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Abstract 

The manual evaluation of mouse sleep studies is labor-intensive and time-consuming. Although several approaches for automatic 
sleep stage classification have been proposed, no automatic pipeline for detecting a specific mouse phenotype has yet been devel-
oped. Here, we present a fully automated pipeline for estimating the probability of Narcolepsy Type 1 (NT1) in the hypocretin-tTA; 
TetO-Diphteria toxin A (DTA) mouse model using unlabeled electroencephalographic (EEG) and electromyographic (EMG) data. The 
pipeline is divided into three modules: (1) automatic sleep stage classification, (2) feature extraction, and (3) phenotype classification. 
We trained two automatic sleep stage classifiers, UsleepEEG and UsleepEMG, using data from 83 wild-type (WT) mice. We next computed 
features such as EEG spectral power bands, EMG root mean square, and bout metrics from 11 WT and 19 DTA mice. The features were 
used to train an L1-penalized logistic regression classifier in a Leave-One-Subject-Out approach, achieving an accuracy of 97%. Finally, 
we validated the pipeline in a held-out dataset of EEG/EMG recordings at four different timepoints during disease development in 
seven DTA mice, finding that the pipeline captured disease progression in all mice. While our pipeline generalizes well to data from 
other laboratories, it is sensitive to artifacts, which should be considered in its application. With this study, we present a pipeline that 
facilitates a fast assessment of NT1 probability in the DTA model and thus can accelerate large-scale evaluations of NT1 treatments.
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Statement of Significance

In this study, we developed the first fully automated pipeline to estimate the probability of NT1 in DTA mice using unlabeled EEG 
and EMG data. Our pipeline facilitates a fast and accurate assessment of the NT1 probability, with the potential to accelerate 
large-scale evaluations. This advancement will significantly enhance preclinical research and improve the efficiency of treatment 
evaluations. The work establishes a new benchmark in the field and could inspire others to extend this approach to the study of 
other diseases potentially driving advancements in drug development across various disease models.
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Introduction
Narcolepsy type 1 (NT1) is a chronic sleep disorder characterized 
by excessive daytime sleepiness, fragmented sleep-wake pat-
terns, symptoms of dissociated REM sleep, and cataplexy (i.e. a 
sudden loss in muscle tone triggered by strong positive emotions) 
[1, 2]. NT1 is hypothesized to be an autoimmune disease caused 
by the loss of hypocretin/orexin neurons in the lateral hypothal-
amus [3–5]. The prevalence of NT1 is 25–50 cases pr. 100 000 indi-
viduals. Symptomatic treatment options exist, however, none of 
the approved treatments result in full symptom relief, and no 
treatment is yet developed to hinder or slow down the disease 
progression [6, 7].

Preclinical mouse models have been used to study sleep disor-
ders and their response to treatment. Current mouse models for 
NT1 include the genetic Hcrt-knockout (HCRT-KO) model lacking 
the HCRT peptides [8], the transgenic neuron-ablated Ataxin-3 
model that gradually loses HCRT neurons from birth [9], and the 
double transgenic conditional neuron-ablated orexin-tTA;TetO 
diphtheria toxin A (DTA) model [10]. In the DTA model, HCRT  
neuron-specific DTA expression is controlled by dietary doxy-
cycline (DOX), with DOX withdrawal initiating a gradual loss of 
HCRT neurons [10]. Although these NT1 mouse models exhibit 
high face validity, with a phenotype that includes sleep-wake 
fragmentation and cataplexy-like attacks, the DTA model shows 
better construct validity, with presumed HCRT neuron loss [4, 6, 
11] and a typical post-pubertal or adult-onset [6, 11].

In mouse sleep studies, EEG, EMG, and video signals are 
recorded to measure brain activity, muscle activity, and behavior, 
respectively. Conducting sleep studies is highly labor-intensive 
and time-consuming, as they involve surgery for EEG/EMG record-
ings and manual evaluation of data to classify sleep/wake states 
to further determine if the mouse exhibits an NT1 phenotype. To 
increase efficiency, several automatic sleep stage classification 
models have been proposed for mouse studies (see review by Rayan 
et al. for more detailed information [12]). The time-consuming 
aspect of manual evaluation does not only apply to mouse sleep 
but also human sleep. In the human domain automatic sleep stage 

classification and automatic detection of the narcolepsy pheno-
type in polysomnography (PSG) data has successfully been demon-
strated by Stephansen and colleagues [13]. The paper presents a 
fast and automated approach for narcolepsy diagnosis through 
features extracted from what was then coined hypnodensity.

