
sensors

Article

A Compact High-Quality Image Demosaicking Neural Network
for Edge-Computing Devices

Shuyu Wang 1,2 , Mingxin Zhao 1,2 , Runjiang Dou 1,2, Shuangming Yu 1,2, Liyuan Liu 1,2,* and Nanjian Wu 1,2,3

����������
�������

Citation: Wang, S.; Zhao, M.; Dou,

R.; Yu, S.; Liu, L.; Wu, N. A Compact

High-Quality Image Demosaicking

Neural Network for Edge-Computing

Devices. Sensors 2021, 21, 3265.

https://doi.org/10.3390/s21093265

Academic Editor: Wojciech Kempa

Received: 24 March 2021

Accepted: 5 May 2021

Published: 8 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,
Chinese Academy of Sciences, Beijing 100083, China; wangshuyu@semi.ac.cn (S.W.);
zhaomingxin17@semi.ac.cn (M.Z.); dourj@semi.ac.cn (R.D.); yushuangming@semi.ac.cn (S.Y.);
nanjian@red.semi.ac.cn (N.W.)

2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,
Beijing 100049, China

3 Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences,
Beijing 100083, China

* Correspondence: liuly@semi.ac.cn

Abstract: Image demosaicking has been an essential and challenging problem among the most
crucial steps of image processing behind image sensors. Due to the rapid development of intelligent
processors based on deep learning, several demosaicking methods based on a convolutional neural
network (CNN) have been proposed. However, it is difficult for their networks to run in real-time on
edge computing devices with a large number of model parameters. This paper presents a compact
demosaicking neural network based on the UNet++ structure. The network inserts densely connected
layer blocks and adopts Gaussian smoothing layers instead of down-sampling operations before the
backbone network. The densely connected blocks can extract mosaic image features efficiently by
utilizing the correlation between feature maps. Furthermore, the block adopts depthwise separable
convolutions to reduce the model parameters; the Gaussian smoothing layer can expand the receptive
fields without down-sampling image size and discarding image information. The size constraints
on the input and output images can also be relaxed, and the quality of demosaicked images is
improved. Experiment results show that the proposed network can improve the running speed by
42% compared with the fastest CNN-based method and achieve comparable reconstruction quality
as it on four mainstream datasets. Besides, when we carry out the inference processing on the
demosaicked images on typical deep CNN networks, Mobilenet v1 and SSD, the accuracy can also
achieve 85.83% (top 5) and 75.44% (mAP), which performs comparably to the existing methods. The
proposed network has the highest computing efficiency and lowest parameter number through all
methods, demonstrating that it is well suitable for applications on modern edge computing devices.

Keywords: image sensor; image demosaicking; convolutional neural network; bayer color filter
array; U-Net; edge computing

1. Introduction

In an ideal color digital camera system, there should be three image sensors that
capture the red, green, and blue light component signals of photo images, respectively.
However, that is complex and expensive. Now, most color digital cameras normally use an
image sensor with a top color filter array (CFA) to capture the intensity of a single color
component signal per pixel. There are different types of CFA patterns depending on the
manufacturer, such as Bayer CFA, Yamanaka CFA, and HVS-based CFA [1]. Among them,
the Bayer CFA pattern is the most widely used one. Because the pixel signal data acquired
through CFA constitutes a mosaic-like monochrome image, the RGB color image must be
restored by an image processing method called demosaicking [2].

Traditional image demosaicking methods include interpolation-based methods, dictionary-
based methods, etc. Malvar [3] and Wang [4] proposed a bilinear interpolation method

Sensors 2021, 21, 3265. https://doi.org/10.3390/s21093265 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4855-7943
https://orcid.org/0000-0001-5148-4218
https://doi.org/10.3390/s21093265
https://doi.org/10.3390/s21093265
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093265
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093265?type=check_update&version=2

Sensors 2021, 21, 3265 2 of 18

based on gradient correction, which considers the correlation between color channels. How-
ever, they ignore the orientation information, and their results tend to introduce artifacts at
the edges of images. Kiku [5,6] proposed a series of residual interpolation-based demo-
saicking algorithms (RI) and minimized-Laplacian residual interpolation methods based
on minimum Laplacian (MLRI); Monno [7] proposed an adaptive residual interpolation
algorithm (ARI); Moghadam [8] used a manually constructed dictionary-based method to
distinct inter-channel and inter-pixel correlations of natural images. Interpolation-based
methods typically take observations of mosaic images’ local properties and utilize cor-
relations between channels. However, those manually extracted features often fail to
reconstruct complex structures and introduce many image artifacts, such as zippering,
blurring artifacts, false colors, and moiré [9]. Those dictionary-based methods take a longer
time to demosaick so are less practical.

Due to the rapid development of deep learning in image processing, demosaicking
methods based on CNN have also been proposed in recent years [10–14]. The CNN-based
method, which is a kind of data-driven approach, on the other hand, can automatically
extract image features and complete the reconstruction process, making them suitable for
implementation on some AI accelerators [15–17] or vision chips [18–21]. Although they
improve the quality of the demosaicked image markedly, they need to store a large number
of the model parameter and cost huge computational time [22]. Several deep learning-based
demosaicking methods proposed in recent years focus too much on demosaicking accuracy
while ignoring the computational cost of the algorithm. That makes the network unable
to meet image sensors’ post-processing real-time requirements. Therefore, CNN-based
demosaicking methods should balance computational cost and demosaicking accuracy
instead of placing too much emphasis only on the accuracy itself.

To speed up the CNN-based image demosaicking process, this paper proposes a
compact demosaicking neural network based on UNet++. It inserts densely-connected
layer blocks and adopts Gaussian smoothing layers instead of pooling layers before the
backbone network to reduce the model parameters and extract mosaic image features
efficiently. Furthermore, it also improves the quality of demosaicked images, and the size
constraints on the input and output images are relaxed, well suitable for applications on
modern edge computing devices.

2. Related Works

In recent years, the rapid development of hardware architectures has opened up the
implementation of deep learning CNNs on modern AI image processors or other edge
computing devices. More and more deep learning methods are being used in image
processing. Due to the similarity between demosaicking and image super-resolution tasks,
some CNN-based demosaicking methods have been gradually proposed. Inspired by
SRCNN [23] and VDSR [24] for image super-resolution tasks, Syu [12] firstly proposed
DMCNN and DMCNN-VD, which have similar structures with SRCNN [23] and VDSR [24],
applying them to the demosaicking task. Gharbi [10] proposed a joint demosaicking and
denoising (JDD) network, reaching competitive reconstruction accuracy. However, their
network depends on a vast scale of datasets during training and will change the size of
the output image irregularly due to their network design. In addition, there are also some
algorithms for hyperspectral and multispectral image demosaicking [25–27], and among
these, Dijkstra’s method [26] gives an effective CNN-based lightweight demosaicking
method and achieves good results.

Inspired by the fact that the Bayer pattern contains twice as many green pixels as
the sum of red and blue ones, Tan [11] proposed a two-stage CNN-based demosaicking
network. The first stage reconstructs the intermediate estimation of the G channel, while
the second stage reconstructs the R and B channels with the guidance of the reconstructed
G channel. Their method achieves demosaicking images with high reconstruction accuracy
but is not suitable for applications due to its complex network structure, a large number
of parameters, and slow running speed. Besides, images need to be padded 48 (or other)

Sensors 2021, 21, 3265 3 of 18

pixels in each direction and initially recovered using bilinear interpolations before entering
the network, as it is a complex pre-processing operation.

Kokkinos [13] proposed a joint demosaicking and denoising network based on a Resid-
ual Network, whose novel network structure design allows it to train a good model even
on a smaller training dataset. Although the authors believe that their proposed network
structure has a smaller number of parameters than other better-performing methods, a
large number of cross-layer connections in their networks still makes its running time
not advantageous and even longer than several other networks with a larger number of
parameters. Their method requires bilinear interpolation for the input images first. So it is
not suitable for application in practical situations on edge computing devices as well.

Cui [14] explored the correlation of each channel in RGB based on the method of
Tan [11]’s and proposed a three-stage demosaicking network with a more complex structure,
a more significant number of parameters, and the slowest running speed (compare with
the other CNN-based method above), although it outperforms all previous methods. And
the process also requires bilinear interpolation for the input image before processing which
reduces its usefulness in practice.

