-foetida is an herbaceous plant of the Apiaceae family and has a number of
medicinal properties. The ethanolic fraction of F. assa-foetida inhibited DPP-4 activity by
24.5% [103].

8.23. Helichrysum arenarium

Helichrysum arenarium is a perennial herbaceous plant of the Asteraceae family and is
native to Europe. In European folk medicine, the medicinal properties of this plant are at-
tributed to its choleretic, cholagogic, hepatoprotective, and detoxifying activities. H. arenar-
ium methanol extract inhibited DPP-4 enzymatic activity with an IC50 of 41.2 µg/mL [104].

Table 2. Plants extracts that inhibit DPP-4 and their IC50 values.

S.No. Plant Name Family Plant Part Used Solvent/Extract Types IC50 Value Reference

1. Urena lobata Malvaceae Roots and leaves Ethanol 1.65 mg/mL [76]

2. Castanospermum
austral Fabaceae Seed Ethanol 13.96 µg/mL [80]

3. Fagonia cretica Zygophyllaceae Aerial parts Crude 38.1 µg/mL [81]

4. Hedera
nepalensis Araliaceae Aerial parts Crude 17.2 µg/mL [81]

5. Eugenia
jambolana Myrtaceae Fruit Fruit extract 278.94 µg/mL [82]

6. Pterocarpus
marsupium Leguminosae Heartwood Heartwood extract 273.73 µg/mL [82]

7. Chenopodium
quinoa Willd Amaranthaceae Protein

hydrolysates - 0.88 mg/mL [83]

8. Allium sativum Alliaceae Garlic bulb Methanol 70.9 µg/mL [85]

9. Pilea microphylla Urticaceae Leaves Ethanol 520.4 µg/mL [86]

10. Mangifera indica Anacardiaceae Leaves Methanol 182.7 µg/mL [88]

11. Psidium guajava Myrtaceae Leaves Ethanol 380 µg/mL [92]

12. Melicope glabra Rutaceae Leaves Chloroform 169.40 µg/mL [93]

13. Emblica
officinalis Phyllanthaceae Fruit Fruit extract 3770 µg/mL [97]

14. Berberis aristata Berberidaceae Bark Methanol 14.4 µg/mL [98]

15. Camellia sinensis Theaceae Leaves Ethanol 227 µg/mL [100]

16. Prunus
amygdalus Rosacease Seed Methanol 162.9 µg/mL [102]

17. Avena sativa Poaceae Seed Seed flour 0.99 mg/mL [99]

18. Anogeissus
latifolia Combretaceae Bark Water 754 µg/mL [79]

19. Aegle marmelos Rutaceae Leaves Water 790 µg/mL [79]

20. Helichrysum
arenarium Asteraceae Flowers Methanol 41.2 µg/mL [104]

9. Natural Phytochemicals

Natural products are an exceptionally rich resource for drug discovery, drug develop-
ment, and clinical medicine [105]. A summary of natural compounds with DPP-4 inhibitory
activity and their corresponding IC50 values is provided in Table 3.
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9.1. Alkaloids

Coptis chinensis (family: Ranunculaceae) is a goldthread species native to China. Its
rhizomes contain the isoquinoline alkaloids berberine, palmatine, and coptisine and are
used in traditional Chinese medicine. In vitro, berberine has a strong DPP-4 inhibitory
effect with an IC50 value of 13.3 µM [106]. Molecular docking results show 7-deoxy-6-
epi-castanospermine derived from C. australe inhibited DPP-4 with the same potency as
berberine [80].

9.2. Flavonoids

The beneficial health effects of fruits and vegetables have been linked to their high
flavonoid contents. DPP-4 activity was potently inhibited by anthocyanins isolated from
blueberry/blackberry wine blends with an IC50 of 0.07 µM [107]. Cyanidin 3-O-glucoside
inhibited DPP-4 with an IC50 of 125.1 µM [108].

Emodin obtained from Rheum palmatum inhibited DPP-4 in vitro with an IC50 of
5.76 µM [109]. Citrus flavonoids have also been shown to have DPP-4 inhibitory activity;
rutin was the most active inhibitor with an IC50 of 485 µM [110]. Naringin is abundant
in orange peel and has been shown to inhibit DPP-4 in vitro and in vivo and to enhance
insulin levels, and thus, is considered an option for the low-cost treatment of diabetes [111].

