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Highlights of the Study

• The prevalence of allergies has been increasing steadily, currently affecting up to 30% of people world-
wide.

• While classical type I IgE-mediated hypersensitivity reactions are still the major underlying mecha-
nisms, other pathways and cells mediating the release of hypersensitivity-induced mediators have 
emerged recently; these are discussed from a mechanistic viewpoint.

• Current allergy diagnosis tests in clinical practice are discussed.
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Abstract
IgE-mediated type I hypersensitivity reactions have many re-
ported beneficial functions in immune defense against para-
sites, venoms, toxins, etc. However, they are best known for 
their role in allergies, currently affecting almost one third of 
the population worldwide. IgE-mediated allergic diseases 
result from a maladaptive type 2 immune response that pro-
motes the synthesis of IgE antibodies directed at a special 
class of antigens called allergens. IgE antibodies bind to type 
I high-affinity IgE receptors (FcεRI) on mast cells and baso-
phils, sensitizing them to get triggered in a subsequent en-
counter with the cognate allergen. This promotes the re-
lease of a large variety of inflammatory mediators including 

histamine responsible for the symptoms of immediate hy-
persensitivity. The development of type 2-driven allergies is 
dependent on a complex interplay of genetic and environ-
mental factors at barrier surfaces including the host microbi-
ome that builds up during early life. While IgE-mediated im-
mediate hypersensitivity reactions are undoubtedly at the 
origin of the majority of allergies, it has become clear that 
similar responses and symptoms can be triggered by other 
types of adaptive immune responses mediated via IgG or 
complement involving other immune cells and mediators. 
Likewise, various nonadaptive innate triggers via receptors 
expressed on mast cells have been found to either directly 
launch a hypersensitivity reaction and/or to amplify existing 
IgE-mediated responses. This review summarizes recent 
findings on both IgE-dependent and IgE-independent 
mechanisms in the development of allergic hypersensitivi-
ties and provides an update on the diagnosis of allergy.
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Introduction

Type I hypersensitivity reactions, as initially defined 
by Coombs and Gell [1], refer to the IgE-triggered release 
of inflammatory mediators such as histamine by mast 
cells and basophils. Type I hypersensitivity reactions play 
a crucial role in the development of allergies manifesting 
such as allergic anaphylaxis, allergic rhinitis, food aller-
gies, atopic dermatitis, and allergic asthma that affect up 
to 30% of people in Western countries [2–4]. They are 
caused by the inappropriate response of individuals to 
certain antigens (called “allergens”) driven by a T helper 
type 2 (Th2) immunity, leading to the production of al-
lergen-specific IgE antibodies [5, 6]. These IgE antibodies 
bind to high-affinity IgE receptors (FcεRI) expressed on 
mast cells and basophils, sensitizing them to get activated 
in a subsequent encounter with the allergen [7, 8]. This 
adaptive IgE-driven pathway of mast cell and basophil 
activation represents the major component of classical 
type I hypersensitivity reactions responsible for the devel-
opment of allergic disorders. However, recent data have 
provided a wealth of new information on hypersensitiv-
ity reactions and other effector cells. To take into account 
this ever-evolving complexity, a task force was created by 
the European Academy of Allergology and Clinical Im-
munology (EAACI) with the goal to standardize the no-
menclature of allergies at the beginning of the 21st cen-
tury. It came up with a position paper [9, 10] providing a 
new definition of allergic and nonallergic hypersensitivi-
ties as mediated respectively by adaptive immune re-
sponses (allergen-specific antibodies or lymphocytes) 
and by other (innate) mechanisms. The concepts have 
been continuously updated and have also been integrated 
into the clinical context for improved diagnostics and 
therapeutic interventions [4]. The classification of aller-
gic and nonallergic hypersensitivity is presented in Figure 
1.

The purpose of this review is to discuss type I immedi-
ate hypersensitivity and also the emerging mechanisms 
involved in other immediate allergic and nonallergic hy-
persensitivities and summarize their clinical implica-
tions. In particular, we will provide insight into recent 
advances related to the development of IgE-driven type I 
hypersensitivity reactions, the role of environmental fac-
tors such as exposure to microbiota in early life, and the 
role of barrier surfaces. We will discuss the immunologi-
cal processes of allergic hypersensitivities relating to IgG 
and complement-mediated allergies, which besides mast 
cells and basophils, may involve other immune effector 
cells such as neutrophils, macrophages, and even platelets 

[11–13]. New data explain certain types of innate and 
IgE-independent allergies to chemical compounds and 
drugs as well as physical stimuli involving a new set of 
receptors such as Mas-related G protein-coupled recep-
tor-X2 (MRGPRX2) [14] and adhesion G protein-cou-
pled receptor (ADGRE2) expressed on mast cells [15]. 
Hence, it is now well established that in addition to the 
well-described IgE receptor [7, 8, 16], mast cells express 
many other receptors that can initiate hypersensitivity-
like responses or at least contribute as cofactors in their 
enhancement [17]. Some recent reviews have summa-
rized the various receptors involved [17, 18]. Further-
more, consensus statements and guidelines have been is-
sued for optimal diagnosis and management of mast cell-
related conditions such as mast cell activation syndrome 
(MCAS) and hereditary α-tryptasemia (HαT) [19–21]. 
Indeed, a high proportion of hypersensitivity reactions 
observed in clinics actually does not involve mast cell-
triggered responses and are often misdiagnosed, calling 
for consensus clinical guidelines [22–24]. In this context, 
it can also be mentioned that recent data have helped elu-
cidate connections between hypersensitivities and trig-
gering compounds emanating from the peripheral ner-
vous system [25].

