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Abstract: This paper presents a sampling-based approximation for multiple unmanned aerial vehicle
(UAV) task allocation under uncertainty. Our goal is to reduce the amount of calculations and improve
the accuracy of the algorithm. For this purpose, Gaussian process regression models are constructed
from an uncertainty parameter and task reward sample set, and this training set is iteratively refined
by active learning and manifold learning. Firstly, a manifold learning method is used to screen
samples, and a sparse graph is constructed to represent the distribution of all samples through
a small number of samples. Then, multi-points sampling is introduced into the active learning
method to obtain the training set from the sparse graph quickly and efficiently. This proposed
hybrid sampling strategy could select a limited number of representative samples to construct the
training set. Simulation analyses demonstrate that our sampling-based algorithm can effectively get
a high-precision evaluation model of the impact of uncertain parameters on task reward.

Keywords: uncertainty; multi-UAVs; task allocation; active learning; manifold learning

1. Introduction

Recently, multiple unmanned aerial vehicles (UAVs) have received increasing attention for their
accomplishments in both military and civil applications [1–4]. Task allocation is the critical basis of
multi-UAV collaborative control, and it is to determine which UAV within a multi-UAV fleet should
perform which task, in order to achieve the desired task execution effect with the maximum task
efficiency at the lowest cost [5]. Since the actual environment is often complex, dynamic and full
of uncertainties, the task allocation of many UAVs often needs to be carried out in an uncertain
environment. In order to enhance the robustness of the task assignment algorithm, multi-UAV task
assignment methods in uncertain environments have become a hot topic [6–8].

There is some research on multi-UAV task allocation problems under uncertainty. A lot of task
allocation problem models [5,9] and task assignment solving algorithms [10–15] have been developed
to meet the respective needs of various situations. Some intelligent methods have been proposed for
multi-UAV task allocation problem under uncertain situation [7,8,16–19]. References [16–18] used
the concepts of interval uncertainty to model the uncertain factors of task allocation problem and the
traditional auction algorithm, genetic algorithm and particle swarm optimization (PSO) are separately
used to solve multi-UAV task allocation problems under uncertainty. Ponda [8] proposed that the
uncertainties in the true environment can be captured as parametric uncertainties in the underlying
system models, which can affect various portions of the planning model. Robust planning algorithms
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were developed to select the best task assignment in order to minimize the effect of uncertainties on the
final task score. For parametric uncertainties, Ponda [8] and Whitbrook [19] used robust strategies to
capture the propagation law of uncertainties in the score function and calculates the expected reward
scores to participate in the task allocation process.

The main difficulty is how to analytically compute these robust scores [8]. The underlying
mapping from uncertain parameters to score is usually unknown and can be highly nonlinear. In those
cases, approximate scores can be more easily computed using sampling-based procedures with the
Monte-Carlo method, and the weighted score can be obtained from various realizations of the uncertain
parameters, but using Monte Carlo sampling methods requires too many samples [20].

Machine learning has also been conducted in the field of multi-UAVs collaborative control.
Machine learning approaches offer the potential to more efficiently sample the uncertainty space with
fewer number of samples, but simultaneously minimize the impact on the accuracy of the robust
score metrics associated with fewer samples [21–27]. Quindlen [20] used Gaussian process regression
(GPR) and machine learning active learning algorithms (AL) to replace Monte-Carlo-based evaluation
methods, and this effectively reduces the computational time complexity and sampling costs. However,
the iterative training selection process of active learning requires a large amount of calculation, so we
need to further improve the sample selection mechanism.

Tang [28] expressed the concept of sample representation and uncertainty, and considered the
two factors to evaluate the amount of information carried by the sample, and used this to select the
samples needed for the training process, and achieved smaller Root Mean Square Error (RMSE) than
only considering a single factor. Zhou [29,30] used the manifold learning algorithm to preliminary
select the samples from unlabeled sample pools and evaluate them, which reduced the classification
error rate effectively. These approaches for classification problem can be combined with existing active
learning in regression problem for the score prediction of sample.

This paper focuses on the task assignment of multi-UAVs with time-window constrain,
which considers the uncertainty of task duration, and evaluates the impact of uncertain parameters
on the task’s reward. Based on the existing active learning sampling algorithm, we adopt manifold
learning to design multi-points simultaneous sampling strategies. The main contributions of this paper
contain two aspects as follows:

• Multi-points simultaneous sampling is introduced into active learning to obtain the training set
quickly and efficiently. That is, multiple samples are selected before retraining the regression
model, so that computational costs can be reduced by reducing training steps for same number of
samples without decreasing the accuracy.

• We proposed an improved hybrid sampling strategy based on manifold learning and active
learning. Only using active learning may lead to sample agglomeration under the framework
of multi-points simultaneous sampling. Manifold learning method is used to screen samples in
advance, which constructs sparse graph to represent the distribution of all samples through a
small number of samples. This strategy could select a limited number of samples that with good
representativeness to construct the training set.

The remainder of this paper is organized as follows: Section 2 provides a robust task assignment
model and solving method. Section 3 describes the Gaussian process regression and active learning
algorithm. Section 4 proposes our improved hybrid sampling algorithm proposed. Section 5 presents
computational experiments and interprets the results. Section 6 summarizes the conclusions drawn
from our research, and points out the future directions of this work.

