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During the past couple of years, statistical distributions have been widely used in applied areas such as reliability engineering,
medical, and financial sciences. In this context, we come across a diverse range of statistical distributions for modeling heavy
tailed data sets. Well-known distributions are log-normal, log-t, various versions of Pareto, log-logistic, Weibull, gamma,
exponential, Rayleigh and its variants, and generalized beta of the second kind distributions, among others. In this paper, we try
to supplement the distribution theory literature by incorporating a new model, called a new extended Weibull distribution. The
proposed distribution is very flexible and exhibits desirable properties. Maximum likelihood estimators of the model parameters
are obtained, and a Monte Carlo simulation study is conducted to assess the behavior of these estimators. Finally, we provide a
comparative study of the newly proposed and some other existing methods via analyzing three real data sets from different
disciplines such as reliability engineering, medical, and financial sciences. It has been observed that the proposed method
outclasses well-known distributions on the basis of model selection criteria.

1. Introduction

In the practice of statistical theory, particularly, in engineer-
ing, medical, and financial sciences, data modeling is an
interesting research topic. In this context, the statistical dis-
tributions are worthwhile for modeling such data sets. The
most frequently used statistical distributions are exponential,
Rayleigh, Weibull, beta, gamma, log-normal, Pareto, Lomax,
and Burr, among others. However, these traditional distribu-
tions are not flexible enough for countering complex forms of
the data sets. For example, in reliability engineering and bio-
medical sciences, the data sets are usually unimodal and
skewed to the right; see Demicheli et al.’s [1], Lai and Xie’s
[2], Zajicek’s [3], and Almalki and Yuan’s [4] studies. Hence,
in such cases, the utilization of the exponential, Rayleigh,
Weibull, or Lomax distributions may not be a suitable choice

to employ. On the other hand, the gamma, beta, and log-
normal distributions do not have closed forms for the cumula-
tive distribution function (cdf) causing difficulties in estimating
the parameters.

Furthermore, in financial and actuarial risk management
problems, the data sets are usually unimodal, skewed to the
right, and possess thick right tail; for details see, Cooray
and Ananda’s [5] and Eling’s [6] studies, among others.
The distributions that exhibit such characteristics can be
used quite effectively to model insurance loss data to estimate
the business risk level. The distributions commonly used in
the literature include Pareto by Cooray and Ananda [5],
Lomax by Scollnik [7], Burr by Nadarajah and Bakar [8],
and Weibull by Bakar et al. [9], which are particularly
appropriate for modeling of insurance losses, financial
returns, file sizes on the network servers, etc. Unfortunately,
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these distributions are subject to some sort of deficiencies.
For example, the Pareto distribution, due to the monotoni-
cally decreasing shape of the density, does not provide the
best fit in many applications, whereas the Weibull model is
capable of covering the behavior of small losses, but fails
to cover the behavior of large losses.

Moreover, Dutta and Perry [10] provided an empirical
study on loss distributions using exploratory data analysis
and other empirical approaches to estimate the risk. They
rejected the idea of using exponential, gamma, and Weibull
distributions due to their poor results and pointed out that
one would need to use a model that is flexible enough in its
structure. Hence, there are only few probability distributions
capable of modeling heavy tailed data sets and none of them
are flexible enough to provide greater accuracy in fitting
complex forms of data.

To address the problems stated above, the researchers
have shown an increased interest in defining new families
of distributions by incorporating one or more additional
parameters to the well-known distributions. The new fami-
lies have been defined through many different approaches
introducing additional, location, scale, shape, and trans-
muted parameters, to generalize the existing distributions.
These generalizations are mainly based on, but not limited
to, the following approaches: (i) transformation of the vari-
able and (ii) compounding of two or more models; in detail,
we refer the interested readers to studies by Tahir and Cor-
deiro [11], Bhati and Ravi [12], and Ahmad et al. [13].