3. Background

UNet++ [28] is an improved version of the U-Net [29] network structure. It is shown
in an inverted pyramid shape with five levels in Figure 1. It is a deeply supervised, densely
connected neural network widely used in image segmentation. It downsamples the input
image layer by layer and then extracts image features through three densely connected
convolutional layers. It is followed by up-sampling the corresponding number of times
layer by layer until it arrives at the top and gets out. That allows image features at each level
to be fused at the back end of the network. The structure of UNet++ is essentially a deeply
supervised encoder–decoder network, where the encoder and decoder sub-networks are
connected through a series of nested dense cross-layers.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 18

but is not suitable for applications due to its complex network structure, a large number

of parameters, and slow running speed. Besides, images need to be padded 48 (or other)

pixels in each direction and initially recovered using bilinear interpolations before enter-

ing the network, as it is a complex pre-processing operation.

Kokkinos [13] proposed a joint demosaicking and denoising network based on a Re-

sidual Network, whose novel network structure design allows it to train a good model

even on a smaller training dataset. Although the authors believe that their proposed net-

work structure has a smaller number of parameters than other better-performing meth-

ods, a large number of cross-layer connections in their networks still makes its running

time not advantageous and even longer than several other networks with a larger number

of parameters. Their method requires bilinear interpolation for the input images first. So

it is not suitable for application in practical situations on edge computing devices as well.

Cui [14] explored the correlation of each channel in RGB based on the method of Tan

[11]’s and proposed a three-stage demosaicking network with a more complex structure,

a more significant number of parameters, and the slowest running speed (compare with

the other CNN-based method above), although it outperforms all previous methods. And

the process also requires bilinear interpolation for the input image before processing

which reduces its usefulness in practice.

3. Background

UNet++ [28] is an improved version of the U-Net [29] network structure. It is shown

in an inverted pyramid shape with five levels in Figure 1. It is a deeply supervised, densely

connected neural network widely used in image segmentation. It downsamples the input

image layer by layer and then extracts image features through three densely connected

convolutional layers. It is followed by up-sampling the corresponding number of times

layer by layer until it arrives at the top and gets out. That allows image features at each

level to be fused at the back end of the network. The structure of UNet++ is essentially a

deeply supervised encoder–decoder network, where the encoder and decoder sub-net-

works are connected through a series of nested dense cross-layers.

Figure 1. The UNet++ structure. It contains the basic U-Net backbone which is shown as gray cir-

cles in the figure. Firstly, it down-samples the input images through pooling layers at each level,

then feature maps at each node get up-sampled and cross-connected with later nodes. Besides,

UNet++ can be pruned during inference if trained with deep supervision. The sub-network at each

level is shown on the left.

Figure 1. The UNet++ structure. It contains the basic U-Net backbone which is shown as gray circles
in the figure. Firstly, it down-samples the input images through pooling layers at each level, then
feature maps at each node get up-sampled and cross-connected with later nodes. Besides, UNet++
can be pruned during inference if trained with deep supervision. The sub-network at each level is
shown on the left.

Since UNet++ is an encoder–decoder network, it is suitable for image restoration tasks
such as image denoising and defogging as well [30]. The U-Net structure has been utilized
by Xie [31], Ivana [32], and some others for RGB–NIR image demosaicking tasks. As the

Sensors 2021, 21, 3265 4 of 18

UNet++ structure is highly flexible, we propose an end-to-end efficient demosaicking
network based on it with very few parameters compared with the state-of-the-art CNN-
based methods. It is capable of handling images of arbitrary size.

4. Proposed Network
4.1. Model of Image Demosaicking

The image-demosaicking problem is an optimization problem. It can be given as [33]:

Iraw = MIrgb + n, (1)

where Irgb represents the ideal RGB image we aim to reconstruct, and Iraw represents the
observed sensor raw data. And M corresponds to the sampling process through the Bayer
pattern, which can be represented by a square diagonal binary matrix where the zero
elements in its diagonal indicate the spatial and channel locations in the image where color
information is missing. And n is additive noise. Since we only focus on the process of
demosaicking, we will ignore the term n. Then our optimization goal can be expressed by
the following equation:

Îrgb = DIraw, (2)

where Îrgb denotes the estimated image reconstructed by our method, and D denotes our
demosaicking process. Then the reconstruction process can be given by a minimization
problem as the following equation:

D = argmin
D

1
MN

N

∑
i

M

∑
j
‖Irgbi,j

− Irgbi,j
‖2, (3)

the goal of this equation is to minimize the mean square error (MSE) of the pairs of the
estimated image Îrgb and the original image Irgb. The demosaicking task is a highly ill-
posed problem because image mosaicking is non-invertible [34]. In contrast, training
a neural network is essential to solving an optimization problem that satisfies the loss
function through backpropagation, so it is an effective way to solve the image-demosaicking
problem. Noting that the loss function chosen during training can be more than just one
MSE loss. In this paper, the training process’s loss function is divided into two parts.

According to [35], we use SSIM as the loss function for the first ten epochs during
training, which allows the network to learn the structural information of the image quickly:

SSIM(x, y) =
2µxµy + C1

µx2 + µy2 + C1
·

2σxy + C2

σx2 + σy2 + C2
, (4)

denotes the SSIM values of the corresponding pixel locations of two images. SSIM [36]
is a metric that indicates the structural similarity of a pair of images and can represent
the visual perception of human eyes to some extent. In the SSIM calculation process, a
window of size n is first specified to slide over the corresponding pixels of the two images.
As shown in the above equation, µx, µy and σx, σy are the mean and variance of all pixels
within the sliding window; σxy is the covariance between pixels within the window at
the corresponding positions of the two images; and C1, C2 are constants. The larger the
value of SSIM, the stronger the structural similarity between the two images. Then, since
the optimization process of the network is the minimization of the loss function, the loss
function for SSIM can be then written as [35]:

LSSIM =
1

MN

N

∑
j

M

∑
i

1− SSIM
(
xi,j − yi,j

)
, (5)

Sensors 2021, 21, 3265 5 of 18

that is, the loss function is the average of the SSIM values of each pixel. The sliding
window size for calculating SSIM is taken as 11 in our proposed network’s training process
in this paper.

After ten epochs, we change the loss function to MSE loss so that the network can
subsequently learn the image details slowly, as shown in the following equation:

LMSE =
1

MN

N

∑
j

M

∑
i
‖xi,j − yi,j‖2. (6)

Since our network is deeply supervised and contains three levels of outputs, the loss
of L1, L2, and L3 outputs needs to be considered together as the final loss function during
training. Therefore, the final loss function of our network training is expressed as:

L =

{
LSSIM

1 + LSSIM
2 + LSSIM

3, e ≤ 10
LMSE

1 + LMSE
2 + LMSE

3, e > 10
. (7)

That is our overall optimization objective function.

4.2. Network Architecture

Our proposed network consists of two parts: image feature extraction and image
reconstruction, which are shown in Figure 2. The part boxed in yellow represents the image
feature extraction part. It consists of Gaussian smoothing (the yellow arrows) at each level
and feature extraction modules (the green nodes). And the part boxed in gray represents
the image reconstruction part. It contains the channel concatenate operation (the white
circles), the reconstruction node (the blue nodes), and the final up-sampling layer (the pink
arrows).

Sensors 2021, 21, x FOR PEER REVIEW 6 of 18

Figure 2. Network structure: yellow box indicates the image feature extraction part, and the gray

box indicates the image reconstruction part.

4.2.1. Image Feature Extraction

Both U-Net and UNet++ use pooling to down-sample images to obtain image features

at different scales. However, for different layer levels in U-Net++, it cannot be guaranteed

that an image of arbitrary size can be reconstructed to the same size as the original after

several down-sampling and up-sampling operations in the image-demosaicking tasks.

Therefore, in our method, we use Gaussian smoothing to process the input image with a

kernel size of 5 × 5. Then we obtain a series of Gaussian pyramid-like images with the

same image size and the same number of channels as the input mosaic image after each

level, but with different degrees of blur. Therefore, the original down-sampling operation

in the UNet++ backbone is replaced by a Gaussian smoothing layer. The advantage is that

it does not change the image size, so the output and input image sizes of the network are

unified while making it possible for the network to process input images of arbitrary size.