Here, we developed the first fully automated pipeline for esti-
mating the probability of NT1 in DTA mice based on unlabeled 
EEG and EMG data (Figure 1). As narcolepsy is characterized by 
symptoms of dissociated REM sleep (muscle atonia appearing in 
wakefulness or high muscle tone in REM sleep), a novel aspect of 
our approach was to train a sleep stage classification model using 
either only the EEG or the EMG, employing the resulting proba-
bilities for feature extraction and NT1 prediction. For compari-
son, we included a sleep stage classifier that was trained on the 
combined EMG and EEG signals. We hope that this approach will 
facilitate pre-clinical research into NT1 pathogenesis and symp-
tomatology and importantly allow for faster evaluation of novel 
drug treatments in the DTA mouse model.

Methods
Data collection overview
We collected mouse EEG and EMG data from seven different labo-
ratories, resulting in eight cohorts labeled A to H (Table 1). Cohorts 
A to E were used to train three automatic classifiers (UsleepEEG, 
UsleepEMG, UsleepEEG,EMG) for sleep stage classification. Cohort F was 
used to train an L1-penalized logistic regression classifier for NT1 
probability estimation, while cohorts G to H served as held-out 
datasets for external validation of the pipeline. Each sleep record-
ing includes at least one EEG and one EMG channel, with elec-
trode placement detailed in Table 1. The recording lengths vary 
across mice and some mice have multiple recordings. For cohorts 
A to F, epochs were manually annotated by trained experts from 
the corresponding sleep laboratories as either one of the three 
states: wakefulness, NREM sleep, or REM sleep. Since the auto-
matic classifiers are trained on healthy mice, they can only detect 
wakefulness, NREM sleep, and REM stages. Consequently, when 

Figure 1.  A fully automated pipeline for probability estimation of NT1 in mice from unlabeled EEG and EMG data. Flowchart of pipeline. In the 
first step, raw EEG and EMG data are fed into two automatic classifiers UsleepEEG and UsleepEMG. Each classifier outputs the probability of either 
wakefulness, NREM sleep and REM sleep, yielding two sets of predicted hypnograms yEEG and yEMG. Next, for each y and each sleep stage, we extract 
16 features. Seven of these features are relative EEG power bands (slow oscillations, slow delta, fast delta, slow theta, fast theta, alpha, and beta). 
Additionally, the root mean square reflects the amplitude of the EMG signal. The remaining eight features come from the hypnogram of y and include: 
average bout length [s], total time spent in the sleep stage [%], counts of bouts per hour, total time spent in 4-second bouts [%], total time spent in 
bouts with duration from 4-s to −32s [%], total time spent in bouts with duration 32-s to −1-min [%], total time spent in bouts with duration 1 min 
to 5 min [%] and total time spent in > 5-min bouts [%]. In total, 16 × 3 × 2 features are obtained and are then fed into an NT1 classifier model that 
outputs the probability of having NT1.
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applied to NT1 mice, the model cannot detect cataplexy or delta 
attacks. These epochs were masked during the validation analysis 
(Figure 2), but retained in the training of the NT1 classifier, with 
the models classifying them as one of the three main stages.

Experimental data acquisition
Details on animal procedures and data collection of cohorts A-H 
from the corresponding labs are separately described below. All 
animal studies have been approved by the respective national 

Table 1.  Overview of data collection

Cohort Lab WT DTA EEG EMG Usleep Lasso Test

A 1 10 0 1 ipsilateral
fronto-parietal differential

Neck X

B 2 17 0 2 parietal
2 frontal

Neck X

C 3 23 0 1 parietal
1 frontal

Neck X

D 4 28 0 1 parietal / 1frontal
or
1 cerebellum / 1 frontal

Neck X

E 5 5 0 1 parietal
1 frontal

Neck X

F 3 11 19 1 parietal
1 frontal

Neck X

G 6 0 7 1 Parietal- Interparietal differential Neck X

H 7 8 6 2 parietal
2 frontal

Neck X

All data were downsampled to 128 Hz and had sleep annotations in four second windows. Cohort A-E is used to train UsleepEEG and UsleepEMG, cohort F is used to 
train a NT1 classifier, while cohort G-H are used for validation.