Rosemary and marjoram extracts were found to inhibit DPP-4 with IC50 values of 16
and 29 µM, respectively, and the isolated flavonoids cirsimaritin, hispidulin, and naringenin
inhibited DDP-4 activity with IC50 values of 0.43, 0.49, and 2.5 µM, respectively [112].

Quercetin is a plant-derived flavonol that has been shown to regulate hyperglycemia
and oxidative stress. Molecular docking studies showed that quercetin and galangin
bind strongly with DPP-4 and inhibit its activity with IC50 values of 4.02 and 40.13 µM,
respectively [69,113]. Furthermore, isoquercetin from Apocynum cannabinum inhibited
DPP-4 with an IC50 of 96.8 µM [114].

Smilax china plants are found in tropical and temperate regions worldwide, especially
in East Asia and North America. Its flavonoids kaempferol 7-O-α-L-rhamnoside, vitexin,
and rutin were shown to inhibit DPP-4 with IC50 values of 20.81, 33.12, and 32.93 µM,
respectively [115].

9.3. Terpenoids

Polyathia longifolia (PL) is used in traditional Indian medicine as a febrifuge and
treatment for indigestion. PL has been shown to possess anticancer, antimicrobial, immune-
modulating, and anti-ulcer properties [116], and 16-hydroxycleroda-3,13-dien-15,16-olide
from PL was found to inhibit DPP-4 activity and to lower BG levels in diabetic mice [117].

The chloroform extract of Inonotus obliquus mycelium was also found to inhibit DPP-4.
Nineteen compounds were isolated from I. obliquus mycelium powders. Molecular docking
showed that compounds 5, 8, 9, 14, and 15 could be the active compounds responsible for
DPP-4 inhibition [118].

9.4. Phenols

VTT-derived hopeaphenol, (+)-vitisin A, and (−)-vitisin B inhibited DPP-4 with IC50
values of 401, 90.75, and 15.3 µM, respectively [101]. Resveratrol, luteolin, apigenin, and
flavone potently inhibit DPP-4 with IC50 values of 0.6 ± 0.4 nM, 0.12 ± 0.01, 0.14 ± 0.02,
0.17 ± 0.01 µM, respectively, which were lower than the IC50 of the diprotin A control
(4.21 ± 2.01 µM) [107].

Coumarins are heterocyclic molecules and have been associated with a variety of
health benefits, which include antithrombotic, anti-inflammatory, and vasodilatory effects.
Coumarins inhibited DPP-4 with an IC50 of 54.83 nmol/mL [113]. In a molecular docking
study, curcumin was found to bind strongly with DPP-4, and in vitro curcumin inhibited
DPP-4 activity by up to 50% [119].

Macrotyloma uniflorum (horsegram) is a legume grown mainly in dry regions of Aus-
tralia, Burma, India, and Sri Lanka and contains high concentrations of myricetin, which



Pharmaceuticals 2021, 14, 591 10 of 18

has been shown to have anti-hyperglycemic properties. Myricetin also inhibited DPP-4
(IC50 of 4.8 µM), and thus, increased serum GLP-1 and insulin levels and ameliorated the
manifestations of T2DM [70].

9.5. Glycosides

Foods contain a wide range of bioactive molecules, and their different scaffolds and
functionalities make them the most important source of possible leads for drug discovery.
Virtual screening of a polyphenol-rich food database for potential DPP-4 inhibitors resulted
in the identification of chrysin, and an in vitro enzyme assay showed that chrysin inhibits
DPP-4 in a concentration-dependent manner [120].

Lentils are the edible seeds of Lens culinaris (family Fabaceae), a pulse crop, and have
long been grown for human consumption in Europe, the Middle East, Africa, and Asia.
Three flavonol glycosides, kaempferol-3-O-β-gulcopyranosyl-(1→2)-β-galactopyranosyl-7-
O-α-rhamnopyranoside, kaempferol-3-O-β-gulcopyranosyl-(1→2)-[α-rhamnopyranosyl
(1→6)]-β-galactopyranosyl-7-O-α-rhamnopyranoside, and robinin (kaempferol-3-O-α-
rhamnosyl (1→6)-O-β-galactopyranoside-7-O-α-rhamnopyranoside) isolated from L. culi-
naris seeds were found to inhibit DPP-4 activity in a dose-dependent manner with IC50
values of 27.89, 36.52, and 37.01 µM, respectively; molecular docking analysis revealed that
these compounds readily fit within the DPP-4 active sites [121].