More importantly, it also expands the receptive field of each input layer to fully extract

features without discarding image information, unlike pooling [37]. The yellow arrows in

Figure 2 show the Gaussian smoothing operation.

To ensure adequate extraction of image features with a sufficiently small number of

network parameters, we exploited the characteristics of networks with a densely con-

nected [38] structure, where the output feature maps at each layer are concatenated with

the inputs that follow, reusing the previous feature maps. Networks can benefit a lot from

this kind of structure. It can utilize the information of the image itself for self-learning

only with a few network layers, and it can fully extract the high-level semantic features of

the images while greatly reducing the number of parameters. As shown in Figure 3, its

structure is given by a Dense Unit.

Figure 3 shows our whole structure based on the Residual in Residual Dense Block

(RRDB) [39] of the feature extraction module, which contains three Dense Units, and it is

still densely connected between each unit. After blurring by the Gaussian Smoothing

layer, images enter the feature extraction module at each level. According to different net-

work levels, we use a single convolution layer before three Dense Units for preliminary

feature extraction, using different kernel sizes, respectively. In our method, there are 3

levels or 4 times of feature extractions. The size of kernels for layers 0, 1, 2, and 3 are set

to 3 × 3, 3 × 3, 5 × 5, and 7 × 7. The purpose of applying different kernel sizes is to further

Figure 2. Network structure: yellow box indicates the image feature extraction part, and the gray
box indicates the image reconstruction part.

The overall network structure is based on a deeply supervised UNet++ structure. The
advantage is that when training in this deeply supervised manner, we can get outputs
from different levels and can choose a sub-network from the whole model as a trade-off
between the demosaicking computational costs and accuracy. Besides, the network uses

Sensors 2021, 21, 3265 6 of 18

Gaussian smoothing layers instead of pooling layers to expand the receptive field of the
input mosaic image and keep the image size unchanged. Furthermore, it also inserts a
densely-connected layer unit adopting depthwise separable convolutions at the beginning
of each level to fully extract features of the mosaic image with a small number of model
parameters.

Before entering the network, the input mosaic image is arranged into a four-channel
pattern of RGGB and blurred separately through a Gaussian kernel for the number of
times according to the level of the network at the corresponding layer. For example, in
our proposed structure, the deepest level is 3, so the image will be blurred one, two, and
three times and then enter the feature extraction part separately. After that, feature maps at
each level will be concatenated with those from the former and lower layers and then go
through the reconstruction node level by level until the top. At last, they will get out as
three outputs: L1, L2, and L3.

4.2.1. Image Feature Extraction

Both U-Net and UNet++ use pooling to down-sample images to obtain image features
at different scales. However, for different layer levels in U-Net++, it cannot be guaranteed
that an image of arbitrary size can be reconstructed to the same size as the original after
several down-sampling and up-sampling operations in the image-demosaicking tasks.
Therefore, in our method, we use Gaussian smoothing to process the input image with a
kernel size of 5 × 5. Then we obtain a series of Gaussian pyramid-like images with the
same image size and the same number of channels as the input mosaic image after each
level, but with different degrees of blur. Therefore, the original down-sampling operation
in the UNet++ backbone is replaced by a Gaussian smoothing layer. The advantage is that
it does not change the image size, so the output and input image sizes of the network are
unified while making it possible for the network to process input images of arbitrary size.
More importantly, it also expands the receptive field of each input layer to fully extract
features without discarding image information, unlike pooling [37]. The yellow arrows in
Figure 2 show the Gaussian smoothing operation.

To ensure adequate extraction of image features with a sufficiently small number
of network parameters, we exploited the characteristics of networks with a densely con-
nected [38] structure, where the output feature maps at each layer are concatenated with
the inputs that follow, reusing the previous feature maps. Networks can benefit a lot from
this kind of structure. It can utilize the information of the image itself for self-learning
only with a few network layers, and it can fully extract the high-level semantic features of
the images while greatly reducing the number of parameters. As shown in Figure 3, its
structure is given by a Dense Unit.

Figure 3 shows our whole structure based on the Residual in Residual Dense Block
(RRDB) [39] of the feature extraction module, which contains three Dense Units, and it
is still densely connected between each unit. After blurring by the Gaussian Smoothing
layer, images enter the feature extraction module at each level. According to different
network levels, we use a single convolution layer before three Dense Units for preliminary
feature extraction, using different kernel sizes, respectively. In our method, there are
3 levels or 4 times of feature extractions. The size of kernels for layers 0, 1, 2, and 3 are
set to 3 × 3, 3 × 3, 5 × 5, and 7 × 7. The purpose of applying different kernel sizes is
to further expand the receptive field, enabling the network to obtain a larger range of
image information near the upper layers of the image pyramid after Gaussian blur. Then
feature maps will go through three Dense Units, each of which consists of three depthwise
separable convolutions [40] and Parametric ReLU [41] layers after that. It is worth noting
that we do not use the Batch Normalization layer in the whole structure of our method
to preserve the pixel distribution characteristics of the image as well as to prevent image
artifacts so that we can obtain a better recovery performance.

Sensors 2021, 21, 3265 7 of 18

Sensors 2021, 21, x FOR PEER REVIEW 7 of 18

expand the receptive field, enabling the network to obtain a larger range of image infor-

mation near the upper layers of the image pyramid after Gaussian blur. Then feature maps

will go through three Dense Units, each of which consists of three depthwise separable

convolutions [40] and Parametric ReLU [41] layers after that. It is worth noting that we do

not use the Batch Normalization layer in the whole structure of our method to preserve

the pixel distribution characteristics of the image as well as to prevent image artifacts so

that we can obtain a better recovery performance.

Figure 3. The first two cross-layer connections in each Dense Unit are connected between channels, while the cross-layer

connection before the final output is summed by the feature map values. Since a normal dense block is composed of a

large number of ordinary convolutions, the number of parameters could be large. Therefore, all the convolutions in our

densely connected layers use depthwise separable convolutions [40], which further reduces the number of parameters of

the network.

Noting that the Dense Unit is characterized by the same number of input channels as

the number of output channels. Other optional parameters are the number of input chan-

nels nf and the number of intermediate channels gc. The values of the parameters nf and

gc used in our training process at each level are given in Table 1.

Table 1. Details of the parameters nf and gc in each Dense Unit used in our network.

Node nf gc

0–0 8 4

1–0 16 8

2–0 32 16

3–0 64 32

4.2.2. Image Reconstruction

After the feature extraction part, the features of each level are then concatenated with

the results of the former and lower layers. It will go rightward and upward until the top

and get out hierarchically. That forms the image construction part of the network.

Figure 3. The first two cross-layer connections in each Dense Unit are connected between channels, while the cross-layer
connection before the final output is summed by the feature map values. Since a normal dense block is composed of a
large number of ordinary convolutions, the number of parameters could be large. Therefore, all the convolutions in our
densely connected layers use depthwise separable convolutions [40], which further reduces the number of parameters of
the network.

Noting that the Dense Unit is characterized by the same number of input channels
as the number of output channels. Other optional parameters are the number of input
channels nf and the number of intermediate channels gc. The values of the parameters nf
and gc used in our training process at each level are given in Table 1.

Table 1. Details of the parameters nf and gc in each Dense Unit used in our network.

Node nf gc

0–0 8 4
1–0 16 8
2–0 32 16
3–0 64 32

4.2.2. Image Reconstruction

After the feature extraction part, the features of each level are then concatenated with
the results of the former and lower layers. It will go rightward and upward until the top
and get out hierarchically. That forms the image construction part of the network.

The reconstruction part is still densely cross-connected, like UNet++. The blue node in
Figure 2 represents each reconstructing operation unit, consisting of a 3 × 3 convolutional
layer, a 1 × 1 convolutional layer, and a Parametric ReLU layer. The white circle shown in
Figure 2 represents the concatenation of input feature maps over channels; and the dashed
arrow indicates the up-sampling operation between layers, using a convolution with a
kernel size of 1 × 1; and the pink arrow indicates the up-sampling process at the end of the
network before the final output of the reconstructed image, using a transposed convolution
with a kernel size of 3 × 3. After that, it gives reconstructed images to three different levels.