Figure 2.  Models trained on one modality can be used to predict wakefulness and sleep in WT and NT1 mice. (A) Confusion matrix of UsleepEMG 
with row-wise normalization (recall) tested in a held-out test set of 11 WT mice. (B) The log-odds ratio of the confusion matrices of UsleepEMG from 
11 WT and 19 NT mice. Blue color indicates a higher likelihood of the event occurring in WT mice and green color indicates a higher likelihood of 
the event occurring in NT mice. * Significant difference between WT and NT (CI of the log-odds ratio (LOR) does not include 0). (C) Confusion matrix 
of UsleepEEG with row-wise normalization (recall) tested in the held-out WT mice cohort. (D) The log-odds ratio of the confusion matrix from WT 
and NT mice for UsleepEEG. (E) Average root mean square for NT (green) and WT (blue) mice and W = Wakefulness, N = NREM sleep and R = REM 
sleep. First window includes epochs where the model and the expert agree, the remaining windows are disagreement epochs where manual label 
and predicted label are not the same. (F) Bar plot of the average relative delta power across genotypes (G) Bar plot of the average relative theta power 
across genotypes.
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authorities and carried out according to ethical guidelines 
(European Communities Council Directive (86/609/EEC)) and 
ARRIVE (Animal Research: Reporting In Vivo Experiments).
Dataset from Cohort A. Cohort A consists of 10 WT male mice 
(C57BL/6J background, 15.0 ± 0.4 weeks of age at surgery). The 
data and experimental procedures of this cohort have previ-
ously been published [14] (WT control group). The study proto-
col was approved by the Bologna University ethics committee. 
For cohort A sleep scoring was performed on 4-second epochs 
by expert investigators using a validated semi-automated pro-
cedure (SCOPRISM [15]) on raw EEG and EMG data. Investigators 
corrected the automated scoring result if needed based on the 
visualization of raw EEG and EMG recordings.
Dataset from Cohort B: Cohort B consists of 17 WT male mice 
(6–15 weeks of age, C57BL/6JRj background, Janvier Labs, Le 
Genest-Saint-Isle, France). The mice underwent intracere-
bral injections of a viral vector expressing a calcium sensor, 
GCaMP6, under control of the HCRT promoter two weeks 
prior to EEG/EMG implantation, and an optical fiber had been 
implanted just above the lateral hypothalamus intended for 
calcium imaging. This data is not used for the present study. 
The experimental procedure for EEG/EMG recordings was sim-
ilar to what has previously been published in [16]. All experi-
mental procedures were approved by the Veterinary Office of 
the Canton of Bern, Switzerland (License number BE 45/18). For 
cohort B scoring of the different vigilance stages (wakefulness, 
NREM sleep, REM sleep) was conducted in 1-second epochs 
using custom-written MATLAB scripts.
Dataset from Cohort C and F. Cohort C consists of 23 wildtype 
(WT) mice (12 females, 4-15 weeks of age, C57BL/6 background) 
and cohort F consists of 11 WT (10 females, 4-15 weeks of age, 
C57BL/6 background) and 19 DTA mice (7 females, 10-15 weeks 
of age, double transgenic C57BL/6-Tg (Hcrt/tTA; TetO DTA back-
ground). Mice were either purchased from Taconic Biosciences 
(C57BL6/J6NTac; Ejby, Denmark), Janvier Labs (C57BL/6JRj; Le 
Genest-Saint-Isle, France), or bred in-house as part of a trans-
genic breeding program.

The experimental procedures of these cohorts have previ-
ously been published in [17–19]. All experiments were approved 
by the Danish Animal Experiments Inspectorate (license #2019-
15-0201-00016). Wakefulness, NREM sleep, and REM sleep were 
determined in four seconds epochs according to standard criteria.
Dataset from Cohort D. Cohort D consists of 28 male mice (WT 
or TH-Cre mice,12-24 weeks of age at the time of recording; 
C57BL/6 background; Janvier Labs or bred in-house). The experi-
mental procedures of this cohort have previously been published 
[20] and a subset of the collected data has previously been pub-
lished [21]. All experiments were approved by the Danish Animal 
Experiments Inspectorate. For cohort D sleep state scoring (wake-
fulness, NREM sleep, and REM sleep) was performed manually 
using SleepScore in either one or four-second epochs based on 
standard criteria for EEG and EMG recordings with the assistance 
of video.
Dataset from Cohort E. Cohort E consists of five WT male mice 
(8–26 weeks of age at recording; C57BL/6J genetic background, 
three from Charles River Laboratories, Les Oncins, France and two 
donated by Pr. Miquel Vila). Experimental procedures and data 
from two WT male mice have previously been published in [22]. 
All experiments were approved by either the Université Claude 
Bernard Lyon 1 Ethic Committee (C2EA-055; #DR-2015-42) or the 
CELYNE Ethics Research Committee (C2EA-042; APAFIS#20701). 
For cohort E, vigilance states were visually scored using a 5-second 