2. Robust Task Assignment Model and Solving Method

2.1. Task Allocation Problem in Uncertain Environment

The multi-UAV task allocation problem is a multi-constraints and multi-coupled combinatorial
optimization problem containing timing-constraints. In this paper, we use the CMTAP [9] model to
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describe this optimization problem. Given a formation consisting of Na UAVs to perform tasks on
Nt targets, and the goal of task assignment is to find a feasible allocation scheme to optimize reward
function, expressed as Equation (1): 

max
x

Na
∑

i=1

Nt
∑

j=1
cij(x, θ)

s.t. G(x, θ) ≤ b
x ∈ χ χ = {0, 1}Na×Nt

(1)

where, cij is the reward score that UAV i get from performing one task on target j, θ is an allocation
parameter related to score function calculation. G(x, θ) ≤ b represents the relevant constraints for task
assignment, χ is 0–1 decision variable set.

The main constraint is the time-window constraint. If a task must complete within a specified
time range, the task is said to have time-window constraint. In the CMTAP model, the time-window
constraints usually exist for dynamic targets or time-sensitive targets. The time-window constraints
can described as Equation (2):

ETj ≤ tj ≤ LTj (2)

where, ETj and LTj are the earliest time limit and the latest time limit for performing the task j
respectively, tj is the execution time of the task j.

Under the above time window constraints, the objective optimization function can be established
as Equation (3):

cij =

{
Valuej exp(−λ(tj − ETj))− α ∗ L(ViTj), ETj ≤ tj ≤ LTj
0, otherwise

(3)

where, on the basis of the time window of task, the optimization goal of the task shortest completion
time is taken into consideration. The optimization function is established as the time index discount
model [8], which means the task score decreases with the increases of the task execution time in the
time-window. Valuej is the value of task j, [ETj, LTj] is the time-window of task j, λ is the parameter
of the time index discount model which is used to reduce the nominal value Valuej according to the
delay tj − ETj; α is distance penalty factor which represent the fuel consumption of UAVs, L(ViTj) is
distance between UAV i and target j.

This paper studies the problem of task allocation under parameter uncertainty. In specific
multi-UAV task allocation problems, uncertain parameters often have their own distribution, which
can be obtained from historical data, surveys or theoretical calculations. The conventional distributions
have uniform distribution, normal distribution, gamma distribution and so on.

Traditional task assignment assumes that the execution of the task is performed for a short period
of time or is completed instantaneous. However, considering the complexity of the real environment,
each UAV has its own task duration due to its own characteristics, load capacity, and movement factors,
and this execution duration is still uncertain and is a random process. And uncertain execution duration
may lead to a particular task allocation result become completely infeasible in realistic environment.

To simplify the complexity of the problem, we focus on the strategy to deal with uncertain
parameters and just consider task duration is uncertain. The strategy could also apply to other scenario
with other uncertain parameter or many uncertain parameters at the same time. While the true value of
θ is unknown, it is assumed that a likelihood model of the uncertainty parameter is known beforehand.
The task duration tjduration obeys a statistical probability distribution, which is known as Equation (4):

θ ∼ P(θ) (4)
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2.2. Task Allocation Method Based on CBBA under Parameter Uncertainty

Ponda [8] established a robust model of the expected value method and solved it based on the
CBBA algorithm. The CBBA consists of two phases separated from each other: the task bundle
construction phase and the conflict resolution phase. The algorithm loops and iterates in the task
bundle construction phase and the conflict resolution phase until all the agent tasks are assigned in a
consistent manner.

The uncertainty of the task duration tjduration will affect the reward score of each task in UAV’s
task bundle. Therefore, in order to enhance the robustness of the task assignment algorithm, it is
necessary to deal with the uncertain parameters in the assignment process.

Robust strategies can evaluate the influence of uncertain parameters θ on the task’s reward score,
that is, capture the uncertainty of parameters distribution in the score function through this strategy:

max
x,τ

Eθ{
Na

∑
i=1

(
Nt

∑
j=1

cij(x, θ)xij)} (5)

The robust strategy is to obtain the expected value of the task’s reward score by different
values of uncertain parameter, and then to maximize the expected value to obtain an optimized
task assignment result.

When an UAV constructs its own task bundle, the task bundle score is calculated as Equation (6):

Jpi = Eθ{
Nt

∑
j=1

cij(τij ∗ (pi), θ)xij} =
∫

θ∈Θ

(
Nt

∑
j=1

cij(τij ∗ (pi), θ)xij)P(θ)dθ =
∫

θ∈Θ

Jpi (θ)P(θ)dθ (6)

where, pi is CBBA information structure task execution timing, τij∗ is the optimal execution time of
each task in the task bundle under specific parameter θ.

Based on CBBA, the multi-UAV task allocation problem under uncertainty can be solved. In the
task bundle construction phase, each UAV uses the expected score of the task bundle to compute the
bid for each bidding task, and selects new tasks for the construction that can maximize the reward
score of its task bundle. In the conflict resolution phase, each UAV performs a consistency negotiation
through communication, and this will result in a conflict-free optimization task allocation. Since the
expected score captures the influence of the uncertain parameter on the task’s reward score, the task
allocation results generated will achieve better execution effect under actual situation.