Sensors 2021, 21, 3265 8 of 18

The input image size and the size of the feature map inside the network at each level
keep the same until final up-sampling, after which it is two times the original height and
width. The details of feature map size and kernel size at each reconstruction node during
the network are shown in Table 2.

Table 2. Network details of each node in Figure 2, including the convolutional kernel size of the
reconstruction nodes, the input size, and the output size of feature maps.

Node Kernel Size Input Size Output Size

0–0 - H ×W × 4 H ×W × 8

0–1 3 × 3 × 16 × 16; 1 ×
1 × 16 × 8 H ×W × 16 H ×W × 8

0–2 3 × 3 × 16 × 16; 1 ×
1 × 16 × 8 H ×W × 16 H ×W × 8

0–3 3 × 3 × 16 × 16; 1 ×
1 × 16 × 8 H ×W × 16 H ×W × 8

1–0 - H ×W × 4 H ×W × 16

1–1 3 × 3 × 32 × 32; 1 ×
1 × 32 × 16 H ×W × 32 H ×W × 16

1–2 3 × 3 × 32 × 32; 1 ×
1 × 32 × 16 H ×W × 32 H ×W × 16

2–0 - H ×W × 4 H ×W × 32

2–1 3 × 3 × 64 × 64; 1 ×
1 × 64 × 32 H ×W × 64 H ×W × 32

3–0 - H ×W × 4 H ×W × 64

During the training process, we add all three levels of outputs to the loss function to
provide feedback to the network, and the sub-network of different layers can be taken out
separately during the inference process, making it flexible in choosing a different scale of
the network to suit different application needs. The higher the level of the network output,
the higher the demosaicking accuracy, and the larger the number of parameters.

5. Experiments and Results
5.1. Training

With a small number of network parameters, the selection of a suitable training set
becomes more important for the training process. To have a better reconstruction perfor-
mance on various kinds of scenes, we choose ImageNet [42], which contains 130,000 images
composed of 1000 classes of objects as the training dataset. It contains a large number of
images with different scenes and structures, which helps the network to learn the recon-
struction process for images with different color distributions and scenes. We first crop a
256 × 256 image from the center of each original image in the training set and then divide
each one into four 128 × 128 patches, for a total of 520,000 patches as our training set.

We use one of the Bayer pattern GBRG as the filter to produce mosaic patches. As
shown in Figure 4, we first take one channel from each position of the RGB images in a 2 × 2
window according to the arrangement of the GBRG pattern, and then we arrange them
in the order of R, G, G, and B to form a four-channel image with the shape of 64 × 64 × 4
as the network input m. The output o of the network is of the same size as the original
ground-truth RGB patch, which is 128 × 128 × 3.

Sensors 2021, 21, 3265 9 of 18Sensors 2021, 21, x FOR PEER REVIEW 9 of 18

(a)

(b)

Figure 4. (a) The channel (or color) position to be chosen in a 2 × 2 window. (b) The process of generating network input

from an original RGB image. Note that the two green color of different intensities in the middle of (b) both represents the

green channel. Just to make the image-generating process more clear and understandable, we painted it to the different

green intensities.

As for training settings, we adopt Adam [43] as the optimizer; the initial learning rate

is set to 0.001. It drops to half by a factor of every 10 epochs. The number of training min-

ibatches is set to 16. For the other hyper-parameters of Adam, we use the default setting.

As given in Section 4.1, we use SSIM as the loss function during the first 10 epochs and

later use MSE as the loss function. The training process is carried out on Nvidia GeForce

RTX 3090 on Windows 10 64-bit OS with Intel i5-9400F (2.9GHz) processor with 150

epochs, and we finally took the best performance one for later testing.

5.2. Tests for Quantitative and Qualitative Performance

For the demosaicking task, there are two most widely used datasets, Kodak [44] and

McMaster [45], in addition to which we add Urban100 [46], a dataset containing 100 build-

ings images with stripes and lattice features, and Mange109 [47], a dataset containing 109

colored comics, for a total of 251 images for testing. These four datasets cover most sce-

narios as well as the challenging features of image-demosaicking tasks. Note that we will

use Kod, McM, Urb, and Man to denote the abbreviated form of those datasets respec-

tively in the below result tables. We selected the following traditional demosaicking meth-

ods: AHD [48], DLMMSE [49], RI [5], MLRI [6], ARI [7], as well as the three CNN-based

demosaicking methods: Tan [11], Kokkinos [13], and Cui [14] mentioned in Section 2 for

comparison, all using the open-source code on their project home page. The five tradi-

tional methods are given by Matlab code, and CNN-based ones are given by Python. We

use the peak signal-to-noise ratio (PSNR) value, or the color peak signal-to-noise ratio

(CPSNR) value as the metric to measure the reconstruction accuracy of the demosaicked

image, as defined below [50]:

𝐶𝑃𝑆𝑁𝑅 = 10 log10

2552

1
3

∑
1

𝑀𝑁
∑ ∑ ‖𝑥𝑖,𝑗 − 𝑦𝑖,𝑗‖

2𝑀
𝑖

𝑁
𝑗𝑅,𝐺,𝐵

. (8)

Figure 4. (a) The channel (or color) position to be chosen in a 2 × 2 window. (b) The process of
generating network input from an original RGB image. Note that the two green color of different
intensities in the middle of (b) both represents the green channel. Just to make the image-generating
process more clear and understandable, we painted it to the different green intensities.

As for training settings, we adopt Adam [43] as the optimizer; the initial learning
rate is set to 0.001. It drops to half by a factor of every 10 epochs. The number of training
minibatches is set to 16. For the other hyper-parameters of Adam, we use the default setting.
As given in Section 4.1, we use SSIM as the loss function during the first 10 epochs and later
use MSE as the loss function. The training process is carried out on Nvidia GeForce RTX
3090 on Windows 10 64-bit OS with Intel i5-9400F (2.9 GHz) processor with 150 epochs,
and we finally took the best performance one for later testing.

5.2. Tests for Quantitative and Qualitative Performance

For the demosaicking task, there are two most widely used datasets, Kodak [44] and
McMaster [45], in addition to which we add Urban100 [46], a dataset containing 100 build-
ings images with stripes and lattice features, and Mange109 [47], a dataset containing
109 colored comics, for a total of 251 images for testing. These four datasets cover most sce-
narios as well as the challenging features of image-demosaicking tasks. Note that we will
use Kod, McM, Urb, and Man to denote the abbreviated form of those datasets respectively
in the below result tables. We selected the following traditional demosaicking methods:
AHD [48], DLMMSE [49], RI [5], MLRI [6], ARI [7], as well as the three CNN-based de-
mosaicking methods: Tan [11], Kokkinos [13], and Cui [14] mentioned in Section 2 for
comparison, all using the open-source code on their project home page. The five traditional
methods are given by Matlab code, and CNN-based ones are given by Python. We use the
peak signal-to-noise ratio (PSNR) value, or the color peak signal-to-noise ratio (CPSNR)
value as the metric to measure the reconstruction accuracy of the demosaicked image, as
defined below [50]:

CPSNR = 10 log10
2552

1
3 ∑R,G,B

1
MN ∑N

j ∑M
i ‖xi,j − yi,j‖2 . (8)

Sensors 2021, 21, 3265 10 of 18

Each algorithm was tested on four datasets to get the PSNRs (for each single color)
and the CPSNRs (for the whole image of three colors). Due to their difference in padding
and other pre-processing strategies, a 5-pixel at each edge was ignored when testing the
PSNR values. The results are shown in Table 3.

Table 3. The PSNR values (dB) of each channel (R, G, B) and CPSNRs of the whole image (RGB) of 9 demosaicking
algorithms on Kodak, McMaster, Urban100, Manga109 datasets and the final average values of them. The bolded two
methods in each section are those that achieve better performance among all algorithms.