IgE-Dependent Allergies and Anaphylaxis

It is well established that IgE-dependent allergies are 
Th2-driven. The Th2 branch of the adaptive immune sys-
tem favors CD4+ Th2 cells, eosinophils, basophils, mast 
cells, type 2 innate lymphoid cells, as well as the produc-
tion of cytokines such as IL-4, IL-5, IL-9, and IL-13 and 
humoral antibody responses of the IgE isotype [5, 6, 26]. 
Originally destined to cope with extracellular bacteria 
and parasites, new data have highlighted its role in the 
inactivation of venoms and toxins and the repair respons-
es of lesioned tissue [27–29]. Although these responses 
are clearly beneficial for the host, Th2-mediated immune 
responses may also lead to uncontrolled or maladaptive 
inflammatory reactions, i.e., the generation of IgE anti-
bodies to allergens and the development of allergic dis-
eases [3, 28].

Th2 Immunity and the Environment in Early Life

Besides genetic factors, Th2-mediated pathologies 
and IgE-mediated allergic diseases are the result of a 
complex interplay with the environment [30]. It became 



Mechanisms of Allergy and Anaphylaxis 503Med Princ Pract 2022;31:501–515
DOI: 10.1159/000527481

evident that allergies have been steadily increasing since 
the middle of the last century in developed countries. 
One explanation put forward was the hygiene hypothe-
sis, stating that the increased cleanliness, use of antibiot-
ics, and subsequently altered diversity of microbial ex-
posure are linked to the observed growth of global al-
lergy prevalence [31, 32]. It is already featured in some 
older studies that have compared West and East Ger-
man populations before and after the 1990s reunifica-
tion [33]; a more recent study in this context has com-
pared Amish and Hutterite children in the USA. While 
these populations share genetic ancestry and similar 
lifestyles, the use of distinct farming practices (tradi-
tional for the Amish, industrialized for the Hutterites) 
leads to an about 4 to 5-fold lower prevalence of asthma 
and allergy in the Amish population [34, 35]. Addition-
al experimental proof of this “farming effect” came from 
the examination of house dust probes from the Amish 
(with a 7-fold higher endotoxin content than from the 
Hutterites), which were sufficient to protect mice against 
allergic asthma phenotypes via innate immune mecha-
nisms [35, 36]. Importantly, the human microbiome of 
the lung, gut, and skin epithelia and associated metabo-

lites that builds up during early life from environmental 
challenges may play an important role in controlling al-
lergic sensitization through sequential, nonredundant 
steps of imprinting and educating the immune respons-
es, named the so-called “neonatal window of opportu-
nity” [37–40].

Role of Epithelial Barriers in the Development of Th2-
Mediated Immunity
A critical component in the generation of allergic-type 

Th2-mediated immune responses is the altered (leaky) 
epithelial barrier, which supports allergen exposure by a 
combination of genetic and environmental factors (e.g., 
air pollution, protease activity of allergens, microbial dys-
biosis) [41, 42]. Consequently, barrier tissues such as the 
skin and mucosal tissues such as the gut or lungs, upon 
antigen challenge, mount an innate immune response 
characterized by the production of typical chemokines/
cytokines and alarmins (IL-1, IL-25, IL-33, TSLP). These 
products then activate type 2 innate lymphoid cells to 
produce type 2 cytokines such as IL-4 and IL-13, thereby 
contributing to the orchestration of a prototypical Th2 
response [28]. Recent research has also highlighted the 

Hypersensitivity

Allergic hypersensitivity
(involving an adaptive

immunological mechanism)
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(involving a non-adaptive innate

immunological mechanism)
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Fig. 1. Hierarchy of hypersensitivity reactions involved in immediate hypersensitivity responses (adapted and 
modified from references [9] and [10]).
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role of the microbiome present at these barrier surfaces 
in the development of allergic pathology [38]. While a 
healthy microbiome will essentially engender anti-in-
flammatory homeostatic responses, dysbiosis at these 
surfaces will support an uncontrolled Th2 response, fa-
voring the development of allergies [38, 43]. E.g., in-
creased dermal Staphylococcus aureus colonization com-
bined with barrier defects has been shown to favor atopic 