One of the most interesting methods of adding the shape
parameter to the existing distributions is exponentiation. The
exponentiated family pioneer to Mudholkar and Srivastava
[14] is defined by the following cdf:

G x ; a, ξð Þ = F x ; ξð Þa, a, ξ > 0, x ∈R, ð1Þ

where a is the additional shape parameter.
Marshall and Olkin [15] pioneered a new simple

approach of introducing a single-scale parameter to a family
of distributions. The cdf of the Marshall-Olkin (MO) family
is given by

G x ; σ, ξð Þ = F x : ξð Þ
σ + 1 − σð ÞF x ; ξð Þ , σ, ξ > 0, x ∈R, ð2Þ

where σ is the additional scale parameter.
Cordeiro and Castro proposed (2010) proposed the

Kumaraswamy-G family defined by

G x ; a, b, ξð Þ = 1 − 1 − F x ; ξð Þa� �b, a, b, ξ > 0, x ∈R, ð3Þ

where a and b are the additional shape parameters.
Mostly, so far in the literature either the scale or shape

parameters are introduced to propose a new family of distri-
butions. Introducing both the scale and shape parameters to
a family of distribution may increase the level of flexibility.
But the number of parameters increases, and the estimation
of parameters and computation of many mathematical prop-
erties become complicated.

In the premises of above, a new attempt has been made
to introduce more flexible probability distributions by intro-
ducing a single additional parameter which serves as a scale
as well as a shape parameter and provides greater accuracy
in fitting real-life data in applied fields such as reliability
engineering, medical, and financial sciences. Hence, in this
paper, a new method is proposed to introduce new statistical
distributions. The proposed family may be named as a new
extended-X (NE-X) family. A random variable X is said to
follow the proposed family, if its cdf is given by

G x ; θ, ξð Þ = 1 − 1 − F x ; ξð Þ2
1 − 1 − θð ÞF x ; ξð Þ2

( )θ

, θ > 0, x ∈R:

ð4Þ

The introduction of the additional parameter θ in
expression (4) adds greater distributional flexibility to the
baseline distributions with cdf Fðx ; ξÞ which may depend
on the vector parameter ξ. The additional parameter plays
the role of both scale and shape parameters. The probability
density function (pdf) corresponding to (4) is

g x, θ, ξð Þ =
2θ2 f x ; ξð ÞF x ; ξð Þ 1 − F x ; ξð Þ2

n oθ−1

1 − 1 − θð ÞF x ; ξð Þ2
n o0+1 , x ∈R:

ð5Þ

We concentrate our focus to a special submodel of the
proposed family, called a new extended Weibull (NE-W)
distribution.

Finally, we direct our attention to the results related to
the NE-W model with real life data in three different disci-
plines. The first data set is taken from biomedical field, and
the results of the proposed model are compared with five
other competitive models including (i) two-parameter Wei-
bull distribution and (ii) three-parameter models such as
flexible Weibull extended (FWE), alpha power transformed
Weibull (APTW), Marshall-Olkin Weibull (MOW), and
modified Weibull (MW) distributions. The second data set is
taken from reliability engineering, and the results of the pro-
posed model are compared with three other well-known dis-
tributions such as (i) the three-parameter extended alpha
power transformedWeibull (Ex-APTW), (ii) four-parameter
Kumaraswamy Weibull (Ku-W), and (iii) beta Weibull
(BW) distributions. The third data set is taken from financial
sciences, and the results of the proposed model are compared
with the Weibull and other heavy tailed models including
Lomax and Burr-XII (B-XII) distributions.

The rest of the paper is organized as follows: in Section 2,
a special case of the proposed family is introduced and the
shapes of its density and hazard functions are investigated.
Some mathematical properties of the proposed family are
derived in Section 3. Maximum likelihood estimators of the
model parameters are obtained in Section 4. In the same sec-
tion, a Monte Carlo simulation study is conducted. Practical
applications are analyzed in Section 5. Here, the NE-W
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distribution is compared with the models mentioned above
under different measures of discrimination and other good-
ness of fit measures. Finally, some concluding remarks are
given in the last section.

