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Understanding the functional links between social structure and population

processes is a central aim of evolutionary ecology. Multiple types of inter-

actions can be represented by networks drawn for the same population,

such as kinship, dominance or affiliative networks, but the relative importance

of alternative networks in modulating population processes may not be clear.

We illustrate this problem, and a solution, by developing a framework for

testing the importance of different types of association in facilitating the trans-

mission of information. We apply this framework to experimental data from

wild songbirds that form mixed-species flocks, recording the arrival (patch

discovery) of individuals to novel foraging sites. We tested whether intraspe-

cific and interspecific social networks predicted the spread of information

about novel food sites, and found that both contributed to transmission. The

likelihood of acquiring information per unit of connection to knowledgeable

individuals increased 22-fold for conspecifics, and 12-fold for heterospecifics.

We also found that species varied in how much information they produced,

suggesting that some species play a keystone role in winter foraging flocks.

More generally, these analyses demonstrate that this method provides a

powerful approach, using social networks to quantify the relative transmission

rates across different social relationships.
1. Introduction
Social information is important for the ecology of many animal species. Observ-

ing others can provide naive individuals with diverse information, ranging

from habitat quality and predator presence, to mate choice [1–3]. If individuals

vary in their access to information, or if information spreads non-randomly

between dyads, then population structure may play a crucial role in mediating

the spread of information [4]. However, individuals will often have a choice of

information sources, for example they can choose to observe conspecifics and/

or heterospecifics. While social information from conspecifics may be the most

relevant, relying solely on information from conspecifics can also lead to

increased competition for limited resources, such as food or territories [3]. An

alternative, or complementary, strategy might be to acquire information from het-

erospecifics. For example, many species eavesdrop on heterospecific alarm calls

[5], and migrating birds preferentially copy the habitat choices of resident hetero-

specifics [6]. Here, we address the general problem of identifying the contribution

of different types of associations to population processes, where different types of

relationships form different social networks within the same set of individuals.

In a recent study [7], we experimentally tested whether information was

transferred through social networks of wild songbirds. In that study, we used

automated techniques to map association patterns in wild mixed-species flocks

of tits (Paridae). We then experimentally deployed novel foraging patches and
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tracked the diffusion of information about these ephemeral

food sources, finding that tits used social information from

their associates (represented by edges in the social network)

to locate new foraging resources. However, our study included

individuals from three species that form mixed-species flocks:

blue tits (Cyanistes caeruleus), great tits (Parus major) and marsh

tits (Poecile palustris) [8,9]. Existing analytical tools cannot dis-

criminate between the potentially different pathways of

information flow between and within species. That is, while

we found that birds used social information to find food (the

order and time of discovery was predicted by the presence

of edges in the social network), we could not test whether

individuals used information from both conspecific and het-

erospecific associates when searching for food. If individuals

in mixed-species foraging groups did use information from

heterospecifics, then it is also important to determine how

much they weighed information from heterospecifics and

whether this differed from conspecifics.

Studies of social learning and the diffusion of information

have generally also assumed that each link in an individual’s

social network can provide information at an equal rate. Yet,

animal groups may be structured by multiple types of social

relationships [10,11], each representing a different set of

network edges. While these are often combined into a

single network, such relationships may differentially promote

or restrict population processes. For example, VanderWaal

et al. [12] compared a network of genetic subtype similarity

of the microbe Escherichia coli between giraffes (Giraffa camelo-
pardalis) with networks describing giraffe social associations

and habitat use overlap. They found that the association net-

work (co-occurrence in social groups) best matched the

similarity in pathogens between individuals. By contrast, net-

works created based on how much each pair of individuals

shared water resources or overlapped in their home-range

did not reflect the pathogens that individuals shared. This

suggests that population processes, in this case pathogen

transmission, can be mediated by different components of

social structure or types of relationships. However, their

study, and similar studies of transmission networks [13–16],

only estimate the correlation in the structural similarities

between the pathogen and social networks. A powerful

approach for understanding how population structure facili-

tates information (or pathogen) transfer is to experimentally

seed a behavioural innovation and track its spread (or ‘diffu-

sion’) through the social network. This approach can then be

combined with statistical tests that can control for heterogeneity

in ecological-, individual- and population-level factors.

