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Abstract: Anthracene-based semiconductors are a class of molecules that have attracted interest due
to their air stability, planarity, potential for strong intermolecular interactions, and favorable frontier
molecular orbital energy levels. In this study seven novel 9,10-anthracene-based molecules were
synthesized and their optical, electrochemical, and thermal properties were characterized, along
with their single crystal arrangement. We found that functionalization of the 9,10-positions with
different phenyl derivatives resulted in negligible variation in the optical properties with minor
(±0.10 eV) changes in electrochemical behavior, while the choice of phenyl derivative greatly affected
the thermal stability (Td > 258 ◦C). Preliminary organic thin film transistors (OTFTs) were fabricated
and characterized using the 9,10-anthracene-based molecules as the semiconductor layer. These
findings suggest that functionalization of the 9,10-position of anthracene leads to an effective handle
for tuning of the thermal stability, while having little to no effect on the optical properties and the
solid-state arrangement

Keywords: OTFTs; anthracene; crystal; thin film; transistor; packing; semiconductor; Suzuki-Miyaura
cross-coupling reaction

1. Introduction

Organic electronic materials, namely organic light emitting diodes (OLEDs), have attracted
considerable attention in academia and industry as a substitute for silicon-based devices such as liquid
crystal displays and inorganic LEDs [1,2]. One advantage of OLEDs, as well as other organic electronic
devices such as organic photovoltaics and organic thin film transistors (OTFTs) versus traditional
technologies, include their ability to be fabricated through solution processing techniques, including
spin-coating [3], drop casting [4,5], and ink-jet printing [6]. OTFTs have been found to be an integral
component of next generation applications such as pixel modulators in active matrix OLED displays [7],
radiofrequency tags [8], and even biosensors [9].

The organic semiconducting (OSC) layer is the primary focus of research in OTFT technology,
as it governs the operation of the device. A wide variety of materials have been proposed and
investigated over the years [10]. Anthracene, being the first organic compound used to study organic
semiconductor conductivity in the 1950s–1960s, is still a promising molecule [11–13]. Researchers
developed OTFTs that employed anthracene-based molecules with mobilities as high as 0.02 cm2 V−1s−1

(p-type) by 2003 [14–16]. Since 2013, over 150 derivatives have been synthesized, providing the basis
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for developing various structure–property–mobility relationships [10,17]. 2,6-Diphenyl anthracene
(2,6-DPA) has afforded the highest p-type mobilities yet, with 14.8 cm2 V−1s−1 in OTFTs and 34.0 cm2

V−1s−1 in organic single-crystal transistors [18,19]. According to the variety of anthracene-derivatives
implemented in devices, charge mobility may be traced from mainly three key factors: (1) The relative
energy levels—the alignment of the semiconductor highest occupied molecular orbital (HOMO) and/or
lowest unoccupied molecular orbital (LUMO) energy levels with the Fermi level of the source or
drain electrodes defining the injection barriers; (2) the supramolecular arrangement of molecules
in the solid-state—packing in either the herringbone or lamellar fashion, along with intermolecular
distances, plays a significant role in charge transport ability; and (3) the thin film morphology—ordered
stacking and dense grains with few boundaries and traps can reduce the obstruction for charge
transport [10,20,21]. By examining the crystalline packing of anthracene-based derivatives via X-ray
diffraction (XRD), we can gain an understanding of the intermolecular distances between conjugated
centers of molecules arranged in a single-crystal. In general, the shorter the distance between π-orbital
centers of molecules, the greater the charge mobility of an OSC will be in a device. For instance,
relatively short intermolecular distances of 2.84–2.86 Å indicate strong π–π interactions, which likely
contribute to the high charge mobility observed in devices containing 2,6-DPA [18,19]. Therefore, such
an analysis gives us some insight into how such anthracene-derivatives arrange themselves in thin
film. This facilitates the prediction of charge mobilities in an OSC device. Modifying the anthracene
structure through coupling reactions can extend the π-electron system and tune the molecular packing,
while simultaneously modifying the frontier molecular orbital energy levels or the thermal stability of
the derivative—factors that are all crucial to the proper function of materials in devices [22,23].

Over the years, considerable effort has been devoted to synthesizing 2,6− and 2,6,9,10−substituted
anthracene derivatives as they have seemingly afforded the highest mobilities; however, relatively few
9,10-functionalized derivatives have been reported [10]. Anthracene derivatives substituted at the
9,10-position challenge the regular herringbone stacking observed in 2,6-functionalized derivatives
and tend to form a more overlapped lamellar structure. This is an advantageous propensity for charge
transport, and an even better performance should be expected if closer molecular distance can be
realized by more abundant and intensive intermolecular effects. In this study, we report several novel
9,10-substituted anthracene-based molecules, whereby we characterize their optical, electrochemical,
and thermal properties to build a structure–property–mobility relationship for anthracene-based
semiconductors. We also analyzed the materials by single-crystal XRD and incorporated the materials
in OTFTs, facilitating the comparison between solid-state arrangement and charge mobility.

2. Results and Discussion

2.1. Synthesis of 9,10-Disubstiuted Anthracenes

A series of 9,10-disubstituted anthracenes (1a–c, 2a–d) were synthesized utilizing a
palladium-catalyzed Suzuki-Miyura cross-coupling reaction starting from commercially available
reagents, as shown in Figure 1. The general procedure for the aforementioned cross-coupling reactions
employs tetrakis (triphenylphosphine) palladium (0) (Pd(PPh3)4) as the catalyst [24,25], coupling
substituted bromoanthracenes with varying boronic acids in a degassed solvent mixture of toluene,
ethanol, and water. The completion of coupling was determined through thin layer chromatography;
conversion was achieved with heating of the mixtures overnight. The crude product was isolated
by removal of the solvent and passing a dichloromethane (DCM) solution through a silica plug,
separating the catalyst remnants. Sublimation of the crude materials provided a crystalline film of
each desired product of high electronic purity. In some instances, recrystallization of the crude product
in isopropanol produced a cleaner material for sublimation resulting in reduced yields. For analogue
2d, a N,N-dimethylformamide (DMF)/water solvent system was chosen to circumvent the solubility
issues of the reagents.
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Figure 1. Synthesis of 9,10-disubstituted anthracenes (1a–c, 2a–d) via Suzuki-Miyura
cross-coupling reactions.