dermatitis development [44]. Likewise, twin studies have 
evidenced that the microbiome and metabolome in the 
gut exhibit important differences in healthy versus food-
allergic subjects [45]. Although the lung has traditionally 
been viewed as a sterile organ, new evidence clearly indi-
cates that an altered airway microbiome or certain viral 
infections favor the development of asthma [46, 47]. Why 
certain antigen products are more prone to induce aller-
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Fig. 2. Mechanisms of allergic inflammation. During the sensitiza-
tion phase in a Th2-favorable environment, barrier epithelial cells 
respond to allergen challenge. This engenders cytokines that acti-
vate type 2 innate lymphoid cells and dendritic cells (DCs). DCs 
present allergenic peptides to naive T cells, under which the influ-
ence of type 2 innate lymphoid cell-secreted cytokines differentiate 
into IL-4/IL-13-producing Th2 cells. They contact naive B cells via 
a CD40/CD40L interaction and inducing their switch to IgE-se-
creting plasma cells. IgE binds to FcεRI present on mast cells and 
basophils, thereby enhancing its expression. Upon a subsequent 

allergen encounter, mast cells and blood basophils degranulate, 
releasing allergic mediators stored in granules and newly synthe-
sized lipid compound (prostaglandins, leukotrienes) responsible 
for early phase allergic symptoms (vasodilatation, vascular perme-
ability, bronchoconstriction, etc.). In a more delayed phase, they 
also secrete a whole variety of newly synthesized chemokines/cy-
tokines. Together, they drive an inflammatory response and infil-
tration of other immune effector cells. When allergen exposure 
and ensuing epithelial injury persist, a chronic state of tissue in-
jury and remodeling develops.
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gies and IgE responses remains a subject of intense re-
search. This includes, e.g., certain structural parameters 
revealed by the analysis of their three-dimensional struc-
ture [48], particular enzymatic (e.g., proteolytic) activities 
that might impact epithelial barriers [49], the crosstalk 
between sensory neurons and mast cells promoting acti-
vation of the latter [50], and the association with certain 
HLA class II alleles [51].

IgE-Mediated Activation of Mast Cells and Basophils

Following allergen encounters at epithelial barriers, 
the Th2-mediated immune response is put into place 
through the interaction of antigen-presenting dendritic 
cells with naive CD4 cells, generating IL-4- and IL-13-se-
creting Th2 cells (Fig. 2). They then interact with B cells 
(through CD40L and CD40) to promote isotype switch-
ing and production of allergen-specific IgE, which binds 
to FcεRI expressed on mast cells and basophils. In a sec-
ond encounter with the allergen, receptor-bounded IgE 
will get crosslinked, launching a signaling cascade that 
culminates within minutes in the release of preformed 
mediators such as histamine, proteoglycans (heparin), 
and various mast cell-specific proteases, such as tryptase, 
chymase, and carboxypeptidase A3 [7, 52]. Histamine, in 
particular, is responsible for the immediate vasoactive ef-
fects that, in the worst case, may provoke anaphylaxis and 
even death [53]. This is rapidly followed (within 15 min) 
by the new synthesis and secretion of lipid mediators in-
cluding certain prostaglandins and leukotrienes (LTB4 
and LTC4) with multiple proinflammatory functions 
such as the chemoattraction of additional inflammatory 
effector cells and bronchoconstriction [54]. It is well 
known that mast cells and basophils also secrete a number 
of chemokines and cytokines, some of which (e.g., TNFα) 
are released from prestored sources in mast cell granules, 
promoting an immediate effect on the attraction of other 
immune effector cells [55]. Hence, these mediators con-
tribute to the participation of neutrophils and eosinophils 
following the allergic stimulus [3]. In case of continuous 
non-seasonal allergen exposure, mast cells and basophils, 
together with these other inflammatory cells, participate 
in the chronic inflammatory process, contributing to the 
maintenance of a persistent inflammatory response with 
ongoing tissue injury and remodeling and eventually fi-
brosis development and loss of parenchyma such as in the 
airways [3].

Beneficial Roles of Allergy

Although IgE-mediated type I hypersensitivity re-
sponses generally initiate a sustained inflammatory re-
sponse, it should be noted that, as for the inflammatory 
process in general, they clearly have beneficial functions 
for the host, notably in the defense against various types 
of microbial pathogens [56–58]. Still, nowadays, about 
1.5 billion people are infected with soil-transmitted hel-
minth infections worldwide. Mast cells clearly have a pro-
tective role in such infectious diseases [58, 59], while, e.g., 
basophils can play a central role in the defense against tick 
bites [60, 61]. The importance of IgE-mediated type I hy-
persensitivity reactions has also been demonstrated in the 
defense against a number of venoms from various organ-
isms, ranging from snakes to reptiles to arthropods [27, 
62, 63]. These protective actions involve mast cell prote-
ases such as chymase, tryptase, and caboxypeptidase A3 
stored in granules and able to rapidly degrade and inacti-
vate the noxious peptides [64]. Most importantly, a series 
of elegant studies by the laboratory of Steve Galli has 
shown that even a bona fide IgE-mediated allergic re-
sponse can contribute to an acquired resistance to poten-
tial lethal effects of venoms such as honeybee venom-in-
duced anaphylactic reactions. While in certain “unlucky” 
individuals such a response can be deadly, it can also con-
tribute to the protection of the host inactivation of the 
venom by released proteases [65–67].