Network-based diffusion analysis (NBDA) has become

a widely used method for investigating information trans-

mission dynamics in animal groups [7,17–21]. NBDA infers

the rate of social transmission of information by comparing the

diffusion of information with patterns of association in

the social network [22]. It assumes that the rate at which social

transmission occurs is proportional to the strength of association

between naive and informed individuals. NBDA has thus far, to

our knowledge, been applied on only two wild animal popu-

lations: our study [7,23], and once to track the spread of lobtail

feeding behaviour in a population of humpback whales over

30 years [18]. In these cases, the studies took potential confounds

into account, but only tested the spread of information on a

single association network.

In this study, we extend the NBDA analytical framework to

test whether the rate of information transfer differs for different
types of relationships. In our case, this enables us to explicitly

determine whether information concerning novel food patches

was transmitted through both intra- and interspecific social

networks in the data from Aplin et al. [7], and if the rate of trans-

mission (or the propensity to use information) differed. This

allows us to quantify the benefit of associating with hetero-

specifics in terms of information access, which is considered

a fundamental driver of mixed-species communities [24].

Given the extensive niche overlap between blue tits, great tits

and marsh tits, we predicted that individuals should be

using at least some social information indiscriminately. That

is, information about novel food patches should spread to

heterospecifics without requiring independent (non-social)

discovery events to happen in each of the species. The ability

to determine the relative rates of transmission across a

number of potential pathways is therefore a powerful analyti-

cal approach for investigating the contribution of social

relationships in population processes.
2. Methods
(a) Study area and population
The data for this study [7] were collected from two small areas of

broadleaf deciduous woodland near Wytham Woods, Oxfordshire

(518460 N, 18200 W) that form part of an on-going study on social be-

haviour in birds [25,26]. Here, blue tits C. caeruleus, great tits

Pa. major and marsh tits Po. palustris form mixed-species flocks in

the non-breeding season. Individuals were caught using mist-nets

and fitted with passive integrated transponder (PIT) tags, allowing

them to be detected by radiofrequency identification (RFID) anten-

nae fitted to standard bird feeders (Francis Instruments Ltd.,

Cambridge). The field data were then collected in two phases.

The first measured the association patterns of individuals to con-

struct a social network for each site. The second deployed

randomly placed novel food patches around the study site to

record each individual’s first arrival at the resource.
(b) Inferring social networks
The social network was inferred from the co-observations of indi-

viduals visiting feeders at two fixed sites in each area. Feeders

were filled with food for 3 days and left empty for 3 days. This

cycle was repeated continuously from December 2010 to January

2011 at Cammoor/Stimpsons Copse, and during January 2011 at

Higgins Copse. Data loggers recorded the 15 s time block of each

individual’s visit along with its unique PIT-tag code. Using the R

package asnipe [27], we then inferred dyadic association strengths

from the spatio-temporal co-occurrences between individuals.

We defined a network edge as the proportion of time two indi-

viduals are observed together (calculated using the simple ratio

index, SRI), where an absent edge (weight ¼ 0) indicates that

they were never co-observed, and an edge weight of 0.5 indicates

that in half of the observations of the two birds, they were seen

together. This provides an estimate of the proportion of time

any two individuals A and B spend under the conditions defined

to constitute ‘association’. As such this is likely to provide a good

measure of the opportunities A has to learn things from B, and

vice versa, so long as the definition of ‘association’ does so (see

the definition of s in the NBDA model below). Simulations of

these types of networks suggest that the SRI provides a robust

estimate of the underlying association patterns if the individuals

are sampled numerous times (on average, we detected each indi-

vidual 139 times, well in excess of the guidelines provided by

Franks et al. [28]). However, because the SRI can result in large

edge weights for rarely observed individuals, we also include
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Figure 1. For each of the two areas in the study ((a,b) Cammoor/Simpsons Copse; (c,d) Higgins Copse) we formed two candidate social networks. One network
contained all of the associations between conspecifics (a,c), with all the edges that were observed between nodes of the same species. The other network contained
all of the associations between heterospecifics (b,d), with all the edges that were observed between nodes of different species. Node colour and label represents
species (blue, B: blue tits; yellow, G: great tits; grey, M: marsh tits). Similarly, edge colour is the combination of the connecting nodes (e.g. green are edges between
great tits and blue tits). Node size represents eigenvector centrality, which was calculated in the original study [7]. (Online version in colour.)
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the number of observations to account for this potential confound

(see below).