3. Gaussian Process Regression and Active Learning Algorithm

It’s difficult to get the relationship between uncertain parameters and task reward scores
analytically, so sampling-based approximations are used instead, but the samples are not easy to
obtain. In order to evaluate sampling-based approximations effectively, Gaussian process regression
models are trained from a small set of samples, which are iteratively selected by active learning.
This section presents the machine learning procedure for sampling-based approximations based on
Gaussian Process regression and Active Learning (GPAL).

3.1. Approximate Expected Reward Calculation Method Based on Gaussian Process Regression Model

The expected task reward score of Equation (6) is difficult to analytically calculate. Ponda [8]
used Monte-Carlo sampling method to approximate the expected value of the task’s reward.
The disadvantage of using the Monte Carlo sampling method is that there are too many sampling
points and the sampling cost is too high. The GPAL algorithm [20] can perform the sampling of
uncertain parameters of the robust allocation method, achieving a reduction in the number of samples
without degrading the evaluation accuracy.

Gaussian process refers to a set of random variables, and any finite random variable in this
set obeys the joint Gaussian distribution [21]. A Gaussian process can be viewed as a distribution
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over possible functions. The most important application of gaussian process is to solve regression
problem [21]. In particular, Gaussian process (GP) regression models return mean and covariance
functions that both predict the unknown true function’s response and quantify the confidence in those
predictions [20].

Given a data set consists of N samples θ = {θ1, θ2, . . . θN}, and its corresponding dependent
variable is Jθ =

{
Jθ1 , Jθ2 , . . . JθN

}
. Their mapping relationship is expressed as Equation (7):

Jθ = J(θ) (7)

where, Jθ is mission score, J is the evaluated relationship between θ and Jθ .
For the robust task allocation problem mentioned above, this Gaussian Process is specified as

Equation (8):
J(θ) = GP(m(θ), k(θ, θ′)) (8)

where, θ and θ′ are in either the training or the test sets, m(θ) is the mean function and k(θ, θ′) is the
covariance function (the kernel function of Gaussian Process Regression Model):

m(θ) = Eθ [J(θ)] (9)

k(θ, θ′) = Eθ [(J(θ)−m(θ))(J(θ′)−m(θ′))] (10)

In this work, m(θ) is preprocessed to 0, k(θ, θ′) uses the squared exponential.

k(θ, θ′) = α2 exp(−1
2
(θ − θ′)Λ−1(θ − θ′)

T
) (11)

where, GP hyperparameters (α2, Λ) are selected during the training process; hyperparameters of the
GP are generally achieved by maximizing the marginal likelihood function, that is to say, minimize the
negative logarithmic marginal probability with respect to hyperparameters using conjugate gradient
method:

L = − log p(JPi (θ)
∣∣θ) (12)

Set training set S : {θS, Jpi (θS)}, prediction sample point θ∗ ∈ Θ, θS and θ∗ is in line with the joint
prior distribution: [

Jpi (θS)
ˆJpi (θ∗)

]
∼ N(

[
µ(θS)

µ(θ∗)

]
,

[
k(θS, θS)k(θS, θ∗)

k(θ∗, θS)k(θ∗, θ∗)

]
) (13)

According to the Bayesian regression method, we can find a ˆJpi (θ∗) posterior distribution,
a Gaussian distribution:

ˆJpi (θ∗) ∼ N(µ(θ∗), ∑ (θ∗)) (14)

where, µ(θ∗) and ∑ (θ∗) are represented as Equations (15) and (16):

µ(θ∗) = k(θ∗, θS)K−1 Jpi (θS) (15)

∑ (θ∗) = k(θ∗, θ∗)− k(θ∗, θS)K−1k(θS, θ∗) (16)

K = k(θS, θS) (17)

The sample set is broken up into two subsets, the sampled subset (the training set) labeled S and
the not-sampled subset labeled U (the remaining samples except S). Set S contains a small collection of
sampled vectors θ and their corresponding true scores. Set U is significantly larger and only contains
uncertain parameter θ. The GPR model is trained by the training set S, and then the GPR model
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predicts the task reward score of all samples in the entire sample set (As scores in S are explicitly
known, the training samples in S will have zero prediction error with a noise-free GPR).

With known probability distribution of θ, according to the [23–25], the corresponding weights are
calculated as in Equation (18):

ωk = P(θk)/
N

∑
k=1

P(θk) (18)

The expectation score is approximately calculated as Equation (19):

ˆJpi ≈
N

∑
k=1

ωkµ(θk) (19)

3.2. Sampling Strategy Based on Active Learning

If the training set is not selected effectively, the evaluation error ˆJpi − Jpi will be large. The training
set of the GPR model can also be constructed intelligently in order to improve the accuracy of these
predictions. The active learning algorithm selects the best sample iteratively by a specific evaluation
strategy. Different from the passive learning algorithm (using all existing samples for the training
process), the best training sample set constructed can reduce the evaluation error ˆJpi − Jpi . And the
number of samples required to be sampled for training can be reduced without decreasing the
evaluation accuracy.