Algorithm AHD
[48]

DLMMSE
[49]

RI
[5]

MLRI
[6]

ARI
[7]

Tan
[11]

Kok 1

[13]
Cui
[14] Ours(L1) Ours(L2) Ours(L3)

Kod

R 36.88 38.47 37.83 38.87 39.11 41.11 41.30 41.98 40.29 40.88 41.22
G 39.59 42.65 41.03 41.86 42.33 44.86 45.96 45.10 43.44 44.00 44.34
B 37.37 38.53 37.80 38.86 38.77 40.80 41.29 41.04 39.68 40.24 40.59

RGB 37.74 39.36 38.57 39.58 39.75 41.82 41.96 42.32 40.82 41.38 41.72

McM

R 33.01 33.13 36.12 36.38 37.44 38.54 39.93 39.70 36.64 37.56 38.01
G 36.99 38.00 40.00 39.91 40.73 41.95 42.65 42.63 39.61 40.31 40.74
B 32.16 31.84 35.37 35.38 36.07 37.14 38.00 37.72 35.25 35.90 36.33

RGB 33.50 33.55 36.50 36.65 37.54 38.67 39.67 39.45 36.75 37.48 37.91

Urb

R 32.63 33.91 33.72 36.38 34.63 37.14 38.68 37.71 35.54 36.30 36.84
G 35.62 37.65 36.67 39.91 38.03 40.94 42.33 41.42 39.31 39.99 40.46
B 32.87 33.92 33.90 35.38 34.79 37.13 38.54 37.70 35.59 36.30 36.90

RGB 33.42 34.73 34.48 36.65 35.49 38.00 39.47 38.56 36.44 37.16 37.70

Man

R 32.01 32.71 34.68 36.38 35.58 37.31 38.00 38.16 36.11 36.90 37.27
G 38.14 39.45 40.31 39.91 40.30 43.23 43.35 43.60 40.55 41.36 41.93
B 33.10 33.23 35.10 35.38 35.34 37.37 36.16 37.68 35.97 36.62 37.01

RGB 33.55 34.11 35.88 36.65 36.43 38.47 38.17 39.05 37.04 37.77 38.17

Ave.

R 33.63 34.55 35.59 37.00 36.69 38.53 39.48 39.39 37.14 37.91 38.33
G 37.59 39.44 39.50 40.40 40.35 42.75 43.57 43.19 40.73 41.41 41.87
B 33.88 34.38 35.54 36.25 36.24 38.11 38.50 38.54 36.62 37.27 37.71

RGB 34.55 35.44 36.36 37.38 37.30 39.24 39.82 39.84 37.76 38.45 38.88
1 Due to the limitations of the table format, we abbreviate ‘Kokkinos’ to ‘Kok’.

From the table, we can see that the performance of the CNN-based methods is sub-
stantially better than that of the traditional ones in terms of the PSNR metric. Although the
proposed method does not reach the highest PSNR value, it is among top-level, indicating
that it can reconstruct sufficient high-quality images. Meanwhile, we selected several
images with some representative as well as difficult structures from those datasets to give
the visual reconstruction comparison in Figure 5.

From the visual comparison of demosaicking results above, we can see that AHD [48]
has a better demosaicking visual performance in those traditional methods, while the
performance of CNN-based methods is better than the traditional ones overall. At the same
time, the proposed method in this paper results in a very good visual performance in all
kinds of patches. Even when Cui [14] and Kokkinos [13] achieve top PSNRs in Table 3,
introducing some pink artifacts in Figure 5d, the results of our method produce no artifacts.
As a result, although the reconstruction PSNR value of our method is not the highest, it
still shows an excellent performance in highly difficult demosaicking scenes such as stripes
without generating artifacts like zippering and false color.

Sensors 2021, 21, 3265 11 of 18Sensors 2021, 21, x FOR PEER REVIEW 11 of 18

Ground Truth AHD [48] DLMMSE [49] RI [5] MLRI [6]

ARI [7] Tan [11] Kokkinos [13] Cui [14] Ours(L3)

(a)

Ground Truth AHD [48] DLMMSE [49] RI [5] MLRI [6]

ARI [7] Tan [11] Kokkinos [13] Cui [14] Ours(L3)

(b)

Ground Truth AHD [48] DLMMSE [49] RI [5] MLRI [6]

ARI [7] Tan [11] Kokkinos [13] Cui [14] Ours(L3)

(c)

Figure 5. Cont.

Sensors 2021, 21, 3265 12 of 18
Sensors 2021, 21, x FOR PEER REVIEW 12 of 18

Ground Truth AHD [48] DLMMSE [49] RI [5] MLRI [6]

ARI [7] Tan [11] Kokkinos [13] Cui [14] Ours(L3)

(d)

Ground Truth AHD [48] DLMMSE [49] RI [5] MLRI [6]

ARI [7] Tan [11] Kokkinos [13] Cui [14] Ours(L3)

(e)

Figure 5. Visual comparison of the demosaicking results on 5 representative images in Kodak, McMaster, Urban100, and

Manga109. (a) ‘kodim19’ from Kodak [44]. (b) ‘kodim08‘ from Kodak [44]. (c) ‘1’ from McMaster [45]. (d) ‘img_008’ from

Urban100 [46]. (e) ‘BEMADER_P’ from Manga109 [47].

5.3. Tests for Computational Cost

Image-demosaicking is an important part of the modern camera ISP pipeline. The

reconstruction accuracy of the demosaicking method is important, but blindly pursuing

high PSNR while ignoring the computational cost loses its meaning for practical applica-

tion. As mentioned in [22], current works on demosaicking have achieved top demosaick-

ing accuracy on benchmark datasets which is high enough. So running speed and memory

required to store model parameters (especially for the CNN-based method) are the main

issues that should be considered first.

We measured the running time required on a total of 18 images of the shape 500 ×

500 in McMaster datasets [11] on the Nvidia AGX Xavier (32 GB) AI accelerator and cal-

culated the average processing time of each image. Nvidia AGX Xavier is an embedded

edge device that can efficiently perform parallel computations through an edge GPU. It is

a promising platform for embedded machine learning [51]. Tests were carried out while

all other processes in the device were turned off. Besides, for each CNN-based method,

the number of parameters was counted to obtain the storage space required for double-

precision floating-point format parameters of the models. The results are shown in Table

4.

Due to the differences in the generation and pre-processing between each method for

the input mosaic images, the time we measured above includes the process from the orig-

inal RGB image to the generation of mosaic images. Each method was tested five times

and averaged as the final result. Among them, the traditional method, AHD [48],

DLMMSE [49], RI [5], MLRI [6], and ARI [7], are originally implemented in Matlab. To

deploy them to the Nvidia AGX Xavier platform, we rewrote those algorithms in Python

without changing their structure and computational details. Then, in order to accelerate

Figure 5. Visual comparison of the demosaicking results on 5 representative images in Kodak, McMaster, Urban100, and
Manga109. (a) ‘kodim19’ from Kodak [44]. (b) ‘kodim08‘ from Kodak [44]. (c) ‘1’ from McMaster [45]. (d) ‘img_008’ from
Urban100 [46]. (e) ‘BEMADER_P’ from Manga109 [47].

5.3. Tests for Computational Cost

Image-demosaicking is an important part of the modern camera ISP pipeline. The
reconstruction accuracy of the demosaicking method is important, but blindly pursuing
high PSNR while ignoring the computational cost loses its meaning for practical application.
As mentioned in [22], current works on demosaicking have achieved top demosaicking
accuracy on benchmark datasets which is high enough. So running speed and memory
required to store model parameters (especially for the CNN-based method) are the main
issues that should be considered first.

We measured the running time required on a total of 18 images of the shape 500 × 500
in McMaster datasets [11] on the Nvidia AGX Xavier (32 GB) AI accelerator and calculated
the average processing time of each image. Nvidia AGX Xavier is an embedded edge
device that can efficiently perform parallel computations through an edge GPU. It is a
promising platform for embedded machine learning [51]. Tests were carried out while
all other processes in the device were turned off. Besides, for each CNN-based method,
the number of parameters was counted to obtain the storage space required for double-
precision floating-point format parameters of the models. The results are shown in Table 4.

Due to the differences in the generation and pre-processing between each method
for the input mosaic images, the time we measured above includes the process from the
original RGB image to the generation of mosaic images. Each method was tested five
times and averaged as the final result. Among them, the traditional method, AHD [48],
DLMMSE [49], RI [5], MLRI [6], and ARI [7], are originally implemented in Matlab. To
deploy them to the Nvidia AGX Xavier platform, we rewrote those algorithms in Python
without changing their structure and computational details. Then, in order to accelerate
them through CUDA, we modified them using the cupy library, which professionally
accelerates computations for numpy matrices on the GPU.