In the original study, we generated one mixed-species social

network for each of the areas. In this study, we use the same edge

definition, but split the network from each area into two subnet-

works: one containing all edges that represent the association

strengths between conspecifics, and a second network containing

all edges between heterospecifics. Although the conspecific

network contains three separate components (one for each

species), it was retained as a single network (i.e. one association

matrix) in our analysis (social networks do not need to be one

fully connected component). This resulted in a total of four

networks as shown in figure 1.
(c) Patch discovery experiment
The patch discovery experiment began 14 days after the end of

the network data collection, during which time no feeders were

present and no supplementary food available. To record the

order and time of arrival at new feeding locations, we placed a

single feeder, equipped with RFID antennae in a random

location in each area. Each feeder was removed after 3 days,

and no food provided for 7 days between trials. This was

repeated four times at Cammoor/Stimpsons Copse and three

times at Higgins Copse. Previous analyses of the discovery

events found that different individuals initially located each

food patch, but that information was then socially transmitted,

with the order of subsequent discoveries matching the patterns

of association in the social network for each area (in which

conspecific and heterospecific associations were combined) [7].
(d) Multi-network network-based diffusion analysis
In the previous study, we used a single multi-species network

from each site. This did not allow us to test whether social

information was transmitted between heterospecifics, and if indi-

viduals relied more heavily on information from conspecifics.

Information could have spread entirely between conspecifics

(i.e. along conspecific network edges), requiring only three inde-

pendent acquisitions (one individual per species discovering the

food sources). The standard model of NBDA cannot determine

whether transmission rates vary between links given observed

social networks. Here, we extend the NBDA framework to include

multiple candidate networks for each diffusion event, which in this

case are the conspecific and heterospecific social networks

described above (figure 1).

In the standard NBDA model, the rate at which individual i
acquires information or adopts a novel behaviour at time t is

given by [20,22]

li(t) ¼ l0(t) s
XN

j¼1

aijzj(t)þ 1

0
@

1
A(1� zi(t)),

where l0(t) is the baseline, or asocial, rate of acquisition (how fast

individuals discover the information for themselves). In this

study, we used the continuous time of acquisition diffusion

analysis (continuous TADA) variant of NBDA [29]. This allows

l0(t) to be either constant (i.e. l0(t) ¼ l0), or to increase or

decrease systematically over the course of a diffusion. The rate
of social transmission is given by parameter s. This parameter dic-

tates the contribution of the weighted network edges (aij) that

connect i to informed individuals, given that zj(t) is the state of
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i’s social associates (0 ¼ naive, 1 ¼ informed). Because the s par-

ameters give the rate of transmission per unit connection, when

the SRI is used the s parameters effectively estimate the rate that

social transmission occurs between two individuals when

they are in association. Finally, the overall rate of acquisition

li(t) is set to 0 once individual i changes to an informed state

(1 2 zi(t) ¼ 0). Thus, if the social network has no predictive

power, then s ¼ 0 and the overall rate of acquisition will be

given by the asocial rate of acquisition li(t) ¼ l0(t). Non-zero

values of s suggest that individuals are associated with other

informed individuals when they are observed to acquire the

information or adopt the novel behaviour themselves.

To create a multi-network NBDA model, we expanded the

standard NBDA model to include the effects of M different

networks as follows:

li(t) ¼ l0(t)
XM
k¼1

sk

XN

j¼1

aijkzj(t)

2
4

3
5þ 1

0
@

1
A(1� zi(t)),

where aijk is the network connection from j to i in network k and

sk gives the rate of social transmission in network k. This same

approach can be applied to any variant of NBDA (such as

order of acquisition diffusion analysis), and further details are

provided in the electronic supplementary material.

Because flocks of birds typically forage in groups, we wanted

to isolate information transfer from co-discoveries by groups of

birds. That is, our definition of information transfer should

only include direct or indirect recruitment to the resource by

knowledgeable birds. The simultaneous discovery by individuals

in a flock should be considered more similar to food being found

by individuals alone (defined by the asocial parameter l0(t)).
We did this by including an additional term in our model Tij

to capture ties in the discoveries. We defined individuals (say

A and B) that discovered food within 10 min of each other to

be tied (Tij ¼ 0), and ties are no longer included in the estimate

of social information transfer (i.e. by setting aijkzj(t)Tij ¼ 0). How-

ever, if A and B did not discover the feeder together, and are

connected in the social network, then social transmission may

have occurred between them (Tij ¼ 1). We consider this to be a

conservative estimate of broader social information use, given

that individuals may also be responding to social queues at a

much finer scale [9].