2.2. Optical and Electrochemical Properties

Solutions of compounds 1a–c and 2a–d in DCM were characterized by UV-visible (UV-Vis) and
photoluminescence (PL) spectroscopy; their corresponding maximum peak absorbance (λabs

max), energy
gap (Egap), and photoluminescence maximum peak emissions (λem

max) are all tabulated in Table 1 and their
respective spectra can be found in the electronic supplementary information (ESI) (Figures S6–S12). The
absorption profiles of each compound are similar to previously reported 9,10-disubstituted anthracenes,
exhibiting four vibronic bands found between 325–425 nm corresponding to π–π* (S0→ S1) transitions
of the anthracene core [26–30]. The minimal discrepancies between each of the λabs

max suggests minimal
orbital contribution from the exterior aryl groups, despite the alignment of the optical transition dipole
moment along the short axis of these molecules. These observations can be rationalized through the
twisted arrangement of the aryl groups in respect to the anthracene moiety [10,14,19,20,31–35]. With
nearly identical absorption features, Egap were between 2.96–2.99 eV for each derivative.

Table 1. Electrochemical and optical characterization of compounds 1a-c and 2a-d.

E1/2 (V)a EHOMO (eV)b λabs
max (nm) Egap (eV)c λem

max (nm) Stokes Shift (nm)

1a 1.241 −5.68 342, 358, 376, 397 2.98 420, 435 23
1b 1.323 −5.73 341, 357, 376, 396 2.98 414, 430 18
1c 1.377 −5.73 341, 357, 376, 396 2.99 420, 435 24
2a 1.303 −5.69 339, 358, 376, 396 2.96 421, 431 25
2b 1.215 −5.59 343, 359, 377, 398 2.96 405, 430 7
2c 1.279 −5.68 343, 358, 377, 398 2.97 428 30
2d 1.237 −5.61 342, 358, 377, 397 2.97 427 30

a. Volts versus Saturated calomel electrode (SCE); b. EHOMO = −4.80 eV −
(
Eox

onset vs. Fc
Fc+

)
; c. Egap was calculated

from the onset of the lowest energy absorbance peak.

Excitation of the compounds with the lowest energy λabs
max produced emission spectra lacking

mirror image quality with a blending of the fine structure. Stokes shifts varied between derivatives,
where the largest shifts were 30 nm for both 2c and 2d, and the smallest shift was attributed to 2b of
7 nm. Solutions of each derivative were also excited with the next two higher energy λabs

max and nearly
identical emission profiles are observed, indicating similar relaxation pathways.

In addition to studying the photophysical properties, cyclic voltammetry (CV) was performed
on solutions of 1a–c and 2a–d in DCM (0.1 M n-Bu4NPF6 supporting electrolyte) to investigate their
electrochemical behavior, as seen in Figure 2. A quasi-reversible oxidation process is observed for all
derivatives with similar halfway oxidation potentials (E1/2). The HOMO energy levels (EHOMO) were
estimated using the onset of the oxidation potentials [32,36–40]. The calculated EHOMO values were all
around −5.59 eV and −5.73 eV, which is more negative than other derivatives reported [10,32,41].
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Figure 2. CV scans of 1a (red), 1b (yellow), 1c (green), 2a (orange), 2b (purple), 2c (blue), and 2d
(magenta) in DCM.

The fact that all the CV data were similar indicates that the EHOMO levels relative to the work
function of the metal electrodes are similar as well, and therefore charge injection behavior should
be similar throughout the materials. This EHOMO level, in combination with the Egap, obtained from
UV-Vis spectroscopy, would also suggest that all materials have similar stability to oxidation.

2.3. Thermogravimetric Analysis

In addition to frontier molecular orbital energy levels, the thermal stability of a material is
of considerable importance when attempting to develop a successful device. High temperatures
associated with phase transitions (i.e., fusion) and decomposition pathways of these materials are
ideal, so as to avoid structural changes and morphological arrangements of the thin films. Therefore,
the melting points™ and decomposition temperatures (Td) have been measured for compounds 1a–c
and 2a–d and are tabulated in Figure 3. Unlike the optical properties, the choice in substituent played
a significant role in the thermal properties. Thermogravimetric analysis (TGA) was performed on all
compounds, where the decomposition temperature (Td) is determined at 5% weight loss. TGA was
performed at a ramp heating rate of 5.0 ◦C min under a nitrogenous atmosphere. In general, molecules
of 1 (258–302 ◦C) possessed lower Td in comparison to their methoxy counterparts (275–386 ◦C).
This trend is also recognized as the R1 group increases within each series, where 2d is superior with
the highest Td of 386◦. In regard to Tm, a similar pattern is apparent with 2, whereas the reverse
is true for 1. These results may be a reflection of solid-state packing with stronger and/or more
intermolecular interactions.
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Figure 3. Thermogravimetric analysis curves from left to right: 1a (red), 1b (yellow), 1c (green), 2a
(orange), 2b (purple), 2c (blue), and 2d (magenta) and their associated Tm and Td (corresponding to 5%
weight loss).