2. Model Description

In this section, we introduce the NE-W distribution. Consid-
ering the cdf of the two-parameter Weibull distribution with
the shape parameter α > 0 and scale parameter γ > 0, given by
Fðx ; ξÞ = 1 − e−γx

a , x ≥ 0, and pdf, given by f ðx ; ξÞ = aγxa−1

e−γx
a
, respectively, where ξ = ðα, γÞ. Then, the cdf of the

NE-W distribution is given by

G x ; θ, ξð Þ = 1 − 1 − 1 − e−γx
a� �2

1 − 1 − θð Þ 1 − e−γxað Þ2
 !θ

, x ≥ 0, a, θ, γ > 0:

ð6Þ

The density function of the NE-W distribution is

g x ; θ, ξð Þ =
2θ2aγxa−1e−γxa 1 − e−γx

a� �
1 − 1 − e−γx

a� �2n oθ−1

1 − 1 − θð Þ 1 − e−γxað Þ2
n oθ+1 , x > 0:

ð7Þ

Some possible shapes for the density and hazard func-
tions of the NE-W distribution are sketched in Figures 1
and 2, respectively,

In Figure 1, we plotted different shapes for the density of
NE-W distribution. When α, θ < 1, then the density of the
proposed model behaves like exponential distribution. But
as the value of these parameters increases, the proposed
model captures the characteristics of the Rayleigh and
Weibull distributions. However, the proposed model has cer-
tain advantages over these distributions, since it provides the
best fit to data in different disciplines as shown in Section 5.
The hrf is plotted in Figure 2. The hazard function of the pro-
posed model is very flexible in accommodating different
shapes, namely, decreasing, increasing, unimodal, and bath-
tub; hence, the NE-W distribution becomes an important
model to fit several real lifetime data in applied areas such
as reliability, survival analysis, economics, and finance.

3. Mathematical Properties of the
NE-X Distributions

In this section, we study some mathematical properties of
the NE-X distributions such as the quantile function, rth

moment, and moment generating function.

3.1. Quantile Function. The quantile function of the NE-X
distributions is given by

xq =Q uð Þ = G−1 uð Þ = F−1 1 − uð Þ1/θ − 1
1 − θð Þ 1 − uð Þ1/θ − 1

( )1/2

, ð8Þ

where u ∈ ð0, 1Þ. From expression (8), we can see that the
proposed model has a closed form solution of the quantile
function which makes it easier to generate random numbers
for the subcase of the NE-X family.

3.2. Moments. This subsection deals with the derivation of rth

moment of the NE-X distributions. The rth moment of the
NE-X distributions is derived as

μ/r =
ð∞
−∞

xrg x ; θ, ξð Þ dx: ð9Þ

Using (5) in (9), we have

μ/r =
ð∞
−∞

xr
2θ2 f x ; ξð ÞF x ; ξð Þ 1 − F x ; ξð Þ2

n oθ−1

1 − 1 − θð ÞF x ; ξð Þ2
n o0+1 dx: ð10Þ

Using the expansion (https://math.stackexchange.com/
questions/1624974/series-expansion-1-1-xn)

1
1 − xð Þn = 〠

∞

i=0

i + n − 1
n − 1

 !
xi ð11Þ

and using x = ð1 − θÞFðx ; ξÞ2 and n = θ + 1 in (11), we get

1
1 − 1 − θð ÞF x ; ξð Þð Þθ+1

= 〠
∞

i=0

i + θ

θ

 !
1 − θð ÞiF x ; ξð Þ2i:

ð12Þ

Also using the series representation

1 − yð Þm = 〠
m

j=0
−1ð Þj

m

j

 !
xj ð13Þ

and using y = F ðx ; ξÞ2 and m = θ − 1 in (13), we get

1 − F x ; ξð Þ2
� �θ−1

= 〠
θ−1

j=0

0 − 1
j

 !
−1ð ÞjF x ; ξð Þ2j: ð14Þ

Using (12) and (14) in (10), we have

μ/r = 2θ2 〠
∞

i=0
〠
θ−1

j=0

0 − 1
j

 !
i + 0
0

 !
−1ð Þj 1 − θð ÞiKr,2 i+jð Þ+1,

ð15Þ

where

Kr,2 i+jð Þ+1 =
ð∞
−∞

xr f x ; ξð ÞF x ; ξð Þ2 i+jð Þ+1dx: ð16Þ

Numerical values for the mean, variance, skewness (Sk),
and kurtosis (Kur) of the NE-W distribution for some
selected values of the parameters are given in Tables 1 and
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2. To check the effect of the additional parameter on Sk and
Kur, (i) we kept the parameters α and γ constant and allow
θ to vary and then (ii) we kept constant the parameters θ
and γ and allow α to vary.