IgG-Dependent Allergies and Anaphylaxis

Although allergies and anaphylaxis are classically 
caused by IgE antibodies in humans, evidence has been 
accumulating that under certain circumstances, IgG-de-
pendent mechanisms may also be at the origin of such 
responses [11, 13]. This may be the case for certain drug-
induced allergies ranging from small chemical com-
pounds to large biologicals such as humanized antibodies 
[12, 13]. Evidence for an IgE-independent anaphylactic 
mechanism came initially from experimental studies in 
mice where active anaphylaxis was induced after immu-
nization with antigen and subsequent challenge in mice 
deficient for IgE and FcεRI [68, 69]. Passive IgG-mediat-
ed anaphylaxis experiments injecting IgG immune com-
plexes promoting an immediate drop in body tempera-
ture in mice were then conducted to identify IgG recep-
tors involved. These experiments showed that all three 
murine activating FcγR, i.e., FcγRI, FcγRIII, and FcγRIV 
can play a role depending on the allergen-specific IgG 
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isotype (murine IgG1 binds only to FcγRIII) with FcγRIII 
having a predominant role [69, 70]. Analysis of relevant 
mediators responsible for IgG-mediated anaphylaxis re-
vealed that the biological effect was not due to histamine 
but was rather associated with platelet-activating factor 
(PAF) and could be attenuated with PAF receptor antag-
onists [71–74]. Major PAF-producing cells such as neu-
trophils, monocytes/macrophages, and basophils have 
been implicated in IgG-mediated anaphylaxis, with the 
relative contribution being dependent on the experimen-
tal model used [72, 73, 75]. As FcγR differ between mice 
and humans, the contribution of human FcγRs (hFcγR) 
was also investigated in FcγR-humanized mice using ei-
ther single or complete hFcγR knock-in mice [76]. Initial 
data showed that the knock-in mice reproduced the ex-
pression profile of FcγR isoforms in humans [76, 77]. 
Among hFcγRs, hFcγRI did not seem to be implicated 
[77], while hFcγRIIA appears to be the major contributor. 
Expressed on neutrophils and monocytes/macrophages it 
plays a prime role by activating PAF release despite the 
robust expression of the inhibitory receptor hFcγRIIB 
[76, 77]. These studies established that platelets can also 
contribute to anaphylaxis and increase its severity. In-
deed, hFcγRIIA is expressed on human platelets contrast-
ing with the absence of any FcγR on mouse platelets [76, 
77]. Under these conditions, in addition to PAF, sero-
tonin secreted by activated platelets was shown to play a 
role in anaphylaxis increasing its severity [13, 18, 74]. 
Analysis of IgG subclass specificity in mice showed that 
all subclasses (IgG1, 2a, 2b) except IgG3 were capable of 
inducing anaphylaxis, while the subclass specificity in hu-
mans has not yet been examined [13, 75]. Yet, it is known 
that IgG4 acts as a suppressor of allergic responses, build-
ing up notably during allergen-specific immunotherapy 
[78].

It remains a fact that in all IgG-induced models, rela-
tively high doses of allergen-specific IgG antibodies as 
well as high doses of allergen were required to induce 
IgG-mediated anaphylaxis, largely exceeding those rele-
vant for IgE-dependent allergies [11–13]. Hence, this has 
made clear that bona fide IgG-mediated anaphylactic re-
sponses may occur only under certain circumstances in 
which high concentration of IgG against the allergen are 
achieved in the absence of detectable IgE antibodies. This 
seems to be the case in a small proportion of allergic reac-
tions to drugs that include, e.g., humanized therapeutic 
antibodies or small molecular weight compounds that 
may get bound to carrier proteins such as certain quater-
nary amines present in neuromuscular-blocking agents 
(NMBAs) [11–13]. A recent study by Jönsson et al. [79] 

has directly examined the possibility of IgG-induced ana-
phylaxis in a cohort of 86 patients with suspected anaphy-
laxis to NMBAs during general anesthesia. They found 
that concentrations of anti-NMBA IgG and markers of 
FcγR and neutrophil activation as well as PAF release cor-
related with anaphylaxis severity [79]. In fact, 49% of the 
patients with high concentrations of anti-IgG Abs to qua-
ternary amines did not have detectable IgE Abs. In these 
patients FcγRIIA was internalized by neutrophils ex-
pressing significantly elevated activation markers such as 
CD11b, CD18, and CD66b. At the same time, their PAF-
acetylhydrolase activity was decreased, which is indica-
tive of elevated plasma PAF concentrations. Ex vivo, pa-
tient-derived purified anti-NMBA IgG when complexed 
to NMBA-bounded human serum albumin could direct-
ly activate neutrophils to produce reactive oxygen spe-
cies. Hence, this study clearly points to the possibility that 
IgG-dependent anaphylactic reactions can occur in hu-
mans even when allergen-specific IgE remains undetect-
able [79]. Yet, they require high IgG and allergen concen-
trations as is the case for certain drug-induced allergies. 
In this context, it should be mentioned that the principle 
of allergen-specific immunotherapies, which have been 
described more than a century ago [80], is to induce 
blocking IgG-specific antibodies [81]. In the case of low 
allergen concentrations, they prevent allergen access to 
cell-bound IgE antibodies, eventually involving high con-
centrations of inhibitory IgG4. They can also co-crosslink 
the IgE bound to FcεRI with the IgG-binding inhibitory 
receptor FcγRIIB expressed on mast cells and basophils. 
It should be noted, however, that this latter receptor is 
more highly expressed in mice than in humans [71, 78, 
82, 83]. Only when allergen concentrations are excep-
tionally (unphysiologically) elevated, e.g., upon parenter-
al administration of drugs or biological drugs, an unwant-
ed IgG-mediated hypersensitivity reaction may occur.