On the one hand, the reduction on size of the training set can reduce the total sampling costs
during the construction of the training set. On the other hand, the training costs of GPR model have
also been reduced. The computational complexity of the hyperparameters optimization Equation (12)
and the posterior distribution inference Equation (14) for prediction correlates strongly with the
dimension of uncertain parameters θ.

This paper adopts pool-based active learning, which means samples are chosen from an
unsampled pool and queried to construct the training set [26]. The crux to the active learning
framework is to design evaluation strategies to evaluate possible samples and then select the best
samples to training set. We are committed to improving the precision of approximate expected score
of Equation (19). The true expected score Equation (6) is an expected model. The best and informative
sample is the most uncertain sample [27], which could improve the evaluation accuracy and minimize
the entropy of the total integrand Jpi (θ)P(θ) from Equation (6) [23]. This entropy reduction metric
is known as the uncertainty sampling metric [23]. Quindlen [20] modified earlier active learning
regression methods for Bayesian quadrature to create an iterative process to select samples and retrain
GPR model [22].

Equation (6) suggests that the most appropriate selection criteria is not only a function of
ˆJpi (θ), but also the function of distribution probability P(θ). Selected samples should ignore the

little-probability regions, which will have little effect upon ˆJpi − Jpi even if the accuracy was improved
in that region. The variance corresponding to integration function can be adopted as the information
entropy evaluation criterion of sample [23,27].

According to the above strategy, a sample
−
θ with maximum variance of integration Jpi (θ)P(θ)

should be selected to minimize the entropy of the total integrand. The variance of integration function
is Equation (20):

V[Jpi (θ)P(θ)] = ∑ (θ)P(θ)2 (20)

The best sample
−
θ could be selected by the sampling function, formulated as Equation (21):

−
θ = argmax

θ

{V[Jpi (θ)P(θ)]} = argmax
θ

{∑ θP(θ)2} (21)
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The points selected according to the above strategies can minimize ˆJpi − Jpi at the same time.
Active learning selection strategy is shown as Algorithm 1, which mainly presents the procedure
of the selection during each iteration. Each sample θ of not-sampled set U should be calculated the
evaluation value according to sampling function. Firstly, we use GPR model trained in last iteration
to predict posterior variance. Then, we multiply predicted variance with square of corresponding θ

probability as the evaluation value. Finally, we select
−
θ with the largest evaluation value to join in the

training set.

Algorithm 1

1: Input: GRP model, U(mt); Output:
−
θ

2: For each θ in U
3: Predict posterior variance ∑ (θ) using Equation (14)
4: Compute evaluation value V[Jpi (θ)P(θ)] using Equation (20)
5: End for

6: Select the
−
θ having the largest evaluation value

7: Return
−
θ

Given a likelihood of the uncertain parameters, this regression model is used to inexpensively
predict the scores over the total regions of the parameter space, including the sampled set and the
not-sampled set. These predictions are combined with the probability distribution of the parameters to
estimate the expected reward score. And the samples, obtained through active learning, induce the
greatest improvement in GPR model.

The active learning algorithm can improve the accuracy of the model, but the obvious deficiency
is that the iterative process increases the computational cost. However, the purpose of Gaussian
process regression and active learning algorithm is to obtain an approximate mapping relation between
uncertain parameters and task reward score. As long as the mapping relationship is obtained, it can be
used directly in follow-up evaluation process. Next section proposed an improved selection strategy
to reduce calculation amount of active learning algorithm.

4. Improved AL Algorithm

In order to reduce the computational complexity of AL algorithm, multi-points simultaneous
sampling, which selects a batch samples in every iteration, can be carried out to improve the iterative
speed of AL algorithm. The disadvantage of multi-points simultaneous sampling is that it may lead to
these selected samples being concentrated in some areas of the whole sample space. The information
entropy of these samples is relatively high, which means these are the most informative samples,
but the existence of sample information redundancy increases the extra sampling cost, from the
perspective of training GPR model. Therefore, it is necessary to research an improved mechanism for
multi-points simultaneous sampling. This section describes the improved sampling-based algorithm
using manifold learning.

4.1. Manifold Learning

Zhou [30] embedded the manifold learning algorithm into the AL algorithm to solve classification
problems and achieved a better classification effect than the original AL. This is because the improved
framework not only takes into account the information entropy criterion of samples, but also considers
the distribution of samples [28]. Similarly, we use manifold learning to improve our robust task
allocation method. Before using the information entropy evaluation criteria to select the samples,
the Manifold-Preserving Graph Reduction (MPGR) is used to select the representative samples.
This method can overcome the shortcomings of multi-points simultaneous sampling in the AL
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algorithm and it can reduce the number of samples without reducing the accuracy of the evaluation,
and quickly evaluate the impact of uncertain parameters on the task reward score.