From the numerical results provided in Table 1, it is clear
that as the additional parameter θ increases the mean and
variance decrease, whereas increasing θ results in increasing
the Sk and Kur of the model showing that the proposed dis-
tribution is leptokurtic, unimodal, and skewed to the right.
From the results provided in Table 1, we can also detect that
increase in the parameter θ results in producing skewness to
the right indicating heavy tail to the right. Also, from the
results in Table 2, we can see that as the parameter α
increases, the distribution produces skewness to the right
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Figure 1: Some possible shapes of the density function of the NE-W distribution.
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Figure 2: Some possible shapes for the hazard function of the NE-W distribution.

Table 1: Descriptive measures of the NE-W distribution for α = 0:9
and γ = 1 and different values of θ.

θ Mean Variance Sk Kur

0.9 5.4664 130.8709 5.0976 31.7659

1.3 3.7934 51.8976 7.3847 70.2370

1.7 2.4670 20.6752 10.8760 151.0953

2.1 1.5690 9.5649 15.3218 294.3785

2.4 1.3409 4.5409 16.0965 423.0964

2.8 0.9675 2.0987 18.0967 565.9876
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but has low impact on skewness and kurtosis. Hence, from
the numerical results presented in Tables 1 and 2, we con-
clude that the introduction of the additional parameter to
the Weibull model brings more flexibility to the skewness
and kurtosis of the NE-W distribution.

The moment generating function, sayMX ðtÞ, of the NE-
W distributions can be obtained as follows:

MX tð Þ = 〠
∞

r=0

tr

r!
μ/r: ð17Þ

Using (15) in (17), we get the mgf of the NE-W
distributions.

4. Maximum Likelihood Estimation and
Simulation Study

This section offers the maximum likelihood estimators of the
model parameters and provide Monte Carlo simulation
study to assess the behavior of these estimators.

4.1. Maximum Likelihood Estimation.Numerous approaches
for estimating the unknown parameters have been proposed
in the literature. Among them, the maximum likelihood
estimation is the most prominent and commonly employed
method to obtain the point estimators. The maximum like-
lihood estimators (MLEs) possess desirable properties and
can be utilized for constructing the confidence interval and
other statistical tests. By MLEs, various statistics are built
for assessing the goodness-of-fit in a model, such as the
maximum log-likelihood (bℓmax), Akaike Information Crite-
rion (AIC), and Bayesian Information Criterion (BIC), as
given in the next section. The normal approximation of
the MLEs can easily be treated either numerically or analyt-
ically. In this subsection, we consider the estimation of the
unknown parameters of the NE-X family from complete
samples only by the method of maximum likelihood. Sup-
pose x1, x2,⋯, xn form an observed random sample from
the NE-X family with pdf (5). Let Θ = ðα, γ, θÞT be the 3 ×
1 parameter vector. The log likelihood function correspond-
ing to (5) is given by

ln Θð Þ = n log 2ð Þ + 2n log θ + 〠
n

i=1
logf xi ; ξð Þ

+ 0 − 1ð Þ〠
n

i=1
log 1 − F xi ; ξð Þ2
n o

+ 〠
n

i=1
logF x ; ξð Þ

− 0 + 1ð Þ〠
n

i=1
log 1 − 1 − θð ÞF x ; ξð Þ2
n o

:

ð18Þ

The log-likelihood function can be maximized directly
either by using the ASS (PROC UNMIXED) or by solving
the nonlinear likelihood equations obtained by differentiat-
ing (18). The partial derivatives of (18) are as follows:

∂ℓn Θð Þ
∂θ

= 2n
θ

+ 〠
n

i=1
log 1 − F xi ; ξð Þ2
n o

− 〠
n

i=1
log 1 − 1 − θð ÞF xi ; ξð Þ2
n o

− θ + 1ð Þ〠
n

i=1

F xi ; ξð Þ2

1 − 1 − θð ÞF xi ; ξð Þ2
n o ,

∂ℓn Θð Þ
∂θ

= 〠
n

i=1

∂f xi ; ξð Þð Þ/∂ξ
∂f xi ; ξð Þ − θ − 1ð Þ〠

n

i=1

∂F xi ; ξð Þ2
� �

/∂ξ

1 − F xi ; ξð Þ2
n o

+ 〠
n

i=1

∂F xi ; ξð Þð Þ/∂ξ
∂F xi ; ξð Þ

+ 0 + 1ð Þ〠
n

i=1

1 − θð Þ∂F xi ; ξð Þ2
� �

/∂ξ

1 − 1 − θð ÞF xi ; ξð Þ2
n o :