Sensors 2021, 21, 3265 13 of 18

Table 4. The average running time of a 500 × 500 image in McMaster and the number and size
(for double-precision floating-point format) of parameters for CNN-based models. The bolded two
methods in each section are those that achieve better performance among all algorithms.

Algorithm Running Time (s)
Parameters

Number Size (MB)

AHD [48] 0.48 - -
DLMMSE [49] 234.78 - -

RI [5] 0.16 - -
MLRI [6] 0.20 - -
ARI [7] 3.66 - -
Tan [11] 0.42 528,518 2.02

Kokkinos [13] 0.87 380,356 1.45
Cui [14] 1.19 1,793,032 6.84

Ours (L1) 0.14 11,786 0.04
Ours (L2) 0.17 46,537 0.18
Ours (L3) 0.24 183,628 0.70

As for Tan [11], Kokkinos [13], Cui [14], and our proposed method, all of them
are implemented by the CNN approach, and thus we accelerated them using pytorch
on CUDA.

As shown in Table 4, the method proposed in this paper has apparent advantages in
terms of running time and the number of parameters. Their trade-off between PSNRs and
running time is illustrated by the scatter in Figure 6 (the time axis is of log scale rather than
linear scale due to the big gap between running times of some methods).

Sensors 2021, 21, x FOR PEER REVIEW 13 of 18

them through CUDA, we modified them using the cupy library, which professionally ac-

celerates computations for numpy matrices on the GPU.

Table 4. The average running time of a 500 × 500 image in McMaster and the number and size (for

double-precision floating-point format) of parameters for CNN-based models. The bolded two

methods in each section are those that achieve better performance among all algorithms.

Algorithm Running Time (s)
Parameters

Number Size (MB)

AHD [48] 0.48 - -

DLMMSE [49] 234.78 - -

RI [5] 0.16 - -

MLRI [6] 0.20 - -

ARI [7] 3.66 - -

Tan [11] 0.42 528,518 2.02

Kokkinos [13] 0.87 380,356 1.45

Cui [14] 1.19 1,793,032 6.84

Ours (L1) 0.14 11,786 0.04

Ours (L2) 0.17 46,537 0.18

Ours (L3) 0.24 183,628 0.70

As for Tan [11], Kokkinos [13], Cui [14], and our proposed method, all of them are

implemented by the CNN approach, and thus we accelerated them using pytorch on

CUDA.

As shown in Table 4, the method proposed in this paper has apparent advantages in

terms of running time and the number of parameters. Their trade-off between PSNRs and

running time is illustrated by the scatter in Figure 6 (the time axis is of log scale rather

than linear scale due to the big gap between running times of some methods).

Figure 6. The scatter plot of PSNRs and the running time of log scale on the 9 demosaicking methods.

We can see from the plot that none of the methods above outperforms our proposed

method by both higher PSNR and lower time cost, whereas the proposed method (L3)

Figure 6. The scatter plot of PSNRs and the running time of log scale on the 9 demosaicking methods.

We can see from the plot that none of the methods above outperforms our proposed
method by both higher PSNR and lower time cost, whereas the proposed method (L3)
outperforms five out of the eight methods by both PSNR and running time. Compared with
Kokkinos [13] and Cui [14], which achieve the highest PSNR, the proposed method only
loses 2.37% and 2.43% of the PSNR value while improving the running time by 72.18% and

Sensors 2021, 21, 3265 14 of 18

79.59%. Compared with the fastest method in CNN-based methods Tan [11], the proposed
method can improve the running speed by 42%, with an accuracy loss of just 0.93%.

5.4. Tests for Extended Applications

Considering the wide application of edge computing devices for image classification
and detection tasks, we performed each demosaicking method before the image classifica-
tion and detection tasks, simulating the process of outputting mosaic images from image
sensors, going through demosaicking algorithms, and then passing through classification
or detection networks. We tested the accuracy of classification and detection tasks after
different demosaicking algorithms and compared the reconstruction effect. We selected
MobileNet v1 [40] and SSD [52] as the algorithms for image classification and image target
detection and selected the test sets from ImageNet [42] (1000 classes with 50 images per
class, totally 50,000 images) and PASCAL VOC2007 (totally 4952 images of 20 categories),
respectively, as the test sets. We used the official pre-trained models for MobileNet v1 on
ImageNet and SSD on VOC2007.

To the image classification task on MobileNet v1, for each original RGB image in
the test set, the corresponding reconstructed image was generated first according to the
demosaicking method mentioned in Section 5.2. Then the images were uniformly cropped
from the center of the original images to 224 × 224 and got classified by the pre-trained
MobileNet v1 model. Finally, the Top-1 and Top-5 classification accuracy on 1000 classes
was calculated.

To the target detection task, we first took the same operation for each input RGB image
in the VOC2007 test set as the image classification part to generate the reconstruction images.
After that, each image was resized to 300 × 300 and then entered SSD for detection. Finally,
the average detection accuracy (mAP value [53]) over the 20 categories was calculated.

We list the accuracy values of each demosaicking method after connected with the
image classification and detection tasks in Table 5.

Table 5. The accuracy of classification and detection tasks connected with demosaicking methods. The
‘Origin’ item indicates the original accuracy of the pre-trained model MobileNet v1 and SSD300. The
bolded two methods in each section are those that achieve better performance among all algorithms.

Algorithm
MobileNet v1 SSD300

Top1 (%) Top5 (%) mAP (%)

Origin 71.11 89.84 75.77

AHD [48] 64.79 85.67 75.41
DLMMSE [49] 64.06 85.44 75.14

RI [5] 64.25 85.65 75.16
MLRI [6] 64.36 85.70 75.21
ARI [7] 64.40 85.74 75.06
Tan [11] 65.02 86.04 75.59

Kokkinos [13] 64.43 85.76 75.56
Cui [14] 64.50 85.80 75.49

Ours (L1) 64.11 85.49 75.16
Ours (L2) 64.43 85.78 75.22
Ours (L3) 64.56 85.83 75.44

As shown in Table 5, after reconstruction through different demosaicking methods,
there is some degree of loss in accuracy for both classification and detection tasks, but the
difference between them is small. As a result, our proposed method and Tan’s [11] get the
best performance among all the algorithms in image classification tasks.

5.5. Ablation Study for the Gaussian Smoothing Layers

In this section, we add an ablation study for the Gaussian smoothing layers and
discuss its impact in the proposed network. Table 6 gives a comparison of the demosaicking

Sensors 2021, 21, 3265 15 of 18

accuracy obtained on the four datasets through networks with different structures, which
replacing the Gaussian smoothing layers with pooling layers in different manners. The
data in Table 6 were testing after the networks trained to convergence.

Table 6. Testing results on four datasets for network structures with different pooling layers. Only the
results for the L3 network are presented here for clearer comparisons of different network structures.

Algorithms
Avg Pooling Max Pooling Gaussian

Pooling
Gaussian

Smoothing

L = 3 L = 3 L = 3 L = 3

Kodak24

R 40.95 40.74 40.86 41.22
G 44.09 43.86 44.01 44.34
B 40.35 40.11 40.28 40.59

RGB 41.47 41.25 41.39 41.72

McMaster

R 37.83 37.79 37.71 38.01
G 40.58 40.53 40.56 40.74
B 36.07 36.03 35.97 36.33

RGB 37.70 37.66 37.61 37.91

Urban100

R 36.67 36.34 36.58 36.84
G 40.29 39.99 40.22 40.46

B 36.68 36.32 36.56 36.90
RGB 37.51 37.17 37.41 37.70

Manga109

R 36.93 36.72 36.90 37.27
G 41.53 41.30 41.54 41.93
B 36.75 36.54 36.74 37.01

RGB 37.86 37.65 37.84 38.17

Ave.