The multi-network NBDA will work most effectively when

the networks are independent. When they are highly dependent

(e.g. correlated), it will require a lot of data to distinguish the

effects of each network. This will be reflected in wide confidence

intervals (CIs) for each s parameter, and for the estimated

difference between them.

To infer the rates of transmission through the intraspecific

and the interspecific social networks, we thus used

li(t) ¼ l0(t) sintra

XN

j¼1

aij,intrazj(t)Tij þ sinter

XN

j¼1

aijk,interzj(t)Tij þ 1

0
@

1
A

� (1� zi(t)),

where aij,intra are the edge weights (association strengths) in the

conspecific network, and aij,inter are the edge weights in the het-

erospecific network. Thus, if there is no transmission between

heterospecifics (via the links in the relevant heterospecific net-

work), then sinter will equal 0. Finally, as with the standard

NBDA model, it is also possible to incorporate linear predictors

for each individual given by V variables in either a multiplicative

or additive model. These are analogous to fixed effects in gener-

alized linear models, and details are provided in the electronic

supplementary material.

The best-fitting value of each parameter from the experimen-

tal diffusion data is then calculated by finding the maximum of
the log-likelihood function (provided in [30]) using the optim

function in R. This was done by calculating the log-likelihood

for each of our seven diffusions independently, with the associ-

ation strengths aij,intra and aij,inter taken from the social

networks of the area where the diffusion took place (four in

Cammoor/Stimpsons Copse and three in Higgins Copse). The

total log-likelihood was the sum of the log-likelihoods over

the seven diffusions, and parameter values that resulted in the

largest sum were those that best fit our data.
(e) Estimating rates of social and asocial acquisition
of information

Our framework enabled us to estimate separate parameters sintra

and sinter for the conspecific and heterospecific networks, giving

the rate of social transmission per unit association in each of these

networks independently. Our analysis included species as a

factor (to allow for differences in discovery rate among species),

and the number of observations of each bird from the social net-

work data (to control for residency, per [7]). We fitted models

with social transmission occurring: (i) at different rates within

and between species (sintra= sinter); (ii) at the same rate (sintra ¼

sinter); (iii) only within species (sinter ¼ 0); (iv) only between species

(sintra ¼ 0); (v) homogeneously between all individuals in a diffu-

sion (aij,intra ¼ aij,inter ¼ 1) , i.e. not following a specific social

network; and (vi) with no social transmission (sintra ¼ sinter ¼ 0).

Because diffusions occurred at two different sites, an indicator vari-

able was included in all the models to allow the relative rate of

discovery to differ at each site.

For each combination of variables, both additive and multi-

plicative models were fitted. In the additive model, each

variable (fixed effect) is assumed to affect only the rate of asocial

learning, with social transmission operating as an independent

process by which patches could be discovered. In the multiplica-

tive model, variables affect both the rate of asocial learning and

social transmission. For example, if individual A is twice as fast

to learn asocially as individual B, individual A will remain twice

as fast as individual B if they have the same connection to

informed individuals (see the electronic supplementary material

for specifications). We used an information theoretic approach

with corrected Akaike’s information criterion (AICc) to allow

for model selection uncertainty, summing Akaike weights to

get the level of support for hypotheses (i–vi), and obtaining

model-averaged estimates for each parameter [31]. We obtained

95% CIs using the profile likelihood technique, conditional on

the best model in which that parameter was present (full details

are provided in the electronic supplementary material).
3. Results
We recorded a total of 11 866 and 7790 feeding visits by 93

and 81 individuals, respectively, at Cammoor/Stimpsons

Copse and Higgins Copse, respectively. From these data,

we generated an intraspecific and an interspecific network

for each area (figure 1). Blue tits were the most common

species present, followed by great tits, whereas marsh tits

were relatively uncommon (table 1). In total, 64% of birds

in the network discovered at least one food patch (table 1),

and only 11 birds (7%) were detected in both areas. We

found that patterns of individual discoveries varied between

diffusions, and exhibited isolated bursts of activity that are

consistent with social information spread (figure 2). In our

analysis, these individuals moving as a group and discover-

ing patches together were considered to represent single

cases of information transfer.