2.4. Single Crystal X-Ray Diffraction

To elucidate the structure–property relationship of the 9,10-disubstituted anthracenes, the
molecular and solid-state structures were analyzed through X-ray crystallography. Single crystals
were grown by train sublimation for each derivative and the crystallographic data are presented in
Table S1. Between molecular entities, a number of commonalities are present with respect to their
crystallographic features. For example, slight distortions are adopted along the backbone of the
anthracene cores that disrupts its planarity. The degree of distortion is characterized by the dihedral
angle (ω) created by intersecting planes bearing the terminal carbon atoms of the peripheral rings
(Figure 4; i.e., C1–C4 and C5–C8), as well as based on the distance between the individual carbon atoms
and the mean plane of the anthracene moiety (Table S2). The largest distortion is observed in 1b, which
has two unique molecules in the asymmetric unit, with a dihedral angle of 5.1◦ and twelve out of the
fourteen carbon atoms deviating from the mean plane by at least 0.03 Å for one of the molecules in the
asymmetric unit. Interestingly, the other molecule experiences this distortion to a lesser extent with a
dihedral angle of 3.1◦, and half the number of carbon atoms deviating from the mean plane. Based on
the family of compounds described here, it is apparent this distortion minimizes with the attachment
of larger aryl groups and as such, may be resulting from a response to the packing arrangement of the
molecules in the solid-state. Deviations in torsion angles (τ) between the pendent aryl substituents
and the anthracene cores deviate from co-planarity with angles ranging from 67.3–89.43◦, which can
be attributed to steric interactions between the peri-hydrogen atoms of the anthracene core and the
ortho-hydrogen atoms of the aryl substituents [32]. As a result, the twisting of the aryl substituents
provides the foundation for self-assembly of the molecules in packing arrangements dominated by
C–H···π interactions with anthracene units and aryl groups.
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Figure 4. Molecular distortions depicted by the dihedral angle (ω) between intersecting planes from
the outer blades of the anthracene backbone (C1–C4 and C5–C8) and the mean torsion angles (τ)
between pendant aryl groups and anthracene unit. Compound 1b contains two unique molecules in
the asymmetric unit.

Understanding the molecular properties of these compounds can give us insights towards the
supramolecular arrangements and the interactions between molecules. In regards to 1a, the near
orthogonal phenyl substituents guide molecules in two-dimensional arrays parallel to the (010) plane,
arranging in a lamellar-like structure (Figure S1). Where one phenyl moiety facilitates the C–H···π
interactions (2.72–2.89 Å) with anthracene cores along the arrays, the other joins adjacent arrays through
weaker C–H···π interactions (2.84 Å). A consequence resulting from the aforementioned interactions is
the lack of superposition between anthracene units locked in a zig-zag pattern, significantly reducing
π-orbital overlap between neighboring molecules. Consequently, the closest π-contacts are 3.79 and
3.92 Å within the arrays and 3.67 Å between arrays.

Replacement of the R1 phenyl substituent with a naphthalene moiety induces greater π-overlap
amongst the anthracene cores, as shown in polycyclic hydrocarbons 1b and 1c. Compound 1b
crystallizes with two unique molecules in the asymmetric unit, where spirals of alternating molecules
run parallel to the b-axis connected by C–H···π interactions (2.80–2.84 Å), as seen in Figure S2. While
the mean plane of the anthracene backbone belonging to one of the unique molecules is relatively
planar to the (010) plane (i.e., perpendicular to the stacking axis; 88.6◦), the other core deviates from
the axis at an angle of 77.0◦, rendering alternating π–π distances of 3.71 and 3.74 Å. This structural
feature, in addition to the molecular distortions described earlier, could be a response to minimize the
steric interactions arising from the protruding naphthyl substituents alongside of the spiral. More
interesting is the interlocking of adjacent spirals through additional C–H···π interactions (2.89 Å) along
the c-direction, providing shorter C–C contacts (3.46–3.60 Å) between neighboring anthracene units in
two dimensions.

In contrast to 1b, molecules of 1c form slipped π-stacks parallel to the b-axis with the shortest
π-contact of 3.72 Å between anthracene units (Figure S3). The attachment of the naphthyl group at the
2 position hinders superposition of the anthracene π-systems, similar to 1a, as C–H···π interactions
(2.71–2.89 Å) lock anthracene domains in a criss-cross configuration. In addition, the naphthyl
groups also facilitate C–H···π interactions (2.87 Å) that segregate π-stacks in staggered rows across
the b-direction. Although interstack interactions are suppressed across this direction, adjacent stacks
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along the a-direction are closer together, providing additional but weaker π–π interactions (3.88 Å)
between stacks.

Inclusion of a methoxy group as the R2 substituent reinforces the π-stacking found in 2a, 2c, and
2d (Figures S4 and S5, Figure 4). For example, self-assembly of these derivatives is similar to 1c, such
that staggered rows of stacked anthracene cores in a criss-cross arrangement, suggesting the size of the
group influences this type of packing. As a result, the shortest π-contact within these stacks measures
3.63, 3.71, and 3.54 Å for 2a, 2c, and 2d, respectively (Figure 5). Interestingly, the addition of the
various molecular substitutions did not have a large influence on the distance between the stacks of
each row, thus retaining the weaker interstack π–π interactions of 3.90, 3.91, and 3.97 Å for 2a, 2c, and
2d, respectively. The same cannot be said for 2b, as hydrogen bonds in addition to C–H···π interactions
lock in co-planarity between anthracene frameworks parallel to the (100) plane, ultimately disrupting
the spiral motifs observed in 1b. The molecules are spaced out along their stacking axes in pairs to
mitigate the steric repulsion from the protruding naphthalene groups, where the shortest C–C contact
between anthracene moieties is 4.82 Å.
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2.5. OTFT Performance 

Figure 5. Slipped π-stacks of 2d viewed along the a-direction (a) and b-direction (b). C–H···π interactions
between pendent substituents (R1 = magenta; R2 = blue) and anthracene cores are shown in green, while
π–π contacts between anthracene units are shown in blue (intrastack) and red (interstack). (c) Distances
between the centroids of neighboring molecules are illustrated between nearest π-stacks along the
c-direction.
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2.5. OTFT Performance

Compounds 1b and 2a–d were implemented into OTFTs by spin-coating the semiconductor onto
Si/SiO2 substrates with prefabricated gold source-drain electrodes with channel widths, W, of 2000 µm
and channel lengths, L, of 2.50 µm (Figure 6a). OTFT characteristics of compounds can be found in
Table 2. All OTFTs were tested in air. Characteristic output and transfer curves of the integrated
compounds are shown in Figure 6.
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Figure 6. (a) Bottom gate bottom configuration used for organic thin film transistor (OTFT) integration
of compounds 1b and 2a–d. (b) Characteristic output curve of fabricated OTFTs (1b). (c) Characteristic
transfer curve of fabricated OTFTs (1b).