MPGR is a simple and effective graph reduction algorithm based on manifold hypothesis.
The manifold hypothesis means that the examples in a small local neighborhood have similar properties.
A manifold-preserving sparse graph can be constructed based on MPGR algorithm. This sparse graph
could represent the distribution of all samples with a small number of samples, and it can be seen
as a discrete representation of the original manifold. A graph with manifold preserving properties
means that points outside the sparse graph have highly spatial connectivity with those points in the
sparse graph.

According to [29], given a graph G consisting of all unlabeled samples, the manifold-preserving
sparse graphs are those that are highly spatially connected to the original graph G. The definition of
spatial connectivity is given by Equation (22):

1
p− s

p

∑
i=1

maxj=1,...,sWij (22)

where, p represents the number of all samples, s represents the number of samples retained,
W representative weight matrix.

By using McDiarmid inequality, the sparse graph is guaranteed to have high spatial connectivity
to a certain extent. The MPGR algorithm approximately maximizes Equation (22) by using the degree.
The degree is defined as:

d(p) = ∑
p−q

Wpq (23)

where, p − q means point p and point q are connected (whether the two points are connected is
according to the K nearest neighbor principle, K-NN), Wpq is their corresponding weights defined as
Equation (24):

Wpq =

 exp(−||xp−xq||2
tη ), if xp, xq is connected

0, if xp, xq is not connected
(24)

where, t is an adjustable parameter, η is the average of the nearest distances (the minimum distance
between a point and all its neighbors) of all points. If two points are not connected, their weight is
considered to be 0. Due to the simple validity of degree, it is used in the MPGR algorithm as a guide
for constructing sparse graphs. The greater the degree of a point, the more information the point has,
the more likely it is to be selected to construct a sparse graph.

MPGR is shown as Algorithm 2. First, a graph is constructed from not-sampled set U according to
K-NN principle (line 2). Then, the degree of each node is calculated in the graph (line 4), and according
to the degree-priority principle, a lot of samples are orderly selected (line 5) to make up sparse subset Ls
(line 6), which can represent origin U. When a certain sample is selected, this sample and corresponding
edge in graph are removed from the graph (line 7). The algorithm terminates until enough samples are
selected to construct a sparse subset Ls.

Algorithm 2 Manifold Learning: MPGR

1: Input: U(mt); Output: Ls(ml)
2: Using K-NN construct a graph G from all unlabeled sample points
3: For i = 1: ml do
4: Compute degree d(j), j = 1, . . . , mt − i + 1
5: Select sample j∗ = argmax

j∈G
d(j)

6: Ls→ add sample j∗

7: G→ remove sample j∗ and corresponding side
8: End for
9: Return Ls(ml)
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4.2. Improved Sampling Strategy

When the AL multi-points simultaneous sampling method is used to select samples,
the information entropy of the selected samples may be very large, but the representation of the
selected samples is not strong. These selected samples may be located in some same blocks of
whole sample space. And from the perspective of training and learning, there is sample information
redundancy. In order to get the regression model better and faster, we can use manifold learning to
further improve the selection of training samples.

The main work of the improvement is to use the MPGR method to generate a sparse subset with
good representativeness and high degree of spatial connectivity with the original not-sampled set
U. Then, the information entropy of this sparse subset is evaluated, and multiple samples with the
highest entropy are selected simultaneously. The selected training set has better representation of the
set U and higher information entropy. These samples can be used to train GPR model better to acquire
a predicted map relationship more approaching to the real one.

The improved AL is shown as Algorithm 3. The sample set is broken up into two subsets. Firstly,
a small number of samples are selected from whole sample space and their task reward scores are
calculated. Then they are added to the initial training set S, and the remaining samples will be regard as
not-sampled set U. Then, the algorithm will initially train the GPR model through S (line 1), and select
samples to train the GPR model iteratively. During each iteration, the MPGR algorithm is used to
generate a representative sparse subset Ls (line 4) from U, and then Ns samples with the highest
information entropy are selected from Ls to enter S for training the GPR model (lines 5–9). Finally,
task reward scores of all samples are predicted (line 11), and then the approximate expected reward is
calculated using the expectation method (line 12). The approximate expected reward can be used to
evaluate the influence of uncertain parameter on task reward scores.

Algorithm 3 Compute-Expected-Score: Improved AL

1: Input: U, S, T, N; Output: ˆJpi

2: Train a regression model GP(m(θ), k(θ, θ′)) using S
3: for each iteration t = 1:T do
4: Call MPGR make Ls from U
5: Select best Ns samples according Equation (20)→ sampling set θs

6: Obtain true scores of θs

7: S→ add θs

8: U→ remove θs

9: Retrain GP model using S
10: End for
11: Compute estimated scores J k̂

pi
= µ(θk) for all θk ∈ S ∪U

12: Estimate expected score ˆJpi ≈
N
∑

k=1
ωkµ(θk)

13: Return ˆJpi

5. Computational Experiments

Simulation experiments was conducted on the hybrid sampling strategy approximations
algorithm (active learning and manifold learning). The numerical computations were carried out in
Qt5.9.1 on a 2.8GHz, 16GB RAM laptop (Lenovo ThinkPad X1, Beijing, China).