Table 1. Summary of individuals for each network and diffusion trial by area and by species. (Numbers represent how many individuals found the feeder in
each diffusion (individuals discovering) and how many individuals were included in the social networks (individuals in network) of each area.)

area diffusion blue tits great tits marsh tits total

Cammoor/Stimpsons 1 16 6 2 24

2 12 4 3 19

3 6 8 3 17

4 14 7 3 24

individuals discovering 28 11 4 43

individuals in network 51 25 5 81

Higgins 1 25 11 2 37

2 20 12 1 33

3 12 7 2 21

individuals discovering 38 15 2 55

individuals in network 66 25 2 93

total individuals discovering 68 30 5 103

total individuals in networks 106 49 7 162
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Figure 2. Arrival time and order for each experimental diffusion. Each diffusion was tested against the networks from that area (Cammoor/Stimpsons Copse with figure
1a,b and Higgins Copse with figure 1c,d) to estimate social and asocial rates of information acquisition. Each newly arrived individual is shown by a coloured point (blue:
blue tit, yellow: great tit, grey: marsh tit). Arrival times were binned by hour, but the order of arrivals was maintained (from bottom to top). (Online version in colour.)
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The addition of interspecific links in the social networks sig-

nificantly changed the structure of the social network. Across

the two combined areas, edges between individuals (nodes)

of different species accounted for 42% of the total weight,

but 55% of all links (mean intraspecific degree¼ 0.42, mean

interspecific degree¼ 0.30). Thus, heterospecifics disproportio-

nately increased the edge density of the network (the number of

links), increasing the connections between otherwise dis-

connected conspecifics. However, the average association

strength between heterospecifics was weaker than the average

association strength between conspecifics, suggesting that het-

erospecific associations are less temporally stable. Finally,
assortment by degree (where assortment indicates dispropor-

tionately strong connections between nodes with similar

degrees [32]) was higher in the network combining both

types of associations (rw
c ¼ 0:29 + 0:01) than in the network

with only intraspecific links (rw
c ¼ 0:24 + 0:01).
(a) Multi-network network-based diffusion analysis
Using a full model-fitting procedure that incorporated both

intraspecific and interspecific social networks for each diffu-

sion event, we found that the best-fitting models all included

information transfer between conspecifics and heterospecifics



Table 2. The top five models ordered by AICc. (All include both the within-species and between-species association networks, and none included the
homogeneous network. These models are all additive (i.e. assuming asocial and social learning occur independently) and include a non-constant baseline (i.e.
allowing asocial learning rate to increase or decrease over time).)

social transmission within/between species individual-level variables d.f. AICc Akaike weight (%)

sintra= sinter species 7 4788.77 56.6

sintra ¼ sinter species 6 4789.69 35.7

sintra ¼ sinter residency 5 4793.57 5.1

sintra= sinter residency 6 4794.98 2.5

sintra ¼ sinter none 4 4804.35 ,0.1

Table 3. Summary of the total Akaike weight for all models of social transmission and for asocial leaning. (We found strong support models with both
intraspecific and interspecific information transfer (sintra= 0 and sinter = 0). Most of the support was for models where sintra = sinter, but we could not rule
out that these might not differ. Further, we found little support for homogeneous spread of information, suggesting that our observed network were a good
predictor of information transmission.)

model network same (%) different (%) intraspecific only (%) interspecific only (%)

additive association 40.9 59.1 0 0

homogeneous 0 0 0 0

multiplicative association 0 0 0 0

homogeneous 0 0 0 0

asocial 0a

aThe total Akaike weight for asocial learning was 2.4 � 10227.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20142804

6

(table 2). Over all models, we found that the Akaike weight of

models where sintra ¼ sinter (equal rates of transmission within

and between species) accounted for 40.9% of the total weight

(table 3). The majority of the support was for different rates of

transmission within and between species (total Akaike

weight¼ 59.1%; table 3). Models that included only asocial

information acquisition (individual discovery), models with

transmission on only one network (either between conspecifics

only, or heterospecifics only), and models fitted with homo-

geneous networks (where all possible network edges ¼ 1)

had less than 0.001% of the total combined weight (despite

accounting for more than three quarters of all the models tested).