Table 2. P-type OTFT testing summarya of compounds 1a–c and 2a–d.

π–π Distance (Å)b Ion/off
µavg

(cm2 V−1 s−1)
µmax

(cm2 V−1 s−1)
VT,Avg

(V)
VT,max

(V)

1a 3.67, 3.79, 3.92
1b 3.46, 3.58, 3.60, 3.71, 3.74 102 5.31 × 10−6 7.26 × 10−6 −37 −21
1c 3.72, 3.88
2a 3.63, 3.90 102 8.08 × 10−7 4.44 × 10−6 −41 −14

2bc 4.82
2c 3.71, 3.91 101 1.48 × 10−7 1.91 × 10−6 −29 −13
2d 3.54, 3.97 102 6.68 × 10−6 7.07 × 10−6 −43 −34

a. Field-effect observed at gate voltages varied from −80 to −40V; Channel length of 2.5 µm and electrode width
of 2000 µm, where Ion/off order of magnitude of on/off current ratios, µavg = average hole mobility, µmax = max
hole mobility, VT,Avg = average threshold voltage, and VT,max = average threshold voltage. b. Closest π–π contacts
between neighboring molecules determined through single crystal X-ray diffraction. c. OTFTs based on compound
2b exhibited no significant field effect.

Compounds 1b and 2a,c–d exhibited field effect mobility, while compound 2b did not produce
any field effect. On average, hole mobilities (µavg) for compounds 1b and 2a,c–d were on the order of
≈3.2 × 10−6 cm2 V−1 s−1 with an average threshold voltage (VT) from −13 V to −43 V, and Ion/off ranging
between 101–102. As expected, the OTFT performance is modest in comparison to previously reported
examples, likely due to the relatively large π–π intermolecular distances as described above. All
channel lengths were tested characterized (2.5, 5.0, 10.0, 20.0 µm). Only channel 2.5 µm length devices
had observed field-effects. Annealing at 120 ◦C for 40 min was attempted to improve the performance,
but resulted in reduced mobilities; agglomeration of the thin film was visible by microscope. Typical
film thickness of these bottom gate bottom contact devices ranged from 157 to 1173 nm, significantly
larger than the height of the Au electrodes (40 nm) relative to the SiO2 dielectric. These performance
metrics are similar to other derivatives with comparable intermolecular packing distances, such as
Silvestri et al.’s PA-P6d [41]. Wurthner et al.’s anthracene derivative also showed no field affect,
whereby the π–π overlap of the face-to-face interactions of their molecule was approximately 50% and
at a distance of 3.39 Å [42]. These results suggest that while 9,10-substitutions can act as handles to
tune significantly tune the thermal stability, they also impart significant modifications on the solid-state
arrangement, which can have detrimental effects on the OTFT performance [42]. Compounds 1a and
1c were not incorporated into devices based on the poor expected device performance, which would
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likely result from the large π–π distances obtained from single crystal diffraction (similar to device
obtained using 2a and 2c).

3. Conclusions

Seven novel 9,10-functionalized anthracene-based molecules were synthesized, their optical,
photoluminescent, electrochemical, and thermal characteristics were probed, and they were
implemented as the active semiconducting layer in OTFTs. Based on this study, substitution of
the 9,10-position proved to be an effective way to tune the thermal stability of the material, while
having negligible effects on the frontier molecular orbital energy levels. Additionally, functionalization
at the 9,10-position was found to strongly affect the solid-state arrangement, as determined through
single crystal X-ray diffraction (XRD) analysis. These significant changes in solid-state structures
resulted in OTFTs with modest performance, where the highest mobility obtained was on an order of
10−6 cm2 V−1 s−1 with a VGS of −80 V. These findings suggest that moiety functionalization strongly
affects physicochemical properties such as melting point and decomposition temperature, yet has
little effect on optical and electrochemical properties. These results further indicate that, towards
improving anthracene-based OTFTs, it is wise to explore functionalization at various locations about
the anthracene core rather than exclusively focusing on the 9,10-position. Future work will investigate
the development of new molecules with such design strategies in mind to provide insight into their
effect on solid-state engineering.

4. Materials and Methods

4.1. General Methods and Procedures

The reagents 9-bromo-10-phenylanthracene (Lumtec Corp., Taipei, Taiwan), 9-bromo-10-(nap
hthalene-1-yl)anthracene (Lumtec Corp., Taipei, Taiwan), 9-bromo-10-(phenanthrene-10-yl)anthracene
(Lumtec Corp., Taipei, Taiwan), 9-bromo-10-(naphthalen-2-yl)anthracene (Lumtec Corp., Taipei,
Taiwan), phenylboronic acid (Oakwood Products Inc., Estill, SC, USA), 4-methoxybenzeneboronic acid
(Oakwood Products Inc., Estill, SC, USA), potassium carbonate (K2CO3) (Oakwood Products Inc., Estill,
SC, USA), tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) (Strem Chemicals, Newburyport,
MA, USA), toluene, N,N-dimethylformamide (DMF) (Caledon Laboratories Ltd., Georgetown, ON,
Canada), and ethanol were commercially obtained and used as received. All solvents were ACS
grade. All reactions were performed under an atmosphere of dry nitrogen. Melting points were taken
using a Mel-Temp apparatus and are uncorrected. NMR spectra were run in CDCl3 solutions at room
temperature on a Bruker 400 MHz spectrometer (Bruker, Billerica, MA, USA) and were referenced to
the deuterated solvent peak. Film thickness measurements were performed with the Bruker DektakXT
Profilometer (Bruker, Billerica, MA, USA). IR spectra were recorded on an Agilent Technologies Cary
630 FT-IR spectrometer. UV-Vis spectra were measured with a Varian Cary Series 6000 UV-Vis-NIR
spectrophotometer (Agilent, Santa Clara, California, USA) and photoluminescence spectra were
obtained using a Varian Cary Eclipse fluorescence spectrophotometer. UV-Vis and fluorescence
spectra were measured in HQGC-grade DCM solutions with 1 cm precision quartz cuvettes. TGA
analyses were performed in 70 µl alumina crucible using a TGA/DSC 1 Mettler Tolledo instrument
(Mettler Tolledo, Columbus, Ohio, USA) under nitrogen gas with a heating rate of 5.0 ◦C min−1. Gas
Chromatgraphy/Mass Sectrometry (GC/MS) was performed using Agilent 6890 GC (Agilent, Santa
Clara, California, USA) coupled to Agilent 5975 MS. The inlet temperature was set 320 ◦C with a split
ratio 50:1 at 1 µL injections. The initial oven temperature was 275 ◦C, held for 15 min, then ramped to
300 ◦C (40 ◦C /min) and held for 25 min. The column was HP-5MS (30 m × 250 µm × 0.25 µm), and
its initial flow was 1.6 mL min−1. A toluene and 1,2-dichloroethane solvent mixture was used for all
GC/MS experiments.
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4.1.1. Preparation of 9,10-diphenylanthracene (1a)