In Egyptian folk medicine, the herb Cleome droserifolia is used to treat diabetes, stomach
aches, skin allergies, and open wounds. Five major flavonol glycosides were isolated from
an aqueous extract of C. droserifolia, and four of these, quercetin-3-O-β-d-glucosyl-7-O-
α-rhamnoside, isorhamnetin-7-O-β-neohesperidoside, isorhamnetin-3-O-β-d-glucoside,
and kaempferol-40-methoxy-3,7-O-α-dirhamnoside, showed significant DPP-4 inhibition
with IC50 values of 0.194, 0.573, 0.345, and 0.281 µg/mL, respectively. In addition, these
compounds inhibited aldose reductase and reduced oxidative stress, suggesting their
potential use for addressing problems associated with diabetes [122].

The flavonol glycosides (chalconaringenin 2′-O-β-D glucopyranoside and aureusidin
6-O-β-D-glucopyranoside) derived from H. arenarium inhibited DPP-4 with IC50 values of
23.1 and 24.3 µM, respectively [104].

Table 3. Natural compounds with DPP-4 inhibition and their corresponding IC50 values.

S.No. Phytochemicals IC50 Values References

1.
Alkaloids

Berberine 13.3 µM [106]

2.

Flavonoids

Cyanidin 3-O-glucoside 125.1 µM [108]

Anthocyanins 0.07 µM [107]

Emodin 5.76 µM [109]

Rutin 485 µM [110]

Isoquercetin 96.8 µM [114]

Cirsimaritin 0.43 µM [112]

Hispidulin 0.49 µM [112]

Naringenin 2.5 µM [112]

Quercetin 4.02 nmol/mL [113]

Galangin 40.13 µM [69]

Kaempferol 7-O-α-L-rhamnoside 20.81 µM [115]

Vitexin 33.12 µM [115]

Rutin 32.93 µM [115]
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Table 3. Cont.

S.No. Phytochemicals IC50 Values References

3.

Phenols

Hopeaphenol 401 µM [101]

(+)-vitisin A 90.75 µM [101]

(−)-vitisin B 15.3 µM [101]

Resveratrol 0.6 nM [107]

Luteolin 0.12 µM [107]

Apigenin 0.14 µM [107]

Flavone 0.17 µM [107]

Coumarins 54.83 nmol/mL [113]

Myricetin 4.8 µM [70]

4.

Glycosides

Kaempferol-3-O-β-gulcopyranosyl-(1→2)-β-
galactopyranosyl-7-O-α-rhamnopyranoside

27.89 µM
[121]

36.52 µM

Kaempferol-3-O-β-gulcopyranosyl-(1→2)-[α-
rhamnopyranosyl

(1→6)]-β-galactopyranosyl-7-O-α
rhamnopyranoside

37.01 µM [121]

Kaempferol-3-O-α-rhamnosyl (1→6)-O-β-
galactopyranoside-7-O-α-rhamnopyranoside 23.1 µM [104]

Chalconaringenin 2′-O-β-Dglucopyranoside 24.3 µM [104]

Aureusidin 6-O-β-D-glucopyranoside

Quercetin-3-O-β-d-glucosyl-7-O-α-
rhamnoside 0.194 µg/mL [122]

Isorhamnetin-7-O-β-neohesperidoside 0.573 µg/mL [122]

Isorhamnetin-3-O-β-d-glucoside 0.345 µg/mL [122]

Kaempferol-40-methoxy-3,7-O-α-
dirhamnoside 0.281 µg/mL [122]

10. Bioactive Peptides

The herbaceous annual plant Phaseolus vulgaris (PV) is cultivated globally for its edible
dry seeds or unripe berries. Protein fractions derived from PV were found to inhibit DPP-4
activity by 96.7%. In addition, bioactive peptides were isolated from a protein isolate of PV.
EGLELLLLLLAG, AKSPLF, and FEELN peptides inhibited DPP-4 more effectively in silico
with free binding energy values of −9.8, −9.6, and −9.5 kcal/mol, respectively, than the
reference compound sitagliptin (−8.67 kcal/mol) [123]. In another study, protein digests
and pure peptides derived from Mexican black and Brazilian Carioca beans inhibited
DPP-4 with IC50 values ranging from 0.03 to 0.87 mg dry weight/mL [124]. These studies
suggest that peptides derived from bean protein isolates can inhibit DPP-4.