ð19Þ

Equating the nonlinear system of equations ð∂ℓnðΘÞÞ/∂θ
and ð∂ℓnðΘÞÞ/∂ξ to zero and solving these expressions simul-

taneously yield the MLEs bθ and bξ , respectively. From expres-
sions (19), it is clear that these expressions are not in explicit
forms. Therefore, computer software can be used to solve
these expressions numerically. We use optimðÞ R-function
with the argument method = }SANN} to obtain the maxi-
mum likelihood estimators. The expression (18) can be used
to obtain the MLEs for any subcase of the proposed family.
For the NE-W distribution, the expressions for the MLEs
are derived in the appendix.

4.2. Monte Carlo Simulation Study. In this subsection, we
investigate the performance of the maximum likelihood esti-
mators of the proposed distribution. For the simulation pur-
poses, the NE-W distribution is considered. We use the
inverse cdf method for generating random numbers from
the NE-W distribution. If U ∼Uð0, 1Þ and if G has an inverse
function, then

Table 2: Descriptive measures of the NE-W distribution for θ = 0:5
and γ = 1 and different values of α.

α Mean Variance Sk Kur

0.7 9.9876 311.9087 3.0987 19.9875

1.1 8.2354 236.9876 5.2398 25.7650

1.5 7.0488 155.2345 7.5467 32.0983

2.5 5.7539 45.5309 7.5680 65.3048

4.5 3.9876 30.0965 14.8654 176.8906

4.5 2.6538 15.0965 17.7856 225.1045
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x =
−log 1 − 1 − u1/θ − 1

� �
/ 1 − θð Þ 1 − uð Þ1/θ − 1
� �� �1/2� �
γ

0BB@
1CCA

1/a

ð20Þ

is a random variable with NE-W distribution. The random
numbers are generated via the optimðÞ R-function with the
argument method = }L − BFGS − B}. The simulation process
is based on the following steps:

(i) Generate 750 samples of size n from NE-W distribu-
tion with parameters α, γ, and θ

(ii) Compute the maximum likelihood estimators of
ðα, γ, θÞ for n = 750

(iii) Compute biases and mean square errors (MSEs) of
the model parameters

(iv) Steps (i)–(iii) are repeated for n = 25,50,75,⋯, 750

The simulation results are provided in Figures 3–6, indi-
cating that

(i) the estimates are quite stable and, more importantly,
are close to the true values for these sample sizes

(ii) the estimated biases decrease when the sample size n
increases
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(iii) the estimated MSEs decay toward zero when the
sample size n increases

5. Comparative Study

As we have mentioned earlier, the researchers have been
developing new distributions to provide the best fit to real-
life data in applied areas such as reliability engineering, med-
ical, actuarial, and financial sciences. Therefore, in this sec-
tion, we consider three real life applications from different
discipline of applied areas including medical, engineering,

and financial sciences. For each data set, the NE-W distribu-
tion is compared with different well-known distributions and
we observed that the proposed distribution outclasses other
competitors.

To decide about the goodness of fit among the applied
distributions, we consider certain analytical measures. In
this regard, we consider two discrimination measures such
as the Akaike information criterion (AIC) introduced by
Akaike [16] and Bayesian information criterion (BIC) of
Schwarz [17], and Scollnik [18]. These following measures
are given:
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Figure 6: Plots of the biases and absolute biases for α = 1:5, θ = 0:4, and γ = 0:7.
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(i) The AIC is given by

AIC = 2k − 2l ð21Þ

(ii) The BIC is given by

BIC = k log nð Þ − 2l ð22Þ

where ℓ denotes the log-likelihood function evaluated at the
MLEs, k is the number of model parameters, and n is the
sample size. In addition to the discrimination measures, we
further consider other goodness of fit measures such as the
Anderson Darling (AD) test statistic, Cramer-von Mises
(CM) test statistic, and Kolmogorov-Smirnov (KS) test statis-
tic with corresponding p values. These following measures
are given:

(i) The AD test statistic

AD = −n −
1
n
〠
n

i=1
2i − 1ð Þ log G xið Þ�

+ log 1 −G xn−i+1ð Þf g	, ð23Þ

where n is the sample size and xi is the i
th sample,

calculated when the data is sorted in an ascending
order

(ii) The CM test statistic

CM = 1
12n + 〠

n

i=1

2i − 1
2n −G xið Þ

� �2
ð24Þ

(iii) The KS test statistic is given by

KS = supx Gn xð Þ − G xð Þ½ �, ð25Þ

where Gn ðxÞ is the empirical cdf and supx is the supremum
of the set of distances

A distribution with lower values of these analytical
measures is considered to be a good candidate model
among the applied distributions for the underlying data
sets. By considering these statistical tools, we observed that
the NE-W distribution provides the best fit compared to
other distributions because the values of all of the selected
criteria of goodness of fit are significantly smaller for the
proposed distribution.

5.1. A Real Life Application of Biomedical Analysis. The
bladder cancer is the ninth most frequently diagnosed
malignancy worldwide [19] and one of the most prevalent,
representing 3 of cancers diagnosed globally [20]. Bladder
cancer accounts for an estimated 386,000 new diagnoses
and 150,000 related deaths annually. Early detection of
bladder cancer remains one of the most urgent issues in
many researches. The first data set is taken from Lee
and Wang [21]; the authors studied the remission times
(in months) of a random sample of 128 bladder cancer
patients. They rejected the hypothesis of using the expo-
nential and Weibull distributions for modeling medical
sciences data having nonmonotic hazard function. The
authors observed that the extended versions of these clas-
sical distributions can be used quite effectively to model
such type of data. The proposed NE-W model is applied
to this data in comparison with other well-known compet-
itors. The distribution functions of the competitive models
are as follows:

(1) FWE distribution

G x ; α, σ, γð Þ = 1 − exp −eσx
2− γ/xαð Þ

n o
, x ≥ 0, α, σ, γ > 0

ð26Þ

(2) APTW distribution

G x ; α1, α, γð Þ = α
1−e−γxαð Þ

1 − 1
α1 − 1 , x ≥ 0, α1 ≠ 1, α, γ > 0

ð27Þ

Table 3: Estimated values with standard error (in parenthesis) of
the proposed and other competitive models for data 1.

Dist. α γ σ α1 θ

NE-W
1.985

(0.19654)
0.107

(0.0198)
2.156

(0.9107)

Weibull
1.047

(0.0675)
0.093

(0.0190)

FWE
4.332

(3.5347)
0.720

(0.5492)
0.541

(0.1883)

APTW
0.014

(0.0865)
0.016

(0.0064)
0.014

(0.0216)

MOW
1.268

(0.1308)
0.877

(0.5205)
11.829

(11.2869)

MW
1.007

(0.0313)
0.951

(4.2501)
0.863

(4.2551)

Table 4: Discrimination and goodness of fit measures of the
proposed and other competitive models for data 1.

Dist. AIC BIC CM AD KS p value

NE-W 826.439 834.022 0.025 0.133 0.041 0.995

Weibull 832.173 837.877 0.131 0.786 0.069 0.558

FWE 829.219 837.775 0.051 0.329 0.049 0.910

APTW 826.378 836.934 0.042 0.255 0.045 0.949

MOW 834.988 843.544 0.150 0.884 0.075 0.451

MW 833.969 842.525 0.133 0.797 0.073 0.494
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(3) Marshall-Olkin Weibull (MOW) distribution

G x ; α1, α, γð Þ = 1 − e−γx
α� �

σ + 1 − σð Þ 1 − e−γxαð Þ , x ≥ 0, α, γ, σ > 0

ð28Þ

(4) MW distribution

G x ; α, γ, θð Þ = 1 − e−θx−γx
α , x ≥ 0, α, γ, θ > 0 ð29Þ

The maximum likelihood estimators with standard error
(in parenthesis) of the model for the analyzed data are
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Figure 7: Estimated cdf and Kaplan Meier Survival plots of the NE-W distribution for data 1.
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Table 5: Estimated values with standard error (in parenthesis) of the proposed and other competitive models for data 2.