A bubbled-degassed solution of toluene, ethanol and water (1:0.25:0.15, 347 mL) was transferred to
a mixture of 9-bromo-10-phenylanthracene (1.51 g, 4.53 mmol), phenylboronic acid (1.11 g, 9.10 mmol),
K2CO3 (1.88 g, 13.60 mmol), and Pd(PPh3)4 (0.79 g, 0.68 mmol). The reaction was stirred for 16 h at
65 ◦C. After the reaction was cooled to room temperature, the solvent was removed in vacuo. The
resulting solid was dissolved in a minimal amount of DCM, washed with a 1.0 M aqueous NaOH
solution and subsequently with water and brine. The organic phase was dried with MgSO4, filtered
through a silica plug and dried in vacuo, resulting in an off-white crude product. The crude product was
recrystallized in isopropanol (Yield 0.42 g, 1.27 mmol, 28%) and further purified through sublimation
at a temperature range of 205–215 ◦C under a pressure of 10−3 Torr with CO2 as a carrier gas, which
afforded 1a as white crystals (Yield 0.26 g, 0.79 mmol, 17%). GC/MS reported an elution time of
6.760 min with abundance of 2.1 × 106, and reported an M+ peak of 330.2 m/z compared to a prediction
of 330.14 m/z. MP: 247–252 ◦C. 1H NMR (δ, 400 MHz, CDCl3): 7.69–7.73 (4H, m), 7.54–7.64 (6H, m),
7.48–7.52 (4H, m), 7.32–7.36 (4H, m). 13C NMR (δ, 100 MHz, CDCl3): 139.24 (2C), 137.26 (2C), 131.47
(4CH), 130.02 (4C), 128.55 (4CH), 127.61 (2CH), 127.11 (4CH), 125.13 (4CH). FT-IR (νmax): 3059 (w),
3032 (w), 1656 (w), 1598 (w), 1492 (w), 1439 (m), 1389 (m), 1369 (w), 1278 (w), 1193 (w), 1174 (w), 1158
(w), 1073 (m), 1025 (m), 999 (w), 942 (m), 923 (w), 856 (w), 845 (w), 767 (s), 748 (s), 732 (m), 700 (s), 661
(s) cm−1.

4.1.2. Preparation of 9-phenyl-10-(1-naphthalenyl)-anthracene (1b)

Prepared analogously to 1a using 9-bromo-10-(naphthalene-1-yl)anthracene (1.50 g, 3.91 mmol),
phenylboronic acid (0.95 g, 7.79 mmol), K2CO3 (1.62 g, 11.72 mmol), and Pd(PPh3)4 (0.68 g, 0.59 mmol)
in 300 mL of the solvent mixture, yielding an off-white crude solid. Sublimation at a temperature
range of 205–215 ◦C under a pressure of 10−3 Torr with CO2 as a carrier gas afforded 1b as white
crystals (Yield 0.41 g, 1.08 mmol, 28%). GC/MS reported an elution time of 16.114 min with abundance
of 2.1 × 107, and reported an M+ peak of 380.2 m/z compared to a prediction of 380.16 m/z. MP:
232–235 ◦C. 1H NMR (δ, 400 MHz, CDCl3): 8.01–8.09 (2H, m), 7.70–7.76 (3H, m), 7.44–7.67 (9H, m),
7.30–7.35 (2H, m), 7.17–7.26 (5H, m). 13C NMR (δ, 100 MHz, CDCl3): 139.23 (1C), 137.63 (1C), 136.96
(1C), 135.15 (1C), 133.86 (1C), 133.76 (1C), 131.54 (2CH), 130.79 (2C), 130.08 (2C), 129.37 (CH), 128.58
(CH), 128.57 (CH), 128.37 (CH), 128.25 (CH), 127.66 (CH), 127.20 (2CH), 127.20 (2CH), 126.83 (CH),
126.42 (CH), 126.15 (CH), 125.75 (CH), 125.31 (2CH), 125.21 (2CH). FT-IR (νmax): 3047 (w), 2922 (w),
2853 (w), 1702 (w), 1655 (w), 1592 (w), 1561 (w), 1508 (w), 1438 (m), 1372 (m), 1255 (w), 1069 (w), 1028
(m), 1016 (w), 936 (m), 801 (m), 791 (w), 778 (s), 765 (s), 756 (s), 735 (m), 705 (s), 670 (m), 657 (s) cm−1.