When the rates of social transmission were constrained to

be equal between and within species, they were estimated

at s ¼ 22.2 (95% CI¼ 6.0–33.9) times the baseline (great tit)

rate of asocial learning per unit of network connection, corre-

sponding to an estimated 71% of discoveries being by social

transmission. However, in the best-supported model, rates

were allowed to differ within and between species. The resulting

estimates were sintra ¼ 22.2 (95% confidence range 7.5–36.8) and

sinter ¼ 12.5 (95% confidence range 1.7–25.9), corresponding to

61% of all discoveries being via social transmission (figure 3).

The difference sinter– sintra is therefore estimated to be 9.7

(95% confidence range 26.1 to 23.8), indicating that we have

strong evidence of transmission occurring both within and

between species. Because individual arrivals were constrained

to only count as discovery events if they occurred more than

10 min since the prior arrival, these estimates are also likely to

be conservative. Running the best-supported model without

this constraint estimates that 73% of all discoveries were social

(42% occurring as a result of within-species, and 31% from

between-species, social transmission). Full details relating
to the estimation of CIs are given in the electronic

supplementary material.

The best-supported model estimated that 39% of individ-

uals that first arrived on a food source did so independently

of the social network (but see caveat above). An asocial dis-

covery is defined as occurring when a bird discovers a

feeder without that location having been transmitted by

social transmission from another bird. We found strong sup-

port that the rate of asocial discoveries differed between

species (total Akaike weight ¼ 92.3%), with marsh tits esti-

mated to be 5.2 times (95% CI: 1.92–10.07) more likely than

great tits to find food sources independently of others. Blue

tits were estimated to be only 0.8 times as likely as great

tits to find food alone (95% CI: 0.27–1.09). At the individual

level, each individual marsh tit was estimated to be respon-

sible for 2.6% of all the individual discovery events, much

higher than the estimate for individual great tits (0.7%) and

blue tits (0.4%; figure 3).
4. Discussion
Understanding the relative contribution of different com-

ponents of social structure is important for the interplay

between population structure and population processes. To

date, studies of animal groups have often, implicitly or not,

assumed that each of the observed links in a social network

are formed for the same purpose. Yet different types of

associations may be important for different social processes

[10]. In this study, we developed a framework that enabled

us to quantify how important different relationships, rep-

resented as different social networks, are in the diffusion of



within species 

38% 

between species 

23% 

asocial discovery social transmission 

marsh tits (×7) 

great tits (×49) 

blue tits (×106) 

(b) per capita 
asocial 
discovery 

marsh tit 

great tit 

(a) estimated breakdown of discovery events 

7% 

14% 

18%  

2.6% 

0.7% 

blue tit 
0.4% 

Figure 3. (a) Breakdown of discovery events corresponding to the estimated network-based diffusion analysis parameters. The area of each box represents the
estimated proportion of individual patch discoveries events (independent arrivals to the patch by each individual) that were a result of transmission within species
(38%), transmission between species (23%), or asocial learning (39%). The latter is further broken down by species, with numbers in parentheses giving the
observed number of individuals (see table 1). For example, 7% of all arrivals were by marsh tits who discovered the patch without having access to social infor-
mation. We also calculated the estimated rate of asocial discovery per capita (b). Each individual marsh tit accounted for 2.6% of all asocial discoveries (totalling 18%
of all asocial discoveries by just seven individuals), and thus produced on average 3.7 times more new information than individual great tits and 6.5 times more
information than individual blue tits. The size of each boxes represents the estimated percentage of total discoveries (a) and asocial discoveries (b).
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information. We then tested whether the rates of transmis-

sion of social information varied between conspecifics and

heterospecifics in a replicated experiment.

After the initial discovery of a food patch, approximately 61%

of all individuals that then found the patch were connected to the

discoverers through network edges (figure 3). The s parameters

in our models estimate the rate of transmission per unit of con-

nection for each of the two networks. Because individuals

typically had a higher weighted degree (or strength) with con-

specifics than heterospecifics, information about food patches

is likely to have travelled significantly faster between conspecifics

than between species. We found that the rate of information

transmission between heterospecifics was generally lower than

that between conspecifics, with an estimated transmission rate

per unit of connection of 22.2 for intraspecific edges and 12.5

for interspecific edges. However, these results still revealed an

important role for interspecific transmission of information in

the discovery of new food patches. If individuals did not use

heterospecific information, then they would depend on a con-

specific having first discovered the resource independently,

potentially slowing down the spread of new information

through the social network. Interestingly, these results reflect a

recent study quantifying local interaction rules for conspecific

and heterospecific information-use in the collective behaviour

of mixed-species flocks [33].