Complement-Induced Allergies

Other hypersensitivity-inducing products that can de-
rive from an immunological process are complement 
fragments produced by the classical pathway [84]. Studies 
in the 1950s by Z. Ovary [85] on hypersensitivity phe-
nomena in guinea pigs and rats, using the passive cutane-
ous anaphylaxis (PCA) test, revealed the role of comple-
ment in the formation of anaphylatoxin, a term coined in 
1909 by E. Friedberger [86] to define the activity in serum 
able to induce anaphylaxis. Two proteolytic complement 
fragments known as C3a and C5a were found to induce 
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histamine release by rat mast cells, supporting the notion 
that these products can have a role in immediate allergic-
type hypersensitivities [87], although the degranulation 
ability of C5a in human mast cells is somewhat disputed 
[88]. Receptors for C3a and C5a are also found on neu-
trophils and macrophages with the activation being cor-
related to release PAF [89, 90]. Studies in mast cell-defi-
cient mice that had been reconstituted with mast cells de-
ficient for C3a and C5a receptors confirmed C3a- or 
C5a-induced PCA reactions following their intradermal 
injections. These products were also able to enhance IgE 
receptor-induced PCA responses, revealing an important 
crosstalk [91]. In humans, increased C3a and/or C5a lev-
els have been reported in patients undergoing immediate 
hypersensitivity reactions, often locally, e.g., in the heart 
or in skin [92–94], with anaphylatoxin levels appearing to 
be correlated with the severity of symptoms [95, 96]. The 

risk of associated severity of symptoms, however, seems 
lower than the risk associated with increased levels of 
mast cell tryptase or histamine [97]. It therefore appears 
that these fragments play a role in local allergic reactions 
and may eventually also enhance anaphylaxis or asthma 
[98]. Certain clinical applications or drugs that are able to 
directly generate C3a and C5a independent from an im-
munological process using the alternative pathway of 
complement activation such as cellulose membranes used 
for hemodialysis, contrast agents, etc., may also play a role 
in complement-induced anaphylaxis [95, 99]. However, 
in each of these cases of human anaphylaxis, definite 
proof of the involvement of complement needs careful 
examination of other potential effector mechanisms as 
IgG and IgE antibodies to these products have also been 
found [11, 99].

Adaptive immunity mechanisms

lgE-mediated
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lgG-mediated
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Complement
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Pseudo-allergic drugs
(peptides, NMBAs, antibiotics, Vibration
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Fig. 3. Summary of described hypersensitivity mechanisms. The 
classical IgE-dependent type I hypersensitivity response involves 
mast cells and basophils that release histamine, promoting ana-
phylaxis and allergies. Under specific conditions where the aller-
gen and allergen-specific IgG antibodies reach very high concen-
trations, several cell types in the circulation (neutrophils, mono-
cytes/macrophages, basophils, and platelets) are activated by 
immune complexes through FcγRIIA and FcγRIII to release PAF 
and serotonin (platelets) causing anaphylaxis. Complement frag-

ments generated by classical (adaptive) and nonclassical innate 
pathways can activate mast cells and monocytes/macrophages 
which can enhance allergies and anaphylaxis. A large variety of 
positively charged drugs and peptides can interact with various in-
nate receptors such as MRGPRX2/Mrgprb2 receptors and provoke 
so-called “pseudo-allergic” responses. Physical stimuli such as vi-
bration can activate the ADGRE2 adhesion receptor to cause local 
hypersensitivity reactions (vibratory urticaria) in the skin.
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Hypersensitivities Induced by Nonadaptive Innate 
Mechanisms

As indicated above, it is now evident that, besides 
adaptive hypersensitivity responses, nonadaptive innate 
stimulation of effector cells via a variety of receptors may 
provoke similar symptoms and therefore have been called 
pseudo-allergic reactions [100–102]. In particular, mast 
cells as sentinel cells at the contact with the external envi-
ronment are known to express a large variety of receptors, 
many of which can initiate mast cell degranulation and 
histamine release upon activation [17] (Fig.  3). Even 
physical stimuli such as vibration or UV light have been 
described as potential effector mechanisms [103]. Thus, 
mast cells via diverse mechanisms can promote hypersen-
sitivity reactions and MCAS that are not necessarily de-
pendent on an adaptive immune process.