Dist. α γ θ α1 a b

NE-W
0.943

(0.3108)
2.065

(3.9765)
0.079

(0.0276)

Ex-APTW
0.510

(0.5094)
0.172

(0.6258)
5.425

(7.0766)

Ku-W
0.620

(0.3093)
0.501

(1.0970)
0.702

(3.2715)
0.118

(2.0964)

BW
0.478

(0.2696)
0.502

(0.5522)
2.797

(3.1595)
0.344

(0.6646)
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presented in Table 3. The discrimination measures along with
the goodness of fit measures of the proposed and other com-
petitive models are provided in Table 4. Form the results pro-
vided in Table 4, it is clear that the proposed distribution has
lower values of these measures than the other models. The
fitted cdf and Kaplan-Meier survival plots of the proposed

model for the analyzed data set are plotted in Figure 7. The
PP plot of the proposed model and Box plot of the data set
are sketched in Figure 8. From Figure 7, it is clear that the pro-
posed model fits the estimated cdf and Kaplan Meier survival
plots very closely. Box plot is a tool for graphically depicting
the data. It gives a good indication of how the values in the

Table 6: Analytical measures of the proposed and other competitive models for data 2.

Dist. AIC BIC CM AD KS p value

NE-W 332.876 335.789 0.063 0.369 0.129 0.772

Ex-APTW 335.071 339.172 0.093 0.491 0.142 0.598

Ku-W 337.750 343.220 0.091 0.546 0.146 0.488

BW 335.457 340.926 NaN NaN 0.144 0.603
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Figure 9: Estimated cdf and Kaplan Meier survival plots of the NE-W distribution for data 2.
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Table 7: The model estimators with standard error (in parenthesis) of the competing models for data 3.

Dist. bα bγ bθ ĉ k̂

NE-W 0.975 (0.2863) 0.031 (0.0398) 0.632 (0.3980)

Weibull 1.019 (0.9445) 0.003 (1.6540)

Lomax 0.495 (0.4334) 30.008 (9.6185)

Burr 0.049 (0.1134) 4.427 (2.2671)
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data are spread out. From Figure 8, we can easily detect that
the data has a heavy tail skewed to the right (Box plot) and
the proposed model closely followed the PP plot.

5.2. A Real Life Application from Reliability Engineering.
Here, we investigate the NE-W distribution via analyzing
reliability engineering data set taken from Algamal [22]
representing the failure time of coating machine. To show
the potentiality of the proposed method, the proposed model
and other competitive distributions are applied to this data
set and it is observed that the NE-W model again outclassed
the well-known distributions. The distribution functions of
the competitive models selected for the second data set are
as follows:

(1) Ex-APTW distribution

G x ; α1, α, γð Þ = α
1−e−γxαð Þ

1 − e 1−e−γxαð Þ
α1 − e

, x ≥ 0, α1, α, γ, >0

ð30Þ

(2) Ku-W distribution

G x, α, γ, a, bð Þ = 1 − 1 − 1 − e−γx
α

� �αh ib
, x ≥ 0, α, γ, α, β > 0

ð31Þ

(3) BW distribution

G x, α, γ, a, bð Þ = I 1−e−γxαð Þ a, bð Þ, x ≥ 0, α, γ, a, b > 0

ð32Þ

Corresponding to data set 2, the values of the model
parameters are reported in Table 5. The analytical measures
of the proposed and other competitive models are provided
in Table 6. The estimated cdf and Kaplan-Meier survival
plots are sketched in Figure 9, which shows that proposed
distribution fits the estimated cdf and Kaplan-Meier survival
plots very closely. The PP plot and box plot are sketched in
Figure 10. From the box plot of the second data set, it is also
clear that the data set has heavier tail.

