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Abstract

Using HCV and IFN-resistance as a proof of concept, we have devised a new methodology for 

calculating the effect of a drug over a viral population and the resistance of its individual intra-

host variants.

By means of next-generation sequencing, HCV variants were obtained from sera collected at 9 

time-points from 16 patients during the first 48 hours after injection of IFN-α. IFN-resistance 

coefficients were calculated for individual variants using changes in their relative frequencies, and 

for the entire intra-host viral population using changes in viral titer during the initial 48 hours.

Population-wide resistance and presence of IFN-resistant variants were highly associated with 

pegIFN-α2a/RBV treatment outcome at week 12 (p = 3.78×10-5 and 0.0114, respectively). This 

new method allows an accurate measurement of resistance based solely on changes in viral titer or 

the relative frequency of intra-host viral variants during a short observation time.

There has been a great progress in the development of antiviral agents licensed for treatment 

of Human immunodeficiency virus (HIV), Herpesviruses, Hepatitis viruses and respiratory 

viruses1. The emergence of HIV as a major human pathogen and the intensive use of 

antiretroviral compounds have also provided a better understanding of the genesis of 

antiviral resistance2. However, there is not a simple method for measuring directly the effect 

a drug has over a viral population and its individual intra-host variants. Such measure could 

help screen promising drugs that affect the viral population and also detect the individual 

variants that are naturally more resistant. In this paper, we use the effects of Interferon (IFN) 
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on HCV as a proof of concept, finding that our drug-resistance estimates, calculated during 

the first 48 hour after IFN injection, are strongly associated with outcome of therapy at week 

12.

Hepatitis C virus (HCV) infects nearly 3% of the world's population and is a major cause of 

liver disease worldwide3. There is no vaccine against HCV and up to recently the standard-

of-care therapy involved the combined use of pegylated interferon (peg-IFN) and ribavirin 

(RBV). This combination therapy is expensive, effective in only 50%-60% of patients, and 

can be associated with frequent and serious adverse side effects in more than 75% of 

patients4, 5 In order to improve cost-effectiveness and ameliorate patient hardship, it would 

be desirable to predict the response at early onset of therapy.

IFNs are crucial components of the innate immune system. IFN-α acts by inducing 

production of interferon stimulating genes (ISGs) to establish a non-specific antiviral state 

within the cell with direct inhibition of viral replication. It is also known to exert 

immunomodulatory effects that enhance immune response and accelerate clearance of 

infected cells6. When exogenously administered as a single injection, IFN-α induces a 

decline of HCV RNA in two phases: a rapid phase lasting for 24-48 hours, followed by a 

slower phase of decline over the ensuing weeks. The initial rapid decline is defined by the 

rate of viral clearance and the effectiveness of IFN in blocking viral production. Successful 

treatment results in sustained undetectable HCV RNA after completion of therapy. 

Treatment failure results either from nonresponse (minimal declines in viral titer during 

therapy) or relapse (robust initial responses followed by rebounds of viral titers after 

therapy)6.

Several independent predictors of a sustained virologic response (SVR) to IFN/RBV therapy 

have been identified. These include HCV genotypes 2 and 3, low pretreatment viral load, 

Asian or Caucasian ethnicity, younger age, absence of advanced fibrosis or cirrhosis, and 

absence of steatosis7. More recently, Genome Wide Association Studies have identified 

single-nucleotide polymorphisms near the IL28B gene (encoding IFN-λ3) as being 

particularly associated with spontaneous and treatment-induced clearance of HCV 

infection8, 9. However, IL28B variations may account for only ∼15% of inter-individual 

variability of SVR10. The interaction of these host factors determines the therapy effect on 

the virus, which is directly evidenced by a decline in viral titer, the reason why the rate and 

magnitude of decline in the first weeks of treatment can predict the outcome of therapy6.