sliding window frame and assigned as either wakefulness, NREM 
sleep, or REM sleep.
Dataset from Cohort G: Seven NT1 DTA male mice were double 
transgenic offspring of Hcrt/tTA mice (C57BL/6-Tg(Hcrt/tTA)/
Yamanaka) and B6.Cg-Tg(tetO DTA) 1Gfi/J mice (JAX #008468). 
Both parental strains were from a C57BL/6J genetic background. 
Parental strains and offspring used for EEG/EMG recording were 
maintained on a diet (Envigo T-7012, 200 DOXycycline) contain-
ing DOX (DOX(+) condition) to repress transgene expression until 
neurodegeneration was desired. Mice were maintained on normal 
chow for six weeks. The data and experimental procedures of this 
cohort have previously been published [23]. All experimental pro-
cedures were approved by the Institutional Animal Care and Use 
Committee at SRI International.
Dataset from Cohort H: Cohort H consists of eight WT males 
(males, 15 weeks of age, C57BL/6 background) and six NT1 male 
mice (15 weeks of age, double transgenic C57BL/6-Tg (hcrt/
tTA;TetO DTA background)). Mice were transferred from Taconic 
Biosciences (Hudson, NY, USA). Detailed information about EEG/
EMG surgery and data acquisition can be found in Sakai et al. 
[24]. All experiments were approved by the Stanford University 
Administrative Panel on Laboratory Animal Care and were con-
ducted in accordance with the Stanford University Administrative 
Panel on Laboratory Animal Care Guidelines (APLAC-#21,646).

Fully automated pipeline for NT1 probability 
estimation
As illustrated in Figure 1, the full pipeline is divided into three 
modules: (1) automatic sleep stage classification, (2) feature 
extraction, and (3) NT1 classification. The automatic sleep stage 
classifiers (UsleepEEG and UsleepEMG) are used to obtain annotated 
labels from unlabeled EEG and EMG signals. Utilizing both models 
yields two sets of annotations for each mouse (y_eeg and y_emg). 
Sixteen features per sleep stage model are computed resulting in 
16 × 3 × 2 features per mouse. In the final part, an L1-penalized 
logistic regression (NT1 classifier) is used to obtain the probability 
of having NT1 based on features from 11 WT mice and 19 NT1 
mice. Each part is explained in detail below. Moving forward, the 
term pipeline refers to the full pipeline of all three modules, while 
UsleepEEG and UsleepEMG refer to the automatic sleep stage clas-
sifiers and the NT1 classifier refers to the L1-penalized logistic 
regression classification model for NT1 prediction.
Automatic sleep stage classification. For automatic sleep stage 
classification, we fine-tuned three different versions of U-Sleep: 
UsleepEEG (model trained on a single EEG channel), UsleepEMG 
(model trained on a single EMG channel), and UsleepEEG,EMG (model 
trained on both channels, used for comparison). Cohorts A–E are 
used for training the three models (see Table 1). We used Python 
version 3.7.16 for all data preprocessing and training of UsleepEEG, 
UsleepEEG and UsleepEEG, EMG. Specific packages are detailed in 
Supplementary Data S1–S2.

U-Sleep

U-Sleep. U-Sleep is a state-of-the-art model developed for human 
sleep stage classification [25]. It was trained on 15 660 participants 
coming from 16 different clinical studies. The architecture of the 
model is based on a preceding U-Time model [26] and has a form 
inspired by U-Net [27] which originally was developed for image 
segmentation. U-Sleep is a fully convolutional neural network 
and consists of an encoder block, decoder block, and a segment 
classifier. The encoder is mapping the input signal into a feature 
representation, the decoder projects it back to the input space 