Oryza sativa L. (rice) bran protein hydrolysates inhibited DPP-4 enzyme with an
IC50 of 1.45 ± 0.13 mg/mL [125]. When Umamizyme G and Bioprase SP were used to
defat and hydrolyze rice bran protein fractions, dipeptides digested with Umamizyme
G inhibited DPP-4 with an IC50 of 2.3 ± 0.1 mg/mL [126]. Proteins derived from Ama-
ranthus hypochondriacus were subjected to simulated gastrointestinal digestion, and this
resulted in the formation of bioactive peptides that suppressed DPP-4 in a concentration-
dependent manner with an IC50 of 1.1 mg/mL [127]. Glycine max (soybean) and Lupinus
albus (lupin) protein hydrolysates contain bioactive peptides, and Soy 1 (IAVPTGVA) and
Lup 1 (LTFPGSAED) effectively inhibited DPP-4 with IC50 values of 106 and 228 µM,
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respectively [128]. Gastrointestinal digestion of proteins derived from Phalaris canariensis
(canary) seeds inhibited DPP-4 by 43.5% [129], and enzymatic digestion of quinoa proteins
with papain also resulted in DPP-4 inhibition with an IC50 of 0.88 ± 0.05 mg/mL [83]. In a
study that used quinoa protein to simulate duodenal digestion, the fraction collected after
120 min of digestion most inhibited DPP-4 with an IC50 of 0.84± 0.07 mg protein/mL [130].

DPP-4 inhibitory activity was found in peptides isolated from tuna cooking juice
hydrolyzed by the enzymes protease XXIII (PR) and orientase (OR). The amino acid
sequences of three peptides isolated from PR and OR hydrolysates were PGVGGPLGPIGP-
CYE (1412.7 Da), CAYEWQRPVDRIR (1690.8 Da), and PACGGFYISGRPG (1304.6 Da), and
all three inhibited DPP-4 in a dose-dependent manner [131]. GPAE (372.4 Da) and GPGA
(300.4 Da) peptide sequences obtained from Atlantic salmon skin gelatin also potently
inhibited DPP-4 [132]. Several peptide sequences in an aqueous Palmaria palmata protein
extract hydrolyzed with Corolase PP inhibited DPP-4, and three of these peptides (ILAP,
LLAP, and MAGVDHI), when purified, potently inhibited DPP-4 with IC50 values ranging
from 43.40 to 159.37 µM [133]. In addition, peptides obtained from oats, buckwheat, and
barley inhibited DPP-4 with IC50 values from 0.13 to 8.15 mg/mL, and LQAFEPLR inhib-
ited DPP4 in vitro with an IC50 value of 103.5 µM [99]. The bioactive peptides that inhibit
DPP-4 and their corresponding IC50 values have been listed in Table 4.

Table 4. Bioactive peptides with DPP-4 inhibition and their corresponding IC50 values.

S.No. Plant Peptide Sequence IC50 Value References

1. Phaseolus vulgaris

KTYGL 0.03 mg DW/mL [124]

KKSSG 0.64 mg DW/mL [124]

GGGLHK 0.61 mg DW/mL [124]

CPGNK 0.87 mg DW/mL [124]

2. Oryza sativa IP 2.3 ± 0.1 mg/ml [126]

3. Glycine max IAVPTGVA 106 µM [128]

4. Lupinus albus LTFPGSAED 228 µM [128]

5. Palmaria palmata

ILAP 43.40 µM [133]

LLAP 53.67 µM [133]

MAGVDHI 159.37 µM [133]

6. Avena sativa LQAFEPLR 103.5 µM [99]

11. Conclusions

At the molecular level, DPP4 inhibitors work by preventing the degradation of GIP
and GLP1, and thus, preserve their endogenous levels and reduce BG levels. Nature
has many herbal plants that have long been used to treat diabetes. In this review article,
we detail the medicinal plants and their bioactive compounds that inhibit DPP-4 activity.
Of these compounds, resveratrol, quercetin, and coumarins are highly effective DPP-4
inhibitors with IC50 values in the nanomolar range. Other compounds (flavonoids and
phenolics) have the additional benefit of being present in a variety of functional foods.
DPP-4 inhibitors improve pancreatic beta cell function and enhance SM cell proliferation.
Studies on natural DPP-4 inhibitors offer a powerful means of developing novel treatments
for T2DM, and it is hoped this review will help researchers searching for safer, natural
DPP-4 inhibitors for the treatment of diabetes.
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