HCV exists in infected patients as a large viral population of intra-host variants, which may 

be differentially resistant to IFN treatment and, therefore, likely to display variable temporal 

patterns during the first phase of decline following IFN injection. Assessing the spectrum of 

HCV variants and measuring the IFN resistance of individual variants could be critical for 

understanding the variability in therapy outcomes. Next-generation sequencing (NGS) 

technologies in conjunction with computational analysis allow for quantitative assessment of 

viral intra-host variants, providing data on the intra-host dynamics of individual HCV 

variants and an opportunity for measuring their resistance to IFN. The HVR1 region of HCV 

is used here as a tag or marker of individual intra-host viral strains for estimating their 

relative frequencies over a short period of time.
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Since the model is based solely on changes in viral titer or the relative frequency of intra-

host viral variants persisting during antiviral therapy, without consideration of other viral 

factors, host factors or type of drug administered, it may be applicable to measure and 

predict HCV treatment response with other drug regimens, including the newly available 

direct acting antiviral (DAA) agents. In addition, the presented analytical framework should 

be applicable to drug resistance of other viral infections.

Results

Outcomes of therapy

The demographics and clinical features of the 16 study patients are summarized in Table 1, 

which includes their gender, race, grade of hepatic inflammation and fibrosis, IL28 genotype 

(see also figure 2A) and therapy outcome according to the clinical criterion of treatment 

success11, 12: (i) Rapid Virological Response (RVR) is defined as having undetectable HCV 

RNA by week 4 of therapy (n=4); (ii) Early Virological Response (cEVR): undetectable 

HCV RNA by week 12 of therapy (n=6); (iii) partial Early Virological Response (pEVR): a 

decrease of HCV RNA more than 2 log10 but still detectable after 12 weeks of therapy 

(n=4); and (iv) non-response (NR): decrease of HCV RNA less than 2 log10 after 12 weeks 

of therapy (n=2). The inefficiency of IL28B as the sole predictor of IFN-based therapeutic 

response is highlighted in Figure 2A, which displays the number of patients by IL28B status 

and therapy outcome.

Decline of viral titer during the first 48 hours after single-dose injection

HCV RNA level was measured at each time-point (Figure 1) and interpolated over the entire 

48 hours. The titer declined in all patients, starting from an average of 4.76 hours after IFN 

injection (standard deviation [SD] 2.23 hours), with the lowest point being observed at 30.03 

hours (S.D. 4.66 hours), and an average drop of 1.67 log10 IU/ml. The HCV RNA titer rised 

at 48 hours in all patients with an average increase of 0.86 log10 IU/ml compared to the 

lowest titer, which likely corresponded to the gradual clearance of the administered IFN 

(Figure 1). All calculations conducted in this paper used all time-points, but we found four 

time-points (0, 24, 36 and 48 hours) which are particularly critical for the calculation of 

resistance. This is due to the fact that the most important changes in viral titer occur around 

these time-points.

Association of the population IFN-resistance with outcome of treatment at week 12

The population IFN-resistance coefficient was calculated using the rate of titer change as 

described in Equation 3. A positive coefficient value indicates IFN-resistance, whereas a 

negative value indicates IFN-sensitivity. Figure 2B shows the association of the coefficient 

values with therapy outcomes. The lowest coefficient value was calculated for RVR 

followed by cEVR and pEVR, with the highest value calculated for NR. The average 

population IFN-resistance coefficients for the four outcomes were significantly different (p-

value = 3.78×10-5), being 3.03 times higher for non-responders (pEVR and NR) than for 

responders (RVR and cEVR) (p-value = 0.0040) (Figure 2B). Thus, the resistance 

coefficients calculated using data from the first 48 hours strongly correlated with therapy 

outcome at week 12.
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Stability of intra-host HCV subpopulations

Given the strong association between population IFN-resistance coefficient values and 

therapy outcome, we investigated whether this association could be attributed to resistance 

of individual HCV variants. The HCV E1/E2 region from all samples was subjected to deep-

sequencing, generating a total of 1,763,502 reads, with an average of 12,332 reads per time-

point (Figure 2D). Many low-frequency intra-host viral variants could not be detected at all 

time-points, with numerous variants detectable only at a single time-point. However, the 

spectrum of frequent intra-host HCV variants was stable. On average, 76.81% (SD 17.66%) 

of all error-corrected reads found at 48 hours were also present before therapy. The less 

persistent variants were usually found at very low frequencies, suggesting that their absence 

at some time-points is likely due to stochastic sampling. The nucleotide diversity of each 

time-point was calculated and also found to be constant in all patients, with the SD of the 

nucleotide diversity ranging from 0.0001 in Patient 2 to 0.0139 in Patient 14.