5.3. A Real Life Application from Insurance Sciences. The
third data set was taken from the insurance sciences repre-
senting the vehicle insurance losses available at http://www.
businessandeconomics.mq.edu.au/our_departments/Applied_
Finance_and_Actuarial_Studies/research/books/GLMsforInsu
ranceData. We fitted the proposed model in comparison with
the other models. The distribution functions of the competi-
tive models are as follows:

(1) Lomax

G x ; α, γð Þ = 1 − 1 + x
y


 �−α

, x > 0, α, γ > 0 ð33Þ

(2) Burr

G x ; c, kð Þ = 1 − 1 + xcð Þ−k, x > 0, c, k > 0 ð34Þ

For the third data set, parameter values are reported in
Table 7, and the analytical measures are presented in
Table 8. The estimated cdf and Kaplan-Meier survival plots
are sketched in Figure 11. The PP plot and Box plot are

Table 8: Analytical measures of the proposed and other competing models for data 3.

Dist. AIC BIC CM AD KS p value

NE-W 427.432 432.239 0.023 0.141 0.091 0.938

Weibull 432.353 439.256 0.054 0.447 0.185 0.597

Lomax 460.191 463.021 0.083 0.520 0.207 0.108

Burr 503.477 506.383 0.228 1.362 0.416 0.208
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Figure 11: Estimated cdf and Kaplan Meier survival plots of the NE-W distribution for data 3.
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sketched in Figure 12. From Figures 11 and 12, it is clear that
the data set has a heavier tail and the proposed model fits the
estimated cdf and Kaplan-Meier survival plots very well.

6. Concluding Remarks

The importance of the extended distributions was first real-
ized in financial sciences and later in other applied fields such
as engineering and medical sciences. To cater data in those
fields, a number of methods have been introduced. In this
context, we have proposed a versatile three-parameter distri-
bution, called a new extended Weibull distribution using a
new approach allowing closed form expressions for some
basic mathematical and other related properties. The applica-
bility of the proposed family has been illustrated via three
data sets from medical, engineering, and financial sciences,
and the model performs reasonably well as compared to
some well-known distributions.

This new development, which has a promising approach
for data modeling in the field, may be very useful for practi-
tioners who handle such data sets. For that reason, it can be
deemed as an alternative to the Weibull and other well-
known competitors.

Appendix

Using f ðx ; ξÞ = aγxa−1 e−γx
a
and Fðx ; ξÞ = 1 − e−γx

a
in (18),

we get the expression of the log-likelihood function for the
NE-W distribution, given by

ℓn Θð Þ = n log 2ð Þ + 2n log θ + n log α + n log γ

+ α − 1ð Þ〠
n

i=1
log xi + 〠

n

i=1
logAi + θ − 1ð Þ〠

n

i=1
log 1ð

− Aið Þ2Þ − θ + 1ð Þ〠
n

i=1
log 1 − 1 − θð Þ Aið Þ2� �

,

ðA:1Þ

where Ai = 1 − e−γx
a
i . The partial derivatives of (A.1) are as

follows:

∂ℓn Θð Þ
∂θ

= 2n
θ

+ 〠
n

i=1
log 1 − Aið Þ2� �

− 〠
n

i=1

θ Aið Þ2
1 − 1 − θð Þ Aið Þ2� �(

+ log 1 − 1 − θð Þ Aið Þ2� �)
− 〠

n

i=1

Aið Þ2
1 − 1 − θð Þ Aið Þ2� � ,

∂ℓn Θð Þ
∂α

= n
α
+ 〠

n

i=1
logxi + 〠

n

i=1

log xið Þxαi e−γx
α
i

Ai

� 

− θ − 1ð Þ〠

n

i=1

2Ai log xið Þxαi e−γx
α
i

1 − Aið Þ2
( )

+ θ + 1ð Þ〠
n

i=1

2 1 − θð ÞAi log xið Þxαi e−γx
α
i

1 − 1 − θð Þ Aið Þ2
( )

,

∂ℓn Θð Þ
∂γ

= n
γ
+ 〠

n

i=1

xαi e
−γxαi

Ai

� 

− θ − 1ð Þ〠

n

i=1

2Aix
α
i e

−γxαi

1 − Aið Þ2
( )

+ θ + 1ð Þ〠
n

i=1

2 1 − θð ÞAix
α
i e

−γxαi

1 − 1 − θð Þ Aið Þ2
( )

:

ðA:2Þ
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