5.1. Robust CBBA Simulation

5.1.1. Simulation Setup

The simulation scenario is a multi-UAV formation to perform rescue tasks. Task allocation
parameter θ includes UAV location, UAV speed, UAV fuel consumption, mission location,
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mission value, mission execution time, mission effective time window, etc. There are five UAVs
performing rescue tasks with time-window constraints on 10 targets, and the UAVs do not change
their flying height during this process, and maintain a constant speed. The time window of each task
remains constant. A fully-connected network is adopted for the communication topology.

Robust CBBA is the task allocation method based on CBBA using Monte-Carlo sampling method
to calculate expected reward under parameter uncertainty. Deterministic CBBA is to deal with
the uncertainty of the allocation parameters based on basic CBBA. That is, the uncertain allocation
parameters of the algorithm are replaced by the mean of their distribution. Robust CBBA simulation
assumes task duration tjduration obey uniform U(5, 25) distribution while deterministic CBBA uses the
average of the distribution parameters (tjduration is 15 s) to run the task allocation algorithm.

The deterministic CBBA and the robust CBBA algorithm are respectively run under the same
environment configuration, and the reward calculated from the task assignment method is compared
with the reward obtained from the execution of the corresponding allocation results. The average of
the total task reward scores using 1000 Monte Carlo simulations for each number of total tasks is used
as the final statistical result.

5.1.2. Results and Analysis

From Figures 1 and 2, we can see the effectiveness and feasibility of robust CBBA. On the one
hand, the deterministic CBBA achieves a higher overall reward under assignment phase than the
actual execution phase, while the robust CBBA achieves a similar overall reward under assignment
phase and the actual execution phase. On the other hand, in the actual execution phase, robust CBBA
achieves a higher reward score than deterministic CBBA. It is due to the robust strategy captures the
influence of the task duration uncertainty on the task reward. However, the deterministic CBBA using
the mean value of the uncertain allocation parameter fails to capture this uncertainty, and as a result
the total scores of the deterministic CBBA have been greatly reduced in the actual execution phase.
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5.2. Improved Sampling Strategy Simulations

The task duration is assumed as an uncertain parameter. When an UAV bids for a new task in the
task bundle construction phase, the mapping relationship between the uncertain duration of the newly
added task and the task bundle reward score after joining the new task is studied. Different sampling
strategies are used to compare the training effects of the GPR model that is used to predict the mapping
relationship. In Figure 3, the score corresponds to the color of the area, and green * represent the
not-sampled set, and black • represent the initial training set.
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These sampling strategies include random sampling, active learning single-point and multi-points
sampling, and improved multi-points sampling strategy. Assume that the task duration is effected by
the two parameters θ1 and θ2, and the real relationship between the two parameters and the task score
is shown as Figure 3. These two parameters probability distribution is shown as Figure 4. The initial
training set of the GPR model consists of 10 samples selected randomly.
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In Figure 4, the probability corresponds to the color of the area. In order to test the effectiveness
of the proposed sampling strategy for training the GPR model, the accuracy of the GPR model is
mainly observed by two indicators: Relative Error as Equation (25), Relative Root Mean Square Error
as Equation (26):

RelativeError =
∣∣ ˆJpi − Jpi

∣∣/Jpi (25)

where, ˆJpi is the expected score calculated approximately based on the prediction of GPR model, Jpi is
the expected score calculated on 10,000 samples using the Monte-Carlo sampling method.

RelativeRMSE =

√√√√ N

∑
k=1

ωk(
ˆJpi

k − Jpi
k)

2
/Jpi (26)

where, ωk is the probability weight of sample θk, ˆJpi
k is the predicted task reward score of sample θk

based on GPR model, Jpi
k is the true task reward score of sample θk.

5.2.1. Random Selection Strategy vs. Active Learning Selection Strategy

The random selection strategy and the AL selection strategy are used to get a sample to join the
training set to train GPR model (single-point sampling) during each iteration. Figure 5 is a relative
errors comparison between the random selection strategy and the AL selection strategy. The lateral
axis indicates the number of samples selected for joining the training set by each selection strategy,
and the vertical axis indicates the two errors of the GPR model. The simulation results show that,
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for the same number of individuals in training set in iterative process, the active learning selection
strategy can finally achieve smaller error than the random selection strategy.Sensors 2018, 18, x FOR PEER REVIEW  14 of 21 
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5.2.2. Improved Sampling Strategy vs. Active Learning Strategy on Multi-Points Simultaneous Sampling

However, for the same number of individuals in the training set in an iterative process, the active
learning selection strategy is computationally more burdensome than the random selection strategy.
This is due to the fact that an active learning selection strategy selects those samples with the highest
information entropy to join the training set, which requires more computation than the random
selection strategy. In order to reduce the computational complexity of the entire GPR model training
process, a multi-points simultaneous sampling strategy can be considered. The experiment sets
multi-points simultaneous sampling to select 10 samples to join the training set during each iteration.

Figures 6 and 7 show the predicted mapping relationship between uncertain parameters and task
reward score when multi-points simultaneous sampling is used in the GPR model training iterative
process. For the active learning sampling strategy and the improved sampling strategy, the initial
training set includes 10 samples. The simulation results of active learning sampling strategy and
the improved sampling strategy are shown in Figures 6 and 7, respectively, where red + represent
the selected samples. MPGR algorithm of the improved sampling strategy is used to construct the
K-nearest neighbor graph, and the size of sparse subset Ls is 100. In this simulation, each sample point
selects the nearest 10 (K = 10) points to form the edge.