Role of the Mast Cell Specific Receptor Mas-Related G 
Protein-Coupled Receptor-X2 (MRGPRX2)
A receptor which has received much attention in this 

context is the MRGPRX2 or its murine homolog Mrg-
prb2 [14, 104, 105]. They are part of a larger family of 50 
members in mice and 8 members in humans, initially 
shown to be expressed in nociceptive neurons of the dor-
sal root ganglia [104, 106, 107]. One member of this fam-
ily, MRGPRX2 (or Mrgprb2 in mice), was also found to 
be expressed in the hematopoietic system, notably in hu-
man and mouse mast cells of the connective tissue type 
[104, 108, 109]. Recent evidence has shown that these re-
ceptors are also expressed on human basophils and eo-
sinophils, although the function in these cells is still a sub-
ject of controversy [110, 111]. MRGPRX2/Mrgprb2 can 
be activated by a highly diverse group of basic molecules, 
ranging from neuropeptides such as substance P, vasoin-
testinal peptide, wasp venom-derived peptides such as 
mastoparan, antimicrobial host defense peptides such as 
β-defensin, cathelicidin, etc., small cationic molecule 
drugs (e.g., NMBAs) such as atracurium, cisatracurium, 
etc., antibiotics such as fluoroquinolones, vancomycin, 
opioids, the cationic polymer compound 48/80, etc [14, 
100, 112]. This opens up the possibility that mast cell ac-
tivation through this receptor may be responsible for 
acute hypersensitivity reactions that occur in the absence 
of an immunization process. Yet, this should be ap-
proached with caution as, e.g., the inability to detect IgE 
to certain drugs may not necessarily mean that IgE is not 
present as it can be below the limit of detection. On the 
other hand, as all human subjects express the MRGPRX2 
receptor on certain types of mast cells, acute adverse reac-

tions to such drugs may actually be more common as pre-
viously appreciated. In this respect, evidence shows that 
mild-to moderate allergic-type events to various chemical 
compounds can be very frequent, while severe anaphylac-
tic events are much more rare [101, 113]. The reason for 
these milder reactions may relate to the fact that the plas-
ma concentrations achieved, even after parenteral ad-
ministration of MRGPRX2-binding drugs/compounds, 
may be below the EC50 values, preventing a full-blown 
activation of this receptor [101]. Another possible reason 
relates to the fact that only certain types of mast cells ex-
press the receptor. In particular, it is known that this re-
ceptor reaches high levels of expression on skin mast cells, 
and it is therefore possible that skin rashes occur when 
local concentrations of the drug are high, e.g., when ap-
plied topically [114]. More severe reactions may also be 
provoked by genetic gain-of-function variants of this re-
ceptor [115]. Based on the location of mast cells close to 
nerve endings, another important role of the MRGPRX2 
receptor represents its ability to participate in the interac-
tion of mast cells with the neurosensory system, initiating 
a neuroinflammatory crosstalk [50, 112]. Indeed, certain 
nociceptive or pruriceptive stimuli as well as certain al-
lergens via their inherent cysteine protease activity, e.g., 
Der f 1 or Der p 1 from Dermatophagoides house dust 
mites, can directly stimulate nerve endings to release neu-
ropeptides such as substance P that are MRGPRX2 li-
gands, which in turn stimulate mast cells for mediator 
release [25]. In this context, Serhan et al. [116] using an 
atopic dermatitis-like mouse model (repeated epicutane-
ous exposure to HDM Dermatophagoides farinae and the 
bacterial exotoxin SEB from Staphylococcus aureus) re-
vealed an important neuro-immune crosstalk. Such aller-
genic stimulation induced nociceptor functional knots to 
release substance P, which in turn activates mast cells to 
degranulate, a key early event regulating the development 
of allergic skin inflammation [116].

Role of the Mast Cell Specific Receptors ADGRE2 in 
Vibratory Urticaria
Another recently described innate receptor involved 

in mast cell-mediated hypersensitivity reactions is the 
ADGRE2 GPCR (also known as EMR2). It is expressed 
on myeloid cells such as neutrophils and macrophages, 
but recently it has also been found to be expressed in hu-
man mast cells [103, 117]. In these cells, a gain of function 
mutation (C492Y) in ADGRE2 has been linked to pa-
tients presenting with autosomal dominant vibratory ur-
ticaria, a clinical manifestation distinct from dermogra-
phism and other physical urticarias [15]. These patients 
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have localized hives similar to other vibratory urticarias, 
but they are due to local stimulation of frictional nature 
in the skin in particular. Skin mast cells in these patients 
are attached to the ADGRE2 ligand dermatan sulfate (the 
predominant extracellular matrix glycosaminoglycan in 
the skin) [118] and degranulate upon application of a vi-
bratory stimulus due to the mutant’s ability to enhance 
the magnitude of the signaling response on a per cell basis 
and the number of responding cells [117]. Enhanced sig-
naling was found to be due to a destabilization of the in-
teraction between the extracellular N-terminal fragment 
(NTF) and the GPCR-like 7 transmembrane C-terminal 
fragment by the ADGRE2 mutant, which favors dissocia-
tion of NTF upon application of a physical force and sig-
naling [117]. Interestingly, this receptor seems also to be 
responsible for the activation of ADGRE2 in patients with 
hereditary α-tryptasemia (hHαT) [119]. Here the 
ADGRE2 receptor gets activated by cleavage of the NTF 
through α- and β- tryptase heterotetramer released by hu-
man mast cells. These heterotetramers between α- and 
β- tryptase present specificity and biochemical properties 
distinct from those of the active tryptase β-homotetramer 
and are found more frequently in these patients [119]. 
Physiologically, it is possible that limited activation of 
mast cells by physical forces in the microenvironment 
may serve to mediate pain and itching in the skin and re-
cruit local immune cells for tissue repair.