4.1.3. Preparation of 9-phenyl-10-(2-naphthalenyl)-anthracene (1c)

Prepared analogously to 1a using 9-bromo-10-(naphthalene-2-yl)anthracene (1.51 g, 3.94 mmol),
phenylboronic acid (0.96 g, 7.88 mmol), K2CO3 (1.63 g, 11.80 mmol), and Pd(PPh3)4 (0.68 g, 0.59 mmol)
in 287 mL of the solvent mixture, yielding an off-white crude solid. The crude product was recrystallized
in isopropanol (Yield 0.39 g, 1.01 mmol, 26%) and further purified through sublimation at a temperature
range of 155–185◦C under a pressure of 10−3 Torr with CO2 as a carrier gas, which afforded 1c as
white crystals (Yield 0.29 g, 0.76 mmol, 19%). GC/MS reported an elution time of 19.523 min with
abundance of 5.1 x 106, and reported an M+ peak of 380.2 m/z compared to a prediction of 380.16 m/z.
MP: 232–238 ◦C. 1H NMR (δ, 400 MHz, CDCl3): 7.91–8.10 (4H, m), 7.71–7.76 (4H, m), 7.51–7.65 (8H, m),
7.29–7.35 (2H, m), 7.17–7.37 (4H, m). 13C NMR (δ, 100 MHz, CDCl3): 139.23 (1C), 137.42 (1C), 137.04
(1C), 136.76 (1C), 133.58 (1C), 132.92 (1C), 131.49 (2CH), 130.39 (1CH), 130.20 (2C), 130.06 (2C), 129.72
(1CH), 128.58 (2CH), 128.25 (1CH), 128.11 (1CH), 128.05 (1CH), 127.64 (1CH), 127.17 (2CH), 127.16
(2CH), 126.58 (1CH), 126.36 (1CH), 125.24 (2CH), 125.18 (2CH). FT-IR (νmax): 3051 (w), 1702 (w), 1655
(w), 1599 (w), 1561 (w), 1498 (w), 1438 (m), 1394 (m), 1370 (w), 1271 (w), 1244 (w), 1202 (w), 1176 (w),
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1135 (w), 1070 (w), 1028 (m), 1017 (w), 1002 (w), 970 (w), 955 (w), 936 (m), 917 (w), 898 (w), 878 (w), 857
(w), 849 (w), 820 (m), 794 (w), 772 (m), 759 (s), 748 (s), 703 (s), 676 (m), 658 (s) cm−1.

4.1.4. Preparation of 9-(4-methoxyphenyl)-10-phenylanthracene (2a)

Prepared analogously to 1a using 9-bromo-10-phenylanthracene (1.39 g, 4.17 mmol), 4-methoxybe
nzeneboronic acid (1.26 g, 8.29 mmol), K2CO3 (1.73 g, 12.52 mmol), and Pd(PPh3)4 (0.72 g, 0.62 mmol) in
318 mL of the solvent mixture, yielding an off-white crude solid. The crude product was recrystallized
in isopropanol (Yield 0.76 g, 2.11 mmol, 51%) and further purified through sublimation at a temperature
range of 150–180 ◦C under a pressure of 10−3 Torr with CO2 as a carrier gas, which afforded 2a as white
crystals (Yield 0.45 g, 1.25 mmol, 30%). GC/MS reported an elution time of 11.715 min with abundance
of 3.0 x 106, and also reported an M+ peak of 360.2 m/z compared to a prediction of 360.15 m/z. MP:
228–232 ◦C. 1H NMR (δ, 400 MHz, CDCl3): 7.74–7.79 (2H, m), 7.68–7.73 (2H, m), 7.53–7.63 (3H, m),
7.47–7.50 (2H, m), 7.39–7.43 (2H, m), 7.31–7.37 (4H, m), 7.14–7.17 (2H, m), 3.97 (3H, s). 13C NMR (δ,
100 MHz, CDCl3): 159.18 (1C), 139.28 (1C), 137.08 (1C), 137.06 (1C), 132.53 (2CH), 131.48 (2CH), 131.25
(1C), 130.36 (2C), 130.06 (2C), 128.54 (2CH), 127.58 (CH), 127.19 (2CH), 127.10 (2CH), 125.10 (2CH),
125.05 (2CH), 114.02 (2CH), 55.54 (1CH3). FT-IR (νmax): 3067 (w), 3042 (w), 2999 (w), 2963 (w), 2936
(w), 2910 (w), 2841 (w), 1607 (m), 1575 (w), 1560 (w), 1513 (s), 1497 (m), 1463 (m), 1439 (m), 1409 (w),
1391 (m), 1370 (w), 1305 (w), 1284 (m), 1242 (s), 1190 (w), 1182 (m), 1176 (m), 1169 (m), 1158 (w), 1145
(w), 1136 (w), 1105 (m), 1071 (m), 1028 (s), 943 (m), 917 (w), 879 (w), 850 (m), 831 (s), 821 (m), 792 (m),
771 (s), 765 (s), 756 (s), 737 (m), 732 (m), 715 (m), 705 (s), 670 (s), 666 (s) cm−1.

4.1.5. Preparation of 9-(4-(methoxyphenyl))-10-(1-naphthalenyl)anthracene (2b)

Prepared analogously to 1a using 9-bromo-10-(naphthalene-1-yl)anthracene (1.49 g, 3.89 mmol),
4-methoxybenzeneboronic acid (0.74 g, 4.86 mmol), K2CO3 (1.00 g, 7.29 mmol), and Pd(PPh3)4 (0.42 g,
0.36 mmol) in 191 mL of the solvent mixture, yielding an off-white crude solid. Sublimation at a
temperature range of 155–185 ◦C under a pressure of 10-3 Torr with CO2 as a carrier gas afforded 2b
as white crystals (Yield 0.76 g, 1.86 mmol, 48%). GC/MS reported an elution time of 51.288 min with
abundance of 1.3 x 106, and also reported a M+ peak of 410.2 m/z compared to a prediction of 410.1 m/z.
MP: 250–256 ◦C.−1H NMR (δ, 400 MHz, CDCl3): 8.01–8.08 (2H, m), 7.79–7.81 (2H, m), 7.69–7.73 (1H,
m), 7.57–7.59 (1H, m), 7.42–7.51 (5H, m), 7.31–7.35 (2H, m), 7.16–7.25 (6H, m), 3.99 (3H, s). 13C NMR (δ,
100 MHz, CDCl3): 159.23 (1C), 137.44 (1C), 137.01 (1C), 134.97 (1C), 133.86 (1C), 133.77 (1C), 132.60
(1CH), 132.59 (1CH), 131.24, 1 30.83 (2C), 130.43 (2C), 129.37 (1CH), 128.36 (1CH), 128.22 (1CH), 127.28
(2CH), 127.19 (2CH), 126.84 (1CH), 126.40 (1CH), 126.13 (1CH), 125.75 (1CH), 125.28 (2CH), 125.12
(2CH), 114.07 (1CH), 114.03 (1CH), 55.57 (1CH3). FT-IR (νmax): 3037 (w), 2958 (w), 2931 (w), 2837 (w),
1606 (m), 1561 (w), 1512 (m), 1509 (m), 1484 (w), 1459 (w), 1455 (m), 1444 (m), 1438 (m), 1405 (w), 1375
(m), 1302 (w), 1284 (m), 1244 (s), 1176 (m), 1148 (w), 1142 (w), 1107 (m), 1072 (w), 1026 (m), 1012 (m),
959 (w), 937 (m), 882 (w), 852 (w), 830 (m), 817 (w), 804 (s), 780 (s), 768 (s), 734 (m), 700 (m), 672 (m), 665
(m) cm−1.