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpaf025#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpaf025#supplementary-data
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and the segment classifier is making sleep stage predictions for 
a chosen time resolution. The original prediction resolution is in 
30-second windows, matching the human sleep annotation reso-
lution. However, the segment classifier is capable of predictions at 
any frequencies at test time, making U-sleep very flexible.
Data preprocessing. The data were preprocessed according to the 
pipeline for human PSG data described in Perslev et al. [25]. First, 
all EEG and EMG signals were resampled to 128 Hz using poly-
phase filtering. Next, each signal was individually scaled to have 
a median of 0 and an interquartile range (IQR) of one. Noisy bouts 
were clipped if they had an absolute deviation of more than 20 
times the IQR of that specific channel from the median. The sig-
nals were further bandpass filtered with the cut-off frequencies of 
[0.3 Hz–35 Hz]. As each laboratory scores the data differently (e.g. 
cohort A scores intermediate states and artifact-specific stages, 
while others only score wakefulness, NREM sleep, and REM sleep), 
we used the standard classes wakefulness, NREM sleep, and REM 
sleep, and relabeled everything else as wakefulness unless the 
next stage was not wakefulness, in which case they were replaced 
with the previous sleep stage. To ensure consistency in the resolu-
tion of sleep scorings across different labs, all data was converted 
to 4-second epochs. The 1-second sleep stage data was reshaped 
into 4-second epochs, where each epoch contained four consec-
utive 1-second sleep stage labels. For each 4-second epoch, the 
most frequent sleep stage was selected. In cases where two sleep 
stages were equally represented, we computed the probability 
distribution of each stage across all 1-second epochs and ran-
domly assigned a stage based on these probabilities. For datasets 
with 5-second epochs, we first upsampled the labels to a 1-second  
resolution before downsampling to 4-second epochs, using the 
same method as described above.
Transfer learning. The U-Sleep models pre-trained for human 
sleep staging were fine-tuned to fit mouse sleep data. There are 
two different versions of the original U-Sleep model used for this 
paper. The first one is trained to use any EEG channel which is 
utilized for fine-tuning UsleepEEG and UsleepEMG. The second one 
is originally trained on two signals (an EEG and an EOG chan-
nel) and used for fine-tuning UsleepEEG,EMG. While UsleepEEG and 
UsleepEMG are a part of the pipeline, UsleepEEG,EMG are trained for 
comparison purposes that are presented in the Methods section 
“Test of Alternative Pipelines.”

We replaced the last layer such that the model learns clas-
sification for three stages (wakefulness, NREM sleep, REM sleep) 
instead of the five sleep stages in human sleep. To address the 
fact that one of our models UsleepEMG only relies on the EMG sig-
nal (and that the pre-trained model was trained on a single EEG 
channel), we trained the convolutional layer of the first encoder 
block from scratch along with the new classification head while 
freezing the rest of the parameters. For the fine-tuning phase, 
we unfreeze all layers and trained the model again with a lower 
learning rate. For this application, we have set the prediction win-
dow to four seconds, resembling the length of the manual sleep 
stage resolution.
Model training. Each batch consisted of 128 sequences of 44 sec-
onds (11 × 4-second epochs), and batch elements were sampled 
as proposed by Perslev et al. [25]. The learning rate was set in the 
first part of the training, and in the fine-tuning phase. We used an 
unweighted cross-entropy cost function and an Adam optimizer. 
The model was trained for 1200 epochs, unless 200 consecutive 
epochs showed no improvement in the validation loss. The learn-
ing curves as well as the model choice are illustrated in Figure 
S3-S5 respectively for UsleepEEG, UsleepEMG and UsleepEEG,EMG.

Feature extraction. As illustrated in Figures 1, 16 features were 
extracted from each sleep stage. Since there were three sleep stages 
and two sets of hypnograms (i.e. one from UsleepEEG and one from 
UsleepEMG) 16 × 3 × 2 features were extracted in total per mouse. 
The EEG band power frequency features were obtained by com-
puting the power spectral density using Welch’s method (window 
size of four seconds) from the SciPy 1.7.3 package in Python 3.7.16 
[28]. For each frequency band of interest, the integral of that area 
was calculated using the composite Simpson’s rule. To account 
for inter-subject variability, the relative power was computed by 
normalizing with the integral of the entire power spectrum. The 
following frequency bands were calculated: slow-oscillations [0.5-
1.5 Hz], slow-delta [1-2.25 Hz], fast-delta [2.5-4 Hz], slow-theta [5-8 
Hz], fast-theta [8-10 Hz], alpha [9-14 Hz], and beta [14-30 Hz]. The 
root mean square (RMS) was used as a representation of the EMG 
signal’s amplitude. For each sleep stage, we calculated the aver-
age bout length in seconds, the total time spent in that stage as 
a fraction of the total time spent in all stages, and the count of 
bouts in the specific stage per hour. Additionally, for each stage, 
we estimated the time spent in bouts of 4 seconds, 4–32 seconds, 
32–60 seconds, 60–300 seconds, and greater than 300 seconds as a 
fraction of time spent in all bouts in that stage. All features were 
standardized prior to model training in each fold.
Model training. A total of 11 WT mice and 19 DTA mice (Cohort F) 
were used to train the NT1 classifier. The effect of the weighted 
L1 term is to reduce the number of variables by setting irrele-
vant parameters to zero. The larger the value of λ, the greater 
the emphasis on the regularization term [29]. The model is opti-
mized using a Coordinate Descent algorithm with the “liblinear” 
setting in SciPy. We trained the classification model with an outer 
leave-one-subject-out (LOSO) approach and an inner 5-fold cross- 
validation approach allowing us to find the optimal value for 
λ while considering different splits. In each fold, we tested 10 
equidistant values of λ on a log scale between 10−4 and 104, and 
determined the best λ. Finally, we trained a new NT1 classifica-
tion model on the entire dataset using the optimal value of λ. 
The NT1 classification pipeline was implemented using the 
LogisticRegressionCV function from Scikit-learn version 1.0.2 [30].