In this context, it is clear that ADGRE2 may not be the 
only receptor responding to physical forces, as it is well 
known that mast cells and basophils respond to physical 
stimuli including thermal, mechanical friction, electro-
magnetic radiation, UV light, etc., some of which are rel-
evant to the pathophysiology of urticaria [120–124]. Re-
ceptors involved in this include ion channels such as 
TRPV2, which are expressed in mast cells [123, 125] and 
respond to mechanical, osmotic, thermal, and laser light 
stimulation [122, 123], and NOX2 which are involved in 
the initiation of a calcium response upon stimulation 
with UVA irradiation [126].

Other Receptors Expressed in Mast Cells Implicated in 
Allergic Hypersensitivity Responses
In addition to the receptors mentioned above, mast 

cells express many other receptors, some of which can 
potentially activate these cells to initiate hypersensitivity 
reactions either through adaptive (as discussed before) or 
nonadaptive processes. The latter include ST2 receptors 
activated through the alarmin IL-33 [127–129], P2X1, 
P2X4, and P2X7 receptors activated by the alarmin ATP 
released during an inflammatory process [125, 130, 131]. 

These receptors, while not necessarily causing a full-
blown anaphylactic-type of response, may contribute to 
an allergic-type inflammatory reaction that is associated 
with various diseases including neurologic, digestive, re-
spiratory, cardiovascular, cutaneous, and musculoskele-
tal inflammation [18, 103]. Some of these may also be 
relevant to the so-called MCAS, a clinical condition in 
which patients present with spontaneous episodic signs 
and symptoms of anaphylaxis, concurrently affecting at 
least two organ systems and resulting from secreted MC 
mediators [23].

Allergy-Related Inflammatory Responses
Besides immediate hypersensitivity responses induced 

by mast cells, basophils, and other cells, similar symptoms 
may also be due to other inflammatory processes. For ex-
ample, various types of food allergies such as eosinophil-
ic esophagitis or eosinophilic gastrointestinal disorders 
are characterized by esophageal/intestinal dysfunction 
and hypersensitivities with a predominant infiltration of 
eosinophils [132, 133]. The pathophysiology remains 
poorly understood and multifactorial and is thought to 
involve type 2 immunity fostered by a combination of ge-
netic, host, and environmental factors [133–135]. Other 
hypersensitivities, many of which develop during early 
childhood, are dependent on sensitivity to protein com-
ponents in food and include protein-induced enterocoli-
tis syndrome, food protein enteropathy, and food pro-
tein-induced allergic proctocolitis [133]. Again, although 
it is generally possible to identify the proteins that induce 
these types of hypersensitivity, the pathophysiology re-
mains poorly understood, and manifestations often re-
solve during childhood [133]. It is therefore crucial to 
clearly define the pathological mechanism behind the 
symptoms for each individual patient. In this category, it 
can also be integrated with delayed-type allergic hyper-
sensitivities mediated by allergen-reactive T cells, e.g., al-
lergic contact dermatitis and certain drug-induced reac-
tions [136].

Diagnosis of Allergy and Anaphylaxis in Clinical 
Practice
In clinical practice, hypersensitivity reactions may af-

fect virtually any organ, leading to patients consulting not 
only allergists but also general practitioners, emergency 
medicine doctors, pediatricians, pulmonologists, derma-
tologists, ear, nose, and throat specialists, or anesthesiolo-
gists, among others. Therefore, basic education in aller-
gology is mandatory across all fields of medicine.
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Patients seeking medical attention because of a history 
of possible hypersensitivity reactions must be offered a 
three-step diagnostic procedure: a detailed questionnaire 
about the clinical characteristics of the culprit reaction, a 
thorough physical examination, and IgE sensitization us-
ing skin tests, in vitro tests, or a combination of both [137, 
138]. A diagnosis of IgE-dependent allergy is founded on 
the association of a convincing clinical history and prov-
en sensitization to the culprit allergen. The gold standard 
for allergy diagnosis is a positive challenge test reaction to 
a culprit allergen, e.g., nasal allergen challenge or oral 
food allergen challenge test [139–141]; a positive test, i.e., 
yielding a reaction to the culprit allergen, is a reliable 
proof of genuine allergy. However, challenge tests bear a 
non-negligible risk of severe allergic reactions and there-
fore can only be performed by specialized medical staff in 
appropriate settings with high costs and lengthy delays 
[142].