Phylogenetic analysis showed that major viral subpopulations were constantly present 

during the entire sampling period in all patients. However, many low-frequency variants 

could be detectable at only certain time-points. Genetic differences between time-points 

were measured for each patient using Φst. Viral populations found at the first and last time-

points were very similar in most patients, the average Φst being only 3.52%, with only one 

patient (Patient 6) showing a high Φst value (71.14%) (see Table 2).

Association between presence of IFN-resistant variants and therapy outcome

Sequences of intra-host HCV variants were not expected to accrue mutations over 48 hours 

of observation. However, we found that the relative frequencies of persistent variants 

changed during the time period in all patients (Figure 3). The developed mathematical 

model allowed calculation of the IFN resistance coefficient for each persisting intra-host 

HVR1 variant based on its relative frequency variations. IFN-resistance varied broadly 

among intra-host variants in all patients.

Not a single IFN-resistant variant was found in patients with RVR and only one of six cEVR 

patients showed IFN-resistant variants (Table 2 and Figure 4A). In contrast, patients with 

pEVR and NR were infected with an average number of 3.25 and 3.5 IFN-resistant intra-

host variants, respectively (Figure 4A). The average number of IFN-resistant variants was 

significantly associated with the four outcomes (p = 0.0114), being 16.6 times lower for 

non-responders (pEVR and NR) than for responders (RVR and cEVR) (p = 0.0014). The 

average total fraction of reads with positive IFN-resistance values was also significantly 

different among the four outcomes (p = 0.0014) (Figure 4C). These observations suggest 

that the absence or presence of IFN-resistant variants and their frequency prior to single-

dose IFN injection are strong predictors of treatment outcome.

In all patients, the variant with the highest initial frequency (henceforth referred to as the 

major variant) showed a strong sensitivity to IFN, with an average value of -4.75 over all 

patients (Table 2). The average IFN-resistance of the major variants for the four outcomes 

was significantly different (p = 0.0071), being 3.68 times higher for non-responders (pEVR 

and NR) than for responders (RVR and cEVR) (p = 0.0028) (Figure 4B). There was no 
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association between the therapy outcome and the initial frequency of the IFN-sensitive 

major variant (p = 0.1535). The maximum IFN-resistance found in each patient was 

significantly different among the four outcomes (p = 0.0188), being 5.25 times higher for 

non-responders (pEVR and NR) than for responders (RVR and cEVR) (p = 0.0084) (Figure 

4D).

Phylogenetic analysis of sensitive and resistant variants

For all patients showing one or more IFN-resistant variants, we performed a phylogenetic 

analysis to ascertain the genetic relatedness between the sensitive and resistant variants. For 

each patient, resistant variants were always one or two nucleotides different from the 

sensitive variants in the same cluster. In addition, resistant sequences did not cluster together 

but were scattered mostly across other subpopulations (Figure 5).

Discussion

Viral kinetic modeling has played an important role in analysis of HCV decay in peripheral 

blood (as measured by serum or plasma HCV RNA) after initiation of antiviral therapy13-15. 

Kinetic models usually include such parameters as viral load, number of target cells, number 

of infected cells producing virions, target cell production rate, target cell death rate, de novo 

infection rate constant, infected cells death rate, HCV virion production rate and HCV virion 

clearance rate. A recent study15 of 2100 patients from two clinical trials further developed a 

kinetic analysis based on a model that incorporates variables such as liver regeneration, 

HCV RNA below threshold of detection and a cure boundary. Although useful for 

understanding HCV pathogenesis and replication, such models require substantial a priori 

knowledge and assumptions, and data collected over 24 to 72 weeks of therapy.