R 38.10 37.90 38.01 38.33
G 41.62 41.42 41.58 41.87
B 37.46 37.25 37.39 37.71

RGB 38.64 38.43 38.56 38.88
Where Avg pooling, Max pooling, Gaussian pooling, and Gaussian smoothing denote 2 × 2 average pooling,
2 × 2 max pooling, Gaussian smoothing followed by 2 × 2 down-sampling, and Gaussian smoothing layer (used
in this paper), respectively. Since pooling changes the image size, in each image reconstruction node in the
original network, we replace the 1 × 1 convolution with up-sampling implemented by a transposed convolution.
It can be seen that the network adopting Gaussian smoothing layers can extract image features more efficiently
than other pooling approaches, thus obtaining a little better accuracy due to its capability to extract image features
through multi-scale receptive fields and its preservation of entire image information.

6. Conclusions

In this study, we propose a compact, high-efficiency end-to-end demosaicking con-
volutional neural network for the current application needs on edge computing devices.
By adding densely connected layer blocks and using depthwise separable convolutions,
we made full use of the correlations between the features of the images themselves for
computation, which greatly reduced the number of parameters of the network but still
achieved excellent performance. Besides, we used Gaussian smoothing instead of down-
sampling input images to expand the receptive field and to relax the constraints on the
size of input images without discard any image information. Furthermore, since Gaussian
smoothing can play a certain degree of denoising, and its use leads the network to be able
to extract multi-scale image features, the proposed network has the potential to perform
well in other image restoration tasks such as denoising and super-resolution. We will apply
the proposed network structure to these tasks in future research.

The above experiment results demonstrated that our proposed method achieves the
leading demosaicking accuracy in terms of both subjective visual comparisons and the
objective metric (PSNR). Besides, the result of inference processing on the demosaicked
images on Mobilenet v1 and SSD indicates that the accuracy can also achieve a high level
that is performed comparably to the existing methods. Moreover, it contains only several

Sensors 2021, 21, 3265 16 of 18

convolutional computations with high parallelism and can handle images of arbitrary
size without special pre-processing operations for the input mosaic images, making it
easily connected with image sensors with a CFA pattern. Its deeply supervised training
manner makes it flexible to be pruned during inference. As a result, the proposed methods
can be efficiently applied to some edge computing devices such as AI accelerators and
has the potential for efficient processing on edge devices that support parallel processing
such as Application Specific Integrated Circuit (ASIC) or intelligent camera processors for
high-quality image demosaicking.

Author Contributions: S.W. developed the idea, proposed the method, conducted the experiments
and wrote the manuscript. M.Z. and R.D. gave suggestions on experiment design and manuscript
writing, L.L. and N.W., as supervisor, gave advice on research directions and some guidance in
the research procedure and reviewed the manuscript. S.Y. reviewed the manuscript and provided
insightful suggestions to furtherly refine it. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded in part by the National Key Research and Development Program
of China under Grant 2019YFB2204300; in part by the National Natural Science Foundation of
China under Grant U20A20205; in part by and the Strategic Priority Research Program of the
Chinese Academy of Science under Grant XDB32050200; in part by Youth Innovation Promotion
Association Program Chinese Academy of Sciences under Grant 2021109; and in part by the Tianjin
Key Laboratory of Imaging and Sensing Microelectronic Technology.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found here: (ImageNet2012) https://image-net.org/download.php; (Kodak24) http://r0k.us/
graphics/kodak/; (McMaster) https://www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm;
(Urban100) https://github.com/jbhuang0604/SelfExSR; (Manga109) http://www.manga109.org/
en/download.html.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lukac, R.; Plataniotis, K. Color filter arrays: Design and performance analysis. IEEE Trans. Consum. Electron. 2005, 51, 1260–1267.

[CrossRef]
2. Wang, J.; Wu, J.; Wu, Z.; Jeon, G.; Jeong, J. Demosaicking: Color filter array interpolation. IEEE Signal Process. Mag. 2005, 17,

44–49.
3. Malvar, H.S.; He, L.W.; Cutler, R. High-quality linear interpolation for demosaicing of Bayer-patterned color images. In

Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, QC,
Canada, 17–21 May 2004; Volume 3, p. iii-485. [CrossRef]

4. Wang, D.; Yu, G.; Zhou, X.; Wang, C. Image demosaicking for Bayer-patterned CFA images using improved linear interpolation.
In Proceedings of the 7th International Conference on Innovation in Science and Technology, Da Nang, Vietnam, 16–19 April
2017; pp. 464–469. [CrossRef]

5. Kiku, D.; Monno, Y.; Tanaka, M.; Okutomi, M. Residual interpolation for color image demosaicking. In Proceedings of the 2013
IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; Volume 17, pp. 2304–2308.
[CrossRef]

6. Kiku, D.; Monno, Y.; Tanaka, M.; Okutomi, M. Minimized-Laplacian residual interpolation for color image demosaicking. Digit.
Photogr. X 2014, 9023, 90230L. [CrossRef]

7. Monno, Y.; Kiku, D.; Tanaka, M.; Okutomi, M. Adaptive residual interpolation for color and multispectral image demosaicking.
Sensors 2017, 17, 2787. [CrossRef]

8. Moghadam, A.A.; Aghagolzadeh, M.; Kumar, M.; Radha, H. A compressive framework for demosaicing of natural images. IEEE
Trans. Image Process. 2013, 22, 2356–2371. [CrossRef] [PubMed]

9. Kaur, E.S.; Banga, V.K. A Survey of Demosaicing: Issues and Challenges. Int. J. Sci. Eng. Technol. 2015, 2, 9–17.
10. Gharbi, M.; Chaurasia, G.; Paris, S.; Durand, F. Deep joint demosaicking and denoising. ACM Trans. Graph. 2016, 35, 1–12.

[CrossRef]
11. Tan, R.; Zhang, K.; Zuo, W.; Zhang, L. Color image demosaicking via deep residual learning. In Proceedings of the 2017 IEEE

International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; p. 24.
12. Syu, N.-S.; Chen, Y.-S.; Chuang, Y.-Y. Learning Deep Convolutional Networks for Demosaicing. Available online: http://arxiv.

org/abs/1802.03769 (accessed on 11 February 2018).

https://image-net.org/download.php
http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/
https://www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm
https://github.com/jbhuang0604/SelfExSR
http://www.manga109.org/en/download.html
http://www.manga109.org/en/download.html
http://doi.org/10.1109/TCE.2005.1561853
http://doi.org/10.1109/icassp.2004.1326587
http://doi.org/10.1109/ICIST.2017.7926804
http://doi.org/10.13182/fst90-a39889
http://doi.org/10.1117/12.2038425
http://doi.org/10.3390/s17122787
http://doi.org/10.1109/TIP.2013.2244215
http://www.ncbi.nlm.nih.gov/pubmed/23380854
http://doi.org/10.1145/2980179.2982399
http://arxiv.org/abs/1802.03769
http://arxiv.org/abs/1802.03769

Sensors 2021, 21, 3265 17 of 18

13. Kokkinos, F.; Lefkimmiatis, S. Deep image demosaicking using a cascade of convolutional residual denoising networks. In
Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 303–319.
[CrossRef]

14. Cui, K.; Jin, Z.; Steinbach, E. Color image demosaicking using a 3-stage convolutional neural network structure. In Proceedings
of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2177–2181.

15. Podili, A.; Zhang, C.; Prasanna, V. Fast and efficient implementation of Convolutional Neural Networks on FPGA. In Proceedings
of the 2017 IEEE 28th International Conference on Application-Specific Systems, Architectures and Processor, Seatlle, WA, USA,
10–12 July 2017; pp. 11–18. [CrossRef]

16. Shafiee, A.; Nag, A.; Muralimanohar, N.; Balasubramonian, R.; Strachan, J.P.; Hu, M.; Williams, R.S.; Srikumar, V. ISAAC: A
Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. In Proceedings of the 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016. [CrossRef]

17. Li, H.; Fan, X.; Jiao, L.; Cao, W.; Zhou, X.; Wang, L. A high performance FPGA-based accelerator for large-scale convolutional
neural networks. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications (FPL),
Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–9. [CrossRef]

18. Shi, C.; Yang, J.; Han, Y.; Cao, Z.; Qin, Q.; Liu, L.; Wu, M.-J.; Wang, Z. A 1000 fps vision chip based on a dynamically reconfigurable
hybrid architecture comprising a PE array processor and self-organizing map neural network. IEEE J. Solid-State Circuits 2014, 49,
2067–2082. [CrossRef]

19. Li, H.; Zhang, Z.; Yang, J.; Liu, L.; Wu, N. A novel vision chip architecture for image recognition based on convolutional
neural network. In Proceedings of the 2015 IEEE 11th International Conference on ASIC, Chengdu, China, 3–5 November 2015.
[CrossRef]

20. Wu, N. Neuromorphic vision chips. Sci. China Inf. Sci. 2018, 61, 1–17. [CrossRef]
21. Yang, J.; Yang, Y.; Chen, Z.; Liu, L.; Liu, J.; Wu, N. A heterogeneous parallel processor for high-speed vision chip. IEEE Trans.