Multiple in vitro tests are available for diagnosis of al-
lergy. IgE measurements are done either as a “total IgE” 
quantification, which is nowadays used as an atopy test, 
or an “allergen-specific IgE” test, which will provide evi-
dence for sensitization to a specific allergen [138]. Short-
ly after the discovery of IgE [143, 144], the first serological 
test for evaluating allergen-specific IgE was a radioactive 
test (due to the low concentrations of IgE in serum) 
termed the radioallergosorbent test (RAST) [145], later 
replaced by tests based on immunofluorescence. The ad-
vent of recombinant allergens has also enabled microar-
ray-based (multiplex) allergy diagnosis tests that enable 
the screening of hundreds of allergens including specific 
epitopes [146]. Assessment of functional effects of IgE 
sensitization in specialized laboratories can be obtained 
by basophil activation tests (BAT) [147] or mast cell acti-
vation tests (MAT) [148, 149]. While the BAT requires 
access to fresh patient blood, the MAT can be performed 
on patient serum. Both assays evaluate activation of aller-
gen-specific IgE-sensitized cells by flow cytometry (exter-
nalization of CD63) by a culprit allergen [147, 150]. 
Tryptase, a protease almost exclusively produced by mast 
cells, exhibits level variations informing on mast cell 
numbers, activity, and degranulation [151]. In the clinical 
situation, while the measurement of histamine as a sign 
of mast cell activation is difficult due to its short half-life, 
the diagnosis of anaphylaxis can be done using paired 
tryptase samples: one taken during the degranulation 
event (“acute tryptase”) and the other taken either prior 
to the event, or, more often, once the anaphylaxis symp-
toms and signs have resolved (“baseline tryptase”) [152]. 
Tryptase determination is currently available for in vitro 

diagnosis as a “total tryptase” test, providing a cumulative 
result for all isoforms and all activation states. A transient 
elevation of serum tryptase, with acute tryptase levels ex-
ceeding 1.2 × baseline level + 2 (μg/L), confirms mast cell 
degranulation and therefore anaphylaxis [153]. Baseline 
tryptase levels greater than 8 µg/L are potentially linked 
to hereditary α-tryptasemia (HαT), a genetic trait found 
in 5–8% of Caucasian populations associated with an in-
creased prevalence of anaphylaxis, while baseline tryptase 
levels greater than 20 µg/L constitute a minor criterion of 
systemic mastocytosis [151].

Further biomarkers which are useful for the diagnosis 
or management of allergic reactions are allergen-specific 
IgG4, which increase during successful allergen immuno-
therapy (desensitization) [78, 154], eosinophil activation 
biomarkers such as eosinophil cationic protein or eosin-
ophil-derived neurotoxin [155] and various mast cell me-
diators such as histamine metabolites, or leukotrienes 
[156]. Delayed-type hypersensitivity reactions, mainly 
drug-induced, can be investigated using lymphocyte ac-
tivation or proliferation tests [157].

Among all these tests, allergen-specific IgE and trypt-
ase are by far the most common. A so-called top-down 
approach consists usually in anamnesis followed by aller-
gen-specific IgE determination, meaning that clinical 
data will point to one or a small number of potential cul-
prit allergens, which will be assayed as singleplex aller-
genic extracts in diagnostic tests. If specific IgE to extracts 
is demonstrated, a second level of investigation will ad-
dress specific IgE to specific allergenic molecules in the 
extract, aiming at more precise diagnosis, assessment of 
severity and allergen cross-reactivity, prognostic and 
therapeutic evaluation. Multiple methods are available 
for allergen-specific IgE determination using singleplex 
or multiplex approaches and providing qualitative or 
quantitative results [138, 146].

A few examples among the many currently unmet 
needs in the diagnosis of allergy are assessment of MRG-
PRX2 activation, as tryptase determination does not dis-
criminate between IgE-induced and MRGPRX2 mecha-
nisms [158], investigation of allergenicity [159], and ef-
ficient harnessing of biomarkers for precision medicine 
applied to allergy and anaphylaxis [160].

Conclusions

The purpose of this review was to summarize recent 
data on hypersensitivity responses implicated in the de-
velopment of allergies, focusing on both adaptive immu-
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nological and nonadaptive innate triggering of mast cells 
and other cells. Although bona fide type I hypersensitiv-
ity reactions in humans are caused by the crosslinking of 
IgE antibodies bound to mast cells and basophils, engen-
dering the release of histamine as one of the major me-
diators, it has become clear that alternative mechanisms 
to induce immediate hypersensitivity reactions exist 
(Fig.  3). These include other adaptive immunological 
mechanisms that are not necessarily Th2-driven such as 
the generation of IgG antibodies to certain drugs or anti-
bodies, under which certain specific conditions (high 
concentrations of both antibodies and antigen) may gen-
erate immune complexes able to activate neutrophils, 
macrophages, and platelets to release PAF and/or sero-
tonin as anaphylaxis-causing agents. Other alternative 
types of activation may appear more local and milder due 
in part to incomplete activation or restricted expression 
of receptors to certain mast cell subtypes, as, e.g., de-
scribed for complement receptors or the recently de-
scribed MRGPRX2 receptors. It seems likely that many of 
the milder local allergic reactions may be caused by im-
mediate hypersensitivity reactions; however, on some oc-
casions, other more delayed types of hypersensitivities 
also occur. Still, the study of hypersensitivity needs to take 
into account the ever-evolving complexity, as exemplified 
by the recent discovery of the MRGPRX2 receptors and 
the connections with the sensory nervous system [14, 50]. 
Hence, it will be important in the clinical context to clear-
ly define the underlying pathophysiological mechanisms 
in order to design the appropriate therapeutical strategy.
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