4.1.6. Preparation of 9-(4-methoxyphenyl)-10-(naphthalen-2-yl)anthracene (2c)

Prepared analogously to 1a using 9-bromo-10-(naphthalene-2-yl)anthracene (0.93 g, 2.44 mmol),
4-methoxybenzeneboronic acid (0.74 g, 4.86 mmol), K2CO3 (1.00 g, 7.24 mmol), and Pd(PPh3)4 (0.42 g,
0.36 mmol) in 318 mL of the solvent mixture, yielding an off-white crude solid. The crude product was
recrystallized in isopropanol (Yield 0.39 g, 0.94 mmol, 39%) and further purified through sublimation
at a temperature range of 155–180 ◦C under a pressure of 10−3 Torr with CO2 as a carrier gas, which
afforded 2c as white crystals (Yield 0.33 g, 0.80 mmol, 33%). GC/MS reported an elution time of 26.614
min with abundance of 1.7 × 105, and also reported an M+ peak of 410.2 m/z compared to a prediction
of 410.17 m/z. MP: 257–261 ◦C. 1H NMR (δ, 400 MHz, CDCl3): 7.90–8.09 (4H, m), 7.71–7.80 (4H, m),
7.57–7.63 (3H, m), 7.41–7.45 (2H, m), 7.29–7.41 (4H, m), 7.15–7.19 (2H, m), 3.98 (3H, s). 13C NMR (δ, 100
MHz, CDCl3): 159.21 (1C), 137.23 (1C), 136.87 (1C), 136.81 (1C), 133.58 (1C), 132.91 (1C), 132.55 (2CH),
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131.25 (1C), 130.40 (2C), 130.39 (1CH), 130.24 (2C), 129.74 (1CH), 128.24 (1CH), 128.10 (1CH), 128.05
(1CH), 127.26 (2CH), 127.15 (2CH), 126.56 (1CH), 126.34 (1CH), 125.21 (2CH), 125.09 (2CH), 114.05
(1CH), 114.04 (1CH), 55.55 (1CH3). FT-IR (νmax): 3035 (w), 2954 (w), 2932 (w), 2901 (w), 2835 (w), 1720
(w), 1702 (w), 1686 (w), 1655 (w), 1605 (w), 1560 (w), 1544 (w), 1509 (m), 1459 (w), 1438 (w), 1395 (w),
1296 (w), 1285 (w), 1271 (w), 1241 (s), 1202 (w), 1173 (m), 1136 (w), 1107 (w), 1033 (m), 1028 (m), 968
(w), 954 (w), 936 (m), 902 (w), 880 (w), 858 (w), 850 (w), 830 (w), 823 (m), 815 (m), 786 (w), 771 (m), 763
(s), 751 (s), 733 (m), 720 (w), 698 (w), 697 (w), 675 (m), 667 (m), 663 (m), 652 (w) cm−1.

4.1.7. Preparation of 9-(4-methoxyphenyl)-10-(phenanthrene-10-yl)anthracene (2d)

A bubbled-degassed solution of DMF and water (9:1, 150 mL) was transferred to a mixture of
9-bromo-10-(phenanthrene-10-yl)anthracene (1.50 g, 3.46 mmol), 4-methoxybenzeneboronic (1.19 g,
7.83 mmol), K2CO3 (1.62 g, 11.74 mmol), and Pd(PPh3)4 (0.68 g, 0.59 mmol). The reaction was stirred
for 16 h at 90 ◦C. After the reaction was cooled to room temperature, water (1.5 L) was added to
the reaction. The resulting precipitate was filtered, washed with water, and dried. Sublimation at
a temperature range of 220–245 ◦C under a pressure of 10−3 Torr with CO2 as a carrier gas, which
afforded 2d as faint yellow crystals (Yield 1.26 g, 2.74 mmol, 79%). GC/MS reported an elution time of
51.288 min with abundance of 4.3 x 105, and also reported an M+ peak of 460.3 m/z compared to a
prediction of 460.3 m/z. MP: 298–302 ◦C. 1H NMR (δ, 400 MHz, CDCl3): 8.88–8.90 (2H, m), 7.92–7.95
(1H, m), 7.76–7.88 (4H, m), 7.65–7.71 (2H, m), 7.58–7.60 (2H, m), 7.46–7.54 (2H, m), 7.32–7.36 (3H, m),
7.18–7.28 (5H, m), 4.00 (3H, s). 13C NMR (δ, 100 MHz, CDCl3): 159.25 (1C), 137.56 (1C), 135.63 (1C),
134.80 (1C), 132.89 (1C), 132.61 (1CH), 132.59 (1CH), 131.92 (1C), 131.22 (1C), 130.89 (2C), 130.64 (1C),
130.57 (1C), 130.49 (2C), 130.15 (1CH), 128.93 (1CH), 127.71 (1CH), 127.34 (2CH), 127.21 (2CH), 127.10
(1CH), 127.04 (2CH), 126.84 (1CH), 125.39 (2CH), 125.19 (2CH), 123.00 (1CH), 122.88 (1CH), 114.09
(1CH), 114.04 (1CH), 55.56 (1CH3). FT-IR (νmax): 3060 (w), 3034 (w), 2953 (w), 2931 (w), 2899 (w), 2835
(w), 1606 (w), 1561 (w), 1510 (m), 1450 (w), 1438 (w), 1407 (w), 1390 (w), 1368 (w), 1310 (w), 1284 (m),
1281 (m), 1241 (m), 1172 (m), 1144 (w), 1108 (w), 1031 (m), 951 (w), 930 (w), 904 (w), 848 (w), 829 (m),
816 (w), 790 (w), 769 (s), 758 (m), 747 (s), 735 (s), 725 (s), 717 (m), 684 (m), 671 (m), 665 (m), 660 (m) cm−1.