Circuits Syst. Video Technol. 2018, 28, 746–758. [CrossRef]
22. Niu, Y.; Ouyang, J.; Zuo, W.; Wang, F. Low Cost Edge Sensing for High Quality Demosaicking. IEEE Trans. Image Process. 2018, 28,

2415–2427. [CrossRef]
23. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8692, pp. 184–199. [CrossRef]
24. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Lecture Notes in Computer Science;

Springer: Berlin/Heidelberg, Germany, 2016; Volume 9906, pp. 391–407. [CrossRef]
25. Habtegebrial, T.A.; Reis, G.; Stricker, D. Deep convolutional networks for snapshot hypercpectral demosaicking. In Proceedings of

the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amterdam,
The Netherlands, 24–26 September 2019; pp. 1–5.

26. Dijkstra, K.; van de Loosdrecht, J.; Schomaker, L.R.B.; Wiering, M.A. Hyperspectral demosaicking and crosstalk correction using
deep learning. Mach. Vis. Appl. 2019, 30, 1–21. [CrossRef]

27. Pan, Z.; Li, B.; Bao, Y.; Cheng, H. Deep panchromatic image guided residual interpolation for multispectral image demosaicking.
In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing
(WHISPERS), Amterdam, The Netherlands, 24–26 September 2019. [CrossRef]

28. Zhou, Z.; Siddiquee, M.R. UNet++: A Nested U-Net architecture for medical image segmentation. In Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Cham, Switzerland, 2018; pp. 3–11.

29. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference
on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [CrossRef]

30. Park, B.; Yu, S.; Jeong, J. Densely connected hierarchical network for image denoising. In Proceedings of the 2019 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019; pp.
2104–2113. [CrossRef]

31. Xie, C.; Yang, X.; Yan, B.; Lu, L. RGB-NIR image demosaicing based on deep learning. J. Comput. Appl. 2019, 39, 2899–2904.
32. Shopovska, I.; Jovanov, L.; Philips, W. RGB-NIR Demosaicing Using Deep Residual U-Net. In Proceedings of the 2018 26th

Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 2018–2021. [CrossRef]
33. Kokkinos, F.; Lefkimmiatis, S. Iterative joint image demosaicking and denoising using a residual denoising network. IEEE Trans.

Image Process. 2019, 28, 4177–4188. [CrossRef]
34. Zhou, R.; Achanta, R.; Süsstrunk, S. Deep residual network for joint demosaicing and super-resolutionin. In Proceedings of the

26th Color and Imaging Conference, Society for Imaging Science and Technology, Vancouver, BC, Canada, 12–16 November 2018;
Volume 1, pp. 75–80. [CrossRef]

35. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging
2016, 3, 47–57. [CrossRef]

36. Guangtao, Z.; Xiongkuo, M. Perceptual Image Quality Assessment: A Survey. Sci. China Inf. Sci. 2020, 63, 1–52. [CrossRef]
37. Romanuke, V.V. Appropriate number of standard 2 × 2 max pooling layers and their allocation in convolutional neural networks

for diverse and heterogeneous datasets. Inf. Technol. Manag. Sci. 2018, 20, 12–19. [CrossRef]
38. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [CrossRef]

http://doi.org/10.1007/978-3-030-01264-9_19
http://doi.org/10.1109/ASAP.2017.7995253
http://doi.org/10.1109/ISCA.2016.12
http://doi.org/10.1109/FPL.2016.7577308
http://doi.org/10.1109/JSSC.2014.2332134
http://doi.org/10.1109/ASICON.2015.7516878
http://doi.org/10.1007/s11432-017-9303-0
http://doi.org/10.1109/TCSVT.2016.2618753
http://doi.org/10.1109/TIP.2018.2883815
http://doi.org/10.1007/978-3-319-10593-2_13
http://doi.org/10.1007/978-3-319-46475-6_25
http://doi.org/10.1007/s00138-018-0965-4
http://doi.org/10.1109/WHISPERS.2019.8920868
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1109/CVPRW.2019.00263
http://doi.org/10.1109/TELFOR.2018.8611819
http://doi.org/10.1109/TIP.2019.2905991
http://doi.org/10.2352/issn.2169-2629.2018.26.75
http://doi.org/10.1109/TCI.2016.2644865
http://doi.org/10.1007/s11432-019-2757-1
http://doi.org/10.1515/itms-2017-0002
http://doi.org/10.1109/CVPR.2017.243

Sensors 2021, 21, 3265 18 of 18

39. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y. ESRGAN: Enhanced super-resolution generative adversarial networks. In Proceedings of
the 2018 European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 1–16.

40. Howard, A.G.; Zku, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. Available online: http://arxiv.org/abs/1704.04861 (accessed on
17 April 2017).

41. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

42. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei-fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009.
[CrossRef]

43. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
44. Li, X.; Gunturk, B.; Zhang, L. Image demosaicing: A systematic survey. Vis. Commun. Image Process. 2008, 6822, 68221J. [CrossRef]
45. Zhang, L.; Wu, X.; Buades, A.; Li, X. Color demosaicking by local directional interpolation and nonlocal adaptive thresholding. J.

Electron. Imaging 2011, 20, 023016. [CrossRef]
46. Huang, J.B.; Singh, A.; Ahuja, N. Single Image Super-resolution from Transformed Self-Exemplars. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206.
47. Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.; Yamasaki, T.; Aizawa, K. Sketch-based manga retrieval using manga109

dataset. Multimed. Tools Appl. 2017, 76, 21811–21828. [CrossRef]
48. Hirakawa, K.; Parks, T.W. Adaptive homogeneity-directed demosaicing algorithm. IEEE Trans. Image Process. 2005, 14, 360–369.

[CrossRef] [PubMed]
49. Zhang, L.; Wu, X. Color demosaicking via directional linear minimum mean square-error estimation. IEEE Trans. Image Process.

2005, 14, 2167–2178. [CrossRef] [PubMed]
50. Menon, D.; Calvagno, G. Color image demosaicking: An overview. Signal Process. Image Commun. 2011, 26, 518–533. [CrossRef]
51. Mittal, S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform. J. Syst. Archit. 2019,

97, 428–442. [CrossRef]
52. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In European

Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37. [CrossRef]
53. Cartucho, J.; Ventura, R.; Veloso, M. Robust object recognition through symbiotic deep learning in mobile robots. In Proceedings

of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp.
2336–2341. [CrossRef]

http://arxiv.org/abs/1704.04861
http://doi.org/10.1109/CVPR.2009.5206848
http://doi.org/10.1117/12.766768
http://doi.org/10.1117/1.3600632
http://doi.org/10.1007/s11042-016-4020-z
http://doi.org/10.1109/TIP.2004.838691
http://www.ncbi.nlm.nih.gov/pubmed/15762333
http://doi.org/10.1109/TIP.2005.857260
http://www.ncbi.nlm.nih.gov/pubmed/16370469
http://doi.org/10.1016/j.image.2011.04.003
http://doi.org/10.1016/j.sysarc.2019.01.011
http://doi.org/10.1007/978-3-319-46448-0_2
http://doi.org/10.1109/IROS.2018.8594067

	Introduction
	Related Works
	Background
	Proposed Network
	Model of Image Demosaicking
	Network Architecture
	Image Feature Extraction
	Image Reconstruction

	Experiments and Results
	Training
	Tests for Quantitative and Qualitative Performance
	Tests for Computational Cost
	Tests for Extended Applications
	Ablation Study for the Gaussian Smoothing Layers

	Conclusions
	References