Associating with, and acquiring information from, differ-

ent types of individuals may have benefits such as increasing

the pool of local knowledge [34,35]. Associations with hetero-

specifics can also impact the structure of the social network

[36], which may positively influence the rate of information

spread. For example, the addition of interspecific associations

increases network density (connectivity), by adding more

edges relative to the total number of nodes, which increases

the speed of information flow in networks. However, this

increase is dependent on the structure that additional edges

produce [37]. The combined mixed-species social network
in our study showed a higher level of assortment in network

degree than the intraspecific network alone. Assortment by

degree occurs when more gregarious individuals are associ-

ated more strongly with other gregarious individuals,

regardless of species. This type of connectivity creates net-

works that are robust to fragmentation and promote rapid

transmission across the population [38]. Thus, associations

between heterospecifics may have a profound influence on

the structural properties of the network, with potential fitness

consequences (in this case, they influence the spread of infor-

mation about the location of food resources). Therefore, when

estimating consequences of social organization in species that

also associate with heterospecifics, it may be important to

consider individuals in the context of their entire network,

rather than individual species-level networks independently.

There are few studies that have investigated whether

removing the opportunity for mixed-species associations influ-

ences within-species social processes. The most convincing

study to date showed that white-breasted nuthatches (Sitta
carolinensis) avoided high-risk food resources when tufted

titmice (Baeolophus bicolor) were removed from flocks [39].

Over time, this led to reduced body condition and an

increased rate of over-winter mortality [40]. Similarly, two

independent observational studies found that the composition

of species on different islands [41] and in different rainforest

patches [42] predicted the presence or absence of mixed-

species flocking behaviour. Our study highlights the potential

importance of heterospecifics in the socioecological land-

scape of wintering songbirds, by showing that heterospecific

associations can lead to an increase in information spread.

Although information moved between heterospecifics,

we also found that not all species generated information

equally: marsh tits tended to be disproportionately more

likely to discover a new patch independently of the network

(i.e. asocially). If most individuals learn by social transmission,

then the identity of those that make independent discoveries
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becomes important, since they determine where the infor-

mation is ‘seeded’ in the group and the subsequent pathway

of diffusion. Taken with the evidence that information spreads

between species as well as within species, this suggests that

marsh tits were the original source of a large amount of

social information in our experiments (in total, approx. one-

third of discoveries were not the result of information transfer).

This may be because marsh tits are more motivated to discover

new food sources earlier in the day in order to cache food [26]

and, once they discover a new food source, other species para-

sitize the information they produce [43]. As we control for

co-discoveries, our data do not suggest that marsh tits were

simply in one mixed-species flock, visited together and

simply accessed the feeder first (figure 2). Instead, it is possible

that marsh tits may be more likely to find food on their

own and actively recruit heterospecifics to new food sites.

A recent study of the closely related willow tit (Poecile monta-
nus) found that individuals actively recruited heterospecifics

to new food sources by making loud contact calls [44]. Simi-

larly marsh tits, which are relatively uncommon, might

benefit from dilution of risk or shared vigilance when associat-

ing with more numerous heterospecifics. Whether they are

parasitized or actively recruit, our study suggests that marsh

tits may be a ‘keystone’ species within this mixed-species

community during the winter months.

Finally, we have extended the NBDA framework to incor-

porate multiple candidate networks. This provides a powerful
tool for testing competing hypotheses about how information

is transferred in multi-dimensional social landscapes. It enables

the relative contribution of different potential pathways of social

transmission to be quantified. For example, animals form and

maintain bonds that may be determined by grooming [45], kin-

ship [46], familiarity [47] or mating networks [48], and these may

vary in their importance for different social processes. We then

combined this method with a field experiment to show that het-

erospecifics form an important part of the social landscape in a

temperate mixed-species community. We conclude that infor-

mation was transmitted between those heterospecifics that

form mixed-species flocks of birds, and that individuals of differ-

ent species varied in how much information they produced.
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