4.2. Electrochemistry

Cyclic voltammetry was performed using a BASi Epsilon potentiostat employing a glass cell
and platinum wires for working, counter, and pseudo-reference electrodes. The measurements were
carried out on acetonitrile solutions (dried by J. C. Meyer solvent purification system and stored over
3 Å molecular sieves) containing 0.1 M tetrabutylammonium hexafluorophosphate (Oakwood) as
supporting electrolyte with a scan rate of 100 mV/s. The experiments were referenced to the Fc/Fc+

redox couple of ferrocene at +0.475 V vs. saturated calomel electrode (SCE) [36–38]

4.3. Thermogravimetric Analysis

TGA analyses were performed in 70 ul alumina crucible using a TGA/DSC 1 Mettler Tolledo
instrument under nitrogen gas with a heating rate of 5.0 ◦C min−1. All compounds, where the
decomposition temperature (Td) is determined at 5% weight loss.

4.4. Crystallographic Characterization

Crystallographic data were collected from single crystals mounted on thin glass fibers using
parabar oil and secured with clear nail polish. Data were collected on a Bruker Smart or Kappa APEX
II single crystal diffractometer equipped with a graphite monochromator. Both instruments were
equipped with a sealed tube Mo Kα source (λ = 0.71073 Å), an APEX II CCD detector, and a dry
compressed air-cooling system. All samples were cooled to 200 (2) K during data collection except
for 2d, which remained at room temperature. Raw data collection and processing were performed
with the APEX3 software package from Bruker [43]. Initial unit cell parameters were determined
from 36 data frames from select ω scans. Semi-empirical absorption corrections based on equivalent
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reflections were applied [44]. Systematic absences in the diffraction data set and unit-cell parameters
were consistent with the assigned space group. The initial structural solutions were determined using
SHELXT direct methods [45] and refined with full-matrix least-squares procedures based on F2 using
SHELXL or ShelXle [46]. Hydrogen atoms were placed geometrically and refined using a riding model.

4.5. Electrical Characterization

Organic thin film transistors (OTFTs) were fabricated in a bottom gate bottom contact configuration
by spin-coating the organic semiconductor onto Si/SiO2 substrates with prefabricated gold source-drain
electrodes from Fraunhofer IPMS (W = 2000 µm, L = 2.5 µm). Prior to deposition, the substrates were
washed by sequential sonication baths (5 min each) in soapy water, acetone, isopropanol, and dried
with nitrogen followed by oxygen plasma for 15 min to clean and hydrolyze the surface. Substrates
were then rinsed with water and isopropanol, then dried in nitrogen, before a 1.0 h surface treatment
in 1% v/v octyltrichlorosilane (OTS) in toluene at 70 ◦C [47] Silane-treated substrates were washed
with toluene and isopropanol and dried at 70 ◦C for 1h under vacuum. Then, 10 mg mL−1 solutions
of compounds 1–5 were spin-coated by applying 1 mL drops of the respective solution onto the
pre-patterned substrates and rotating at 2000 RPM. The substrates were then allowed to dry at 40 ◦C
for 30 min under vacuum. Chloroform was used as the solvent to spin-coat material onto the substrate
surface at 2000 RPM. All channels lengths were tested (2.5, 5.0, 10.0, 20.0 µm). All values were taken as
an average value from a minimum of four devices. Characterization was performed in air. Electrical
measurements were performed using a custom electrical probe station with a chamber allowing for
controlled atmosphere, oesProbe A10000-P290 (Element Instrumentation Inc. & Kreus Design Inc.,
Richmond, BC, Canada) with a Keithley 2614B to control source-drain voltage (VDS), gate voltage
(VGS), and measure source-drain current (IDS). VDS was maintained at a constant −50 V, while VGS was
varied from −40 to −80 V to obtain measurements of IDS. From these measurements, saturation-region
field-effect mobility, on/off current ratio, and threshold voltage were determined.

The general expression relating current to field-effect mobility and gate voltage in the saturation
mode is given in Equation (1):

IDS =
µCiW

2L
(VGS −VT)

2 (1)

where IDS is the source-drain voltage, µ is the field-effect mobility of the material (electron mobility in
this study), Ci is the capacitance, W is the width of the channel, L is the length of the channel, VGS is
the gate-source voltage, and VT is the threshold voltage. To obtain a linear relation, the square root of
Equation (1) is taken, giving Equation (2), so that the mobility and threshold voltage can be calculated
directly from the slope and x-intercept of an

√
IDS vs VGS curve, respectively.

√
IDS =

√
µCiW

2L
(VGS −VT) (2)

Finally, the on/off ratio is determined by Equation (3):

On/Off Ratio =
Ion

Ioff
(3)

where Ion and Ioff are the highest and lowest currents, respectively, measured in the characterized gate
voltage range.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/17/2726/s1,
Figures S1–S5: Single crystal Xray diffraction views and interactions Figures S6–S12: UV-Vis absorption spectrum
and emission spectra normalized for comparison for all compounds. Table S1. Crystallographic parameters
for 1a–c and 2a–d. Table S2. Distances (Å) between the individual carbon atoms and the mean plane of the
anthracene moiety.
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