When active learning sampling strategy is used for multi-points simultaneous sampling, there will
be an agglomeration of samples, shown as Figure 6. Compared with Figure 6, due to the use of the
improved sampling strategy, the spatial distribution of the selected sample in Figure 7 is relatively
uniform, with no agglomeration, and the overall prediction effect is better. That is to say, the prediction
mapping relationship trained by the improved sampling strategy is closer to the true mapping than
the single AL sampling strategy.
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Figure 6. AL multi-points sampling. 
Figure 6. AL multi-points sampling.

Figure 8 is a relative errors comparison between the improved sampling strategy and the AL
sampling strategy when multi-point simultaneous sampling is used. The lateral axis indicates the
number of samples selected for joining the training set by each selection strategy, and the vertical axis
indicates the two errors of the GPR model.



Sensors 2018, 18, 2645 15 of 20Sensors 2018, 18, x FOR PEER REVIEW  16 of 21 

 

 
(a) Predicted Score (20 samples) 

 
(b) Predicted Score (30 samples) 

Figure 7. Improved AL Multi-points Sampling. 
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The simulation results show that, for the same number of individuals in the training set in the
iterative process, the improved sampling strategy can finally achieve smaller errors than the AL
sampling strategy. That is, compared with AL sampling strategy, the proposed sample selection
method can improve the accuracy of the trained model. On the other hand, it also can be seen that,
the relative error of improved sampling strategy is close to 0 after 40 samples added into the training
set while the AL sampling strategy requires 60 sample added into the training set. And the relative
RMSE of improved sampling strategy tends to be stable after 80 samples added into the training set,
while the AL sampling strategy requires 130 sample.
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When multiple points are simultaneously sampled to achieve sufficient evaluation accuracy,
using the improved sampling strategy to train a GPR model requires a smaller number of samples.
In other words, in order to achieve enough accuracy, the improved sampling strategy needs fewer
samples to train the GPR model.
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5.2.3. Effect of Size of Sparse Subset

However, the convergence sampling number (both relative error and relative RMSE are stable) of
the improved sampling strategy is related to the size of the subset Ls generated by the MPGR algorithm.
If the size of Ls is too small, the selected representative samples carry insufficient information; and if
the size of Ls is too large, the selected representative samples have redundant information. Figure 9
shows the relationship between the number of converged sampling points and the size of Ls. For the
problem in this paper, it can be seen that the best size of Ls is about 100.Sensors 2018, 18, x FOR PEER REVIEW  18 of 21 

 

 

Figure 9. Improved AL Convergence Sampling Quantity. 

5.2.4. The Comparisons of the Calculation Costs 

This paper mainly analyzes three sampling strategies for constructing the training set: active 

learning single-point sampling, active learning multi-points sampling, and improved sampling 

strategy multi-points sampling. The significance of the research sample selection method is to 

reduce the computational load required for training without reducing the accuracy of the GPR 

model training. So it is necessary to analyze the computational cost of three sample selection 

methods for training GPR model. 

The process of training GPR model is mainly divided into sampling phase and training phase. 

The calculation cost of the sampling phase is the cost of sample selection of the training set, which 

need to evaluate the information entropy of the not-sampled set. The calculation cost of training 

phase is the cost of reward scores calculation, which need to simulate the task reward scores of 

samples in training set. Additionally, for the improved sampling strategy, there is the filter cost of 

representative samples. When the number of sample set is large, the main cost is the information 

entropy evaluation cost and the model training cost. It’s due to the filter of representative samples is 

based on the degree index of the sparse subset generated by the MPGR algorithm, the K-nearest 

neighbor graph can be constructed only once, so the correlation calculation cost could be ignored. 

Therefore, the calculation cost of these three sampling strategies are compared. The size of 

initial training set is 10, and the size of not-sampled set is 1000. Table 1 shows the calculation cost of 

these three sampling strategies when the GPR model is trained to the same relative RMSE (0.2%). 

Table 2 shows the calculation cost of these three sampling strategies when the same number of 

samples are selected to construct the training set to train the GPR model. The calculation cost of 

training phase is represented as number of training, and the calculation cost of sampling phase is 

represented as number of information entropy evaluation. The final training set includes the initial 

training set and the samples selected during iterations. 

As shown in Table 1, to train GPR model to achieve same relative RMSE, the improved 

multi-points sampling strategy requires minimum number of total samples of training set. And the 

number of training is reduced due to the reduction in the number of iterations. Since multi-points 

simultaneous sampling is used and the information entropy is evaluated only on the sparse subset 

generated by manifold learning, the number of information entropy evaluation is greatly reduced 

compared with the other two strategies. 

As shown in Table 2, when the number of total samples of training set keeps same for these 

three sampling strategies, the improved multi-points sampling strategy can achieve smaller relative 

RMSE, which means a better prediction accuracy of GPR model is trained. At the same time, the 

associated computational cost is relatively small. 