It is the interaction of several host factors that determines the therapy effect on the virus, but 

such effect is directly evidenced by a decline in viral titer, the reason why the rate and 

magnitude of decline in the first weeks of treatment can predict the outcome of therapy6. 

The decline in viral titer observed among the patients during the first 48 hours after a single 

IFN injection indicates that their intra-host viral populations were under considerable 

selective pressure after the medication. Although the spectrum of intra-host HCV variants 

was relatively stable over that time period, we found that the frequencies of the persistent 

HCV variants were variable. This allowed the degree of IFN-resistance to be calculated for 

the individual intra-host HCV variants. We took advantage of the capacity of NGS to 

produce a massive number of sequences, facilitating accurate and robust assessment of the 

frequency of viral variants.

All calculations conducted here used 9 time-points, but the collection and sequencing of 

serum samples at such frequency is difficult for routine research or eventual patient 

evaluation. However, we found four time-points, 0, 24, 36 and 48 hours, to be sufficient for 

the calculation of resistance. Viral titer at these time-points reflects most closely the effect of 

IFN on viral population. It should be noted that the specific time-points, which are most 

critical for estimation of resistance coefficients, may differ for other drugs from those found 

in this study, owing to differences in mechanisms of action and clearance kinetics of drugs.
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HVR1 is used here as a tag or marker of individual intra-host viral strains for estimating the 

relative frequency of intra-host HCV genomic variants. However, this relatively short region 

may be shared by more than one genetically distinct genomic variant. Nonetheless, HVR1 is 

the most heterogeneous region of the viral genome, so the probability of such sharing is 

minimized. Furthermore, we previously demonstrated that coordinated evolution among 

sites from the entire HCV genome is strongly associated with IFN resistance, and that 

sequence polymorphisms in short genomic regions, including HVR1, can accurately reflect 

that association16.

Phylogenetic analysis showed that IFN-resistant variants were one or two nucleotides 

different from sensitive variants, but both resistant and sensitive variants belonged to the 

same cluster, rather than being segregated. The association between variation in the HVR1 

sequence and therapy outcome is therefore unlikely to be mediated by the few mutations in 

HVR1, but rather by other regions of the HCV genome, with HVR1 heterogeneity reflecting 

genetic variation in these regions, as we have previously shown16, 17.

Patient 16 was the only one from the group of responders (four RVR and six cEVR patients) 

who carried IFN-resistant variants with a value similar to that of pEVR and NR patients. 

The reasons for this discrepancy between outcome and our estimates are difficult to 

ascertain, although it was observed that this patient lost 62.5% of its titer within 2 days 

before IFN treatment. The results raise the interesting possibility that this patient cleared the 

HCV infection independently of the IFN treatment.

This study is the first to apply a mathematical model using empirically derived viral kinetic 

data with viral sequences linked to the frequency of their persistence. We found that 

frequency changes of the viral population associate strongly with treatment outcome. Since 

the model is based solely on changes in viral titer or the relative frequency of intra-host viral 

variants persisting during antiviral therapy, without consideration of other viral factors, host 

factors or type of drug administered, it is applicable to measure and predict HCV treatment 

response with other drug regimens, including the newly available direct acting antiviral 

(DAA) agents. The analytical framework developed here should be applicable as well to the 

drug response of other viral infections, as long as informative samples are collected at time-

points reflecting variation in viral titer associated with the action of specific drugs on the 

virus under investigation.

Methods

Patients

Sixteen treatment-naïve patients with genotype 1 chronic hepatitis C were studied. Blood 

samples were collected from each patient over 48 hours (at time-points 0 (baseline), 1, 3, 6, 

12, 18, 24, 36 and 48 hours) after a single subcutaneous injection of IFN-α (10 MU). 

Patients then received a course of pegylated IFN-α2a and ribavirin starting 48 hours after 

the single dose of IFN-α. Therapy continued for up to 48 weeks as per standard-of-care 

recommendation (see Lau et al.18 for more details). Ethical review and informed consent 

were granted by the institutional review boards of Beth Israel Deaconess Medical Center and 

the Centers for Disease Control and Prevention.
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Nucleic acid extraction

Total nucleic acids from the specimens were extracted from serum using the Roche MagNA 

Pure LC instrument and the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche 

Diagnostics, Mannheim, Germany). RNA was precipitated and reverse-transcribed using 

both random and specific primers as previously described19. PCR quantification was 

conducted by the COBAS AmpliPrep/COBAS Taq-Man HCV Test (Roche Diagnostics, 

Mannheim, Germany), and the HCV genotype determined using the VERSANT HCV 

Genotype 2.0 Assay (LiPA) (Innogenetics NV, Gent, Belgium).

HVR1 cDNA amplification

The E1/E2 junction of the HCV genome (309 nt), which contains the HVR1 region, was 

amplified using our nested PCR protocol as previously described19. The amplicons 

generated during first-round PCR were used as templates for nested PCR using hybrid 

primers composed of primer adaptors, multiple identifiers and specific sequences 

complementary to the HCV genome. This strategy allowed for multiplexing and 

downstream pyrosequencing. Resulting amplicons were quantified using the Picogreen kit 

(Invitrogen, Carlsbad, CA). Integrity of each fragment was evaluated using Bioanalyzer 

2100 (Agilent, Santa Clara, CA).

NGS

PCR products were pooled and subjected to pyrosequencing using the GS FLX System and 

the GS FLX Titanium Sequencing Kit (454 Life Sciences, Roche, Branford, CT). Low 

quality reads were removed using the GS Run Processor v2.3 (Roche). Initial reads were 

processed by matching to the corresponding identifier. The 454 files were processed using 

the error correction algorithms KEC and ET20, which have been validated to be highly 

accurate in finding true haplotypes, removing false haplotypes and estimating the frequency 

of true haplotypes. The error-corrected files were aligned using Muscle21 and the HVR1 

sequences clipped to 293 bp.

Genetic structure analysis

Unbiased estimates of nucleotide diversity were calculated according to Nei22 using 

ARLEQUIN23. We also measured the genetic differences between the first time-point (0 

hour) and the last time-point (48 hours) according to Excoffier et al.24 by means of 

ARLEQUIN23. The genetic structure was analyzed with consideration of the molecular 

differences between sequences in addition to differences in their frequencies, resulting in 

estimates of Φst, a measure of the percentage of genetic heterogeneity due to differences 

between two samples. Significance of the differences was estimated by use of a permutation 

test (n = 10,000). A maximum likelihood tree was built for the persistent variants of each 

patient by means of the software HyPhy25, using the General Time Reversible model. A 

Median-Joining network (MJN) was also built for each patient using the program 

NETWORK 4.626. The MJN method begins computing the minimum spanning trees (a 

graph that connects all sequences with the minimum total length of the branches), and then 

all these graphs are combined within a single (reticulate) network26.
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Nucleotide sequence accession numbers

The E1/E2 sequences produced in this study have been deposited in the National Center for 

Biotechnology Information GenBank database under accession numbers KC562310 to 

KC562900.

IFN-resistance coefficients

The dataset under consideration is HCV titer and sets of E1/E2 sequences with their relative 

frequencies for each time-point. In order to obtain reliable results in the calculation of IFN 

resistance for individual variants, only sequences present at every time-point were analyzed. 

The average fraction of persistent variants for all patients was 61.4% (ranging from 10.9% 

for Patient 6 to 94.9% for Patient 8).