Therefore, if the information entropy calculation cost or the cost of training GPR model is high 

when the influence of uncertain parameters on the task reward score is evaluated, the improved 

Figure 9. Improved AL Convergence Sampling Quantity.



Sensors 2018, 18, 2645 17 of 20

5.2.4. The Comparisons of the Calculation Costs

This paper mainly analyzes three sampling strategies for constructing the training set: active
learning single-point sampling, active learning multi-points sampling, and improved sampling strategy
multi-points sampling. The significance of the research sample selection method is to reduce the
computational load required for training without reducing the accuracy of the GPR model training.
So it is necessary to analyze the computational cost of three sample selection methods for training
GPR model.

The process of training GPR model is mainly divided into sampling phase and training phase.
The calculation cost of the sampling phase is the cost of sample selection of the training set, which need
to evaluate the information entropy of the not-sampled set. The calculation cost of training phase is the
cost of reward scores calculation, which need to simulate the task reward scores of samples in training
set. Additionally, for the improved sampling strategy, there is the filter cost of representative samples.
When the number of sample set is large, the main cost is the information entropy evaluation cost and
the model training cost. It’s due to the filter of representative samples is based on the degree index of
the sparse subset generated by the MPGR algorithm, the K-nearest neighbor graph can be constructed
only once, so the correlation calculation cost could be ignored.

Therefore, the calculation cost of these three sampling strategies are compared. The size of initial
training set is 10, and the size of not-sampled set is 1000. Table 1 shows the calculation cost of these
three sampling strategies when the GPR model is trained to the same relative RMSE (0.2%). Table 2
shows the calculation cost of these three sampling strategies when the same number of samples are
selected to construct the training set to train the GPR model. The calculation cost of training phase
is represented as number of training, and the calculation cost of sampling phase is represented as
number of information entropy evaluation. The final training set includes the initial training set and
the samples selected during iterations.

As shown in Table 1, to train GPR model to achieve same relative RMSE, the improved multi-points
sampling strategy requires minimum number of total samples of training set. And the number of
training is reduced due to the reduction in the number of iterations. Since multi-points simultaneous
sampling is used and the information entropy is evaluated only on the sparse subset generated by
manifold learning, the number of information entropy evaluation is greatly reduced compared with
the other two strategies.

As shown in Table 2, when the number of total samples of training set keeps same for these three
sampling strategies, the improved multi-points sampling strategy can achieve smaller relative RMSE,
which means a better prediction accuracy of GPR model is trained. At the same time, the associated
computational cost is relatively small.

Therefore, if the information entropy calculation cost or the cost of training GPR model is high
when the influence of uncertain parameters on the task reward score is evaluated, the improved
multi-points simultaneous sampling strategy proposed in this paper can be used to reduce the
computational complexity of the algorithm while ensuring the accuracy of the model.

Table 1. Comparison of sampling methods (achieving the same relative root mean square error).

Sampling Method Relative
RMSE (%)

Number of
Iterations

Number of
Total Samples
of Training Set

Number of
Training

Number of Information
Entropy Evaluation

active learning
single-point sampling 0.20 112 122

112
∑

i=0
(10 + i)

119
∑

i=0
(1000− i)

active learning
multi-points sampling 0.20 13 140

13
∑

i=0
(10 + 10i)

12
∑

i=0
(1000− 10i)

improved sampling
strategy multi-points

sampling
0.20 8 90

8
∑

i=0
(10 + 10i) 800
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Table 2. Comparison of sampling methods (the same number of samples sampled).

Sampling Method Relative
RMSE (%)

Number of
Iterations

Number of
Total Samples
of Training Set

Number of
Training

Number of Information
Entropy Evaluation

active learning
single-point sampling 0.37 80 90

80
∑

i=0
(10 + i)

79
∑

i=0
(1000− i)

active learning
multi-points sampling 0.86 8 90

8
∑

i=0
(10 + 10i)

7
∑

i=0
(1000− 10i)

improved sampling
strategy multi-points

sampling
0.20 8 90

8
∑

i=0
(10 + 10i) 800

6. Conclusions and Further Work

This paper proposed an improved sampling strategy for dealing with the uncertainty of allocation
parameters in multi-UAVs task allocation problems. Based on the robust CBBA algorithm and Monte
Carlo expectation method, Gaussian process regression and active learning algorithm are used to
evaluate sampling-based approximate robustness. Multi-points simultaneous sampling with active
learning can reduce the number of training iterations, but it has the disadvantage of agglomeration of
samples. To resolve this problem, a preliminary screening strategy using manifold learning methods is
used to effectively reduce the computational complexity and improve the accuracy of the algorithm.
The simulation results verify the rationality and effectiveness of the proposed improvement strategy.

The improvement strategy proposed in this paper is mainly to combine the screening strategies
and multi-points sampling for the training of the Gaussian process regression model serially.
This screening method avoids the sample redundancy caused by using a single information entropy
selection strategy. The next study may combine the representative selection strategy and the
information entropy selection strategy in parallel. The parallel hybrid can reduce the computational
complexity more effectively, and enhance the real-time performance of the task assignment algorithm
in the case of parameter uncertainty. This is our future work.
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