The dynamics of the viral population consisting of n variants was described by the following 

system of differential equations27:

(1)

Here ui(t) and gi(t) are the frequency and the fitness of a variant i at time t, respectively; h(t) 

is the titer, ui(t), i=1,…, n and h(t) were interpolated on the whole segment from 0 to 48 

hours using cubic splines, and the derivatives u̇i(t) and ḣ(t) were calculated using the 

obtained spline approximations.

The average fitness during the studied time interval was used as a measure of the IFN-

resistance of each variant. Using the expressions for gi(t) obtained from (1), the individual 

variant IFN-resistance coefficient ri for each variant, i, was calculated by the following 

formula:

(2)

Here T = 48 hrs and t0 is the time when interferon begins affecting the viral population, 

which is estimated as the point when titer starts declining monotonically in the obtained 

spline approximation. The population IFN-resistance coefficient was calculated by the 

formula

(3)

To evaluate the estimates' quality of individual variants resistance, it was assumed that the 

correctly estimated fitnesses, ui(t), changed smoothly at the interval [0, 48]. Abrupt changes 

of ui(t) may indicate errors in the variant frequencies estimation due to PCR bias, 

sequencing inaccuracies, or both. The total variation of fitness on the interval [0,T] for each 
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variant was used as a measure of the possible error and was calculated using the following 

formula:

(4)

The variants with a variation greater than mean fitness variation over the whole population 

plus 2 standard deviations were excluded from analysis.

The justification of the model and derivations of formulas have been described in detail by 

Skums et al.27 All calculations were made in MATLAB R2010b (The Math Works, Inc., 

Natick, MA).

Statistical analysis

We tested the differences in IFN-resistance among therapy outcomes by means of a Multi-

Response Permutation procedure (MRPP)28, 29. MRPP is a permutation version of the t-test, 

a non-parametric test for testing the hypothesis of no difference between two groups of 

paired samples. Permutation tests represent ideal situations in which exact probabilities 

associated with a test statistic may be derived, rather than approximated from common 

probability distributions, such as t, F and Chi square30. In the majority of studies, the 

population distribution is unknown and assuming a normal distribution is inappropriate for 

many biological datasets, which often are skewed, discontinuous and multi-modal. We used 

the MRPP implemented in BLOSSOM28, using exact probabilities (all possible 

permutations) and V parameter equal to 1.
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Study Highlights

• What is the current knowledge on the topic?

There has been a great progress in the development of antiviral agents. 

However, there is not a simple method for measuring directly the effect a drug 

has over a viral population and its individual intra-host variants.

• What question this study addressed?

Whether next-generation sequencing can be used to estimate the drug resistance 

of a viral population.

• What this study adds to our knowledge?

Population-wide resistance and presence of drug-resistant variants were highly 

associated with treatment outcome.

• How this might change clinical pharmacology and therapeutics?

Since the model is based solely on changes in viral titer or the relative frequency 

of intra-host viral variants persisting during antiviral therapy, without 

consideration of other viral factors, host factors or type of drug administered, it 

is potentially applicable to measure and predict the drug response of other viral 

infections.
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Figure 1. 
HCV RNA level across all time-points. Patients are grouped according to treatment 

outcomes.
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Figure 2. 
A) Number of patients by IL28B status and therapy outcome. B) Population IFN-resistance 

for each patient. Blue: RVR; red: cEVR; yellow: pEVR; and green: NR. C) Average 

population IFN-resistance of patients for each outcome, bars correspond to standard error of 

the mean. D) Number of reads obtained by NGS from each patient and each time-point.
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Figure 3. 
Relative frequencies of persistent variants over time in all patients.

Campo et al. Page 14

Clin Pharmacol Ther. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Average IFN-resistance calculated over the patients of each therapy outcome. A) Number of 

IFN-resistant variants. B) IFN-resistance coefficient of the major variant. C) Fraction of the 

total number of reads that are IFN-resistant. D) Maximum IFN-resistance found. Bars 

correspond to standard error of the mean.
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Figure 5. 
Maximum likelihood trees of all the sequences from patients with resistant variants. Red: 

IFN-resistant variants; blue: IFN-sensitive variants.
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