Test of Alternative Pipelines
As a final step, we explored alternative pipelines for potential 
improvement of our method. Our original pipeline (i.e. Ensemble 
pipeline; Figure 1) was based on using both the UsleepEEG and 
UsleepEMG models to obtain two sets of predictions per subject, 
resulting in 16 × 3 × 2 features for training the NT1 classifier in 
an ensemble manner. The global pipeline was tested to deter-
mine if an NT1 classifier could capture differences between the 
two genotypes regardless of the sleep stages. To achieve this, we 
computed seven power band features from the EEG signal and 
the RMS from the EMG signal, averaging them across all sleep 
stages for each mouse. We used these features to train an NT1 
classifier in a LOSO manner as explained in the section “Model 
Classification.” We then moved on to examine the effect of using 
single modality classifiers from either the EEG (single-EEG pipe-
line) or the EMG channel (single-EMG pipeline). We used the sleep 
stage predictions from UsleepEEG to compute 16 features from each 
sleep stage, which then were used for training an NT1 classifier. 
We repeated this process with the respective output predictions 
from the UsleepEMG model. The multi-channel pipeline utilized 
the UsleepEEG,EMG classifier to generate predictions. Features com-
puted from the single annotation set were subsequently used to 
train an NT1 classifier.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpaf025#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpaf025#supplementary-data
http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpaf025#supplementary-data
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Statistics
Hypnograms obtained from the automatic sleep stage classifiers 
were evaluated against manual labels in confusion matrices. Two 
confusion matrices were obtained for each model as the models 
were tested in a cohort of NT1 mice and WT mice. Differences in 
the performance of the models in NT1 mice and WT mice were 
computed by taking the log odds ratio (LOR) between the two con-
fusion matrices. The LOR were iteratively applied across all fields 
of the matrices resulting in a likelihood for a certain (mis)classifi-
cation that is more likely to happen for an NT1 mouse.

LOR = ln

Å
x1 · x2
x3 · x2

ã

where x1, x2, x3 and x4 represents elements in the contingency 
table (see Supplementary Data S3 for details).

The confidence intervals (CI) were further computed as

CIup = exp

(
ln

Å
x1 · x4
x3 · x2

ã
+ 1.96 ·

 
1
x1

+
1
x 2

+
1
x 3

+
1
x4

)

CIin = exp

(
ln

Å
x1 · x4
x3 · x2

ã
− 1.96 ·

 
1
x1

+
1
x 2

+
1
x 3

+
1
x4

)

The computation of the ci enabled the evaluation of the sta-
tistical significance of the LOR; if the ci does not include zero, 
the LOR is considered statistically significant [31]. The ci have not 
been corrected for multiple comparisons.

To evaluate the performance of all classifiers (method section 
“Test of Alternative Pipelines”), we tested all five pipelines against 
each other using a McNemar test. We tested the hypothesis that 
classifiers have different proportions of errors on the test set 
against the null hypothesis that they have similar proportions of 
errors. The McNemar test is suitable for evaluating differences in 
classification performance when the data are paired, such as pre-
dictions on the same test set. We assumed a binomial distribution 
and conducted the test using the statsmodels Python package.

Results
Models trained on one modality can be used to 
predict wakefulness and sleep in WT and NT1 
mice
To evaluate the performance of the automatic sleep stage classi-
fiers, UsleepEEG and UsleepEMG were tested in cohort F, a held-out 
dataset of 11 WT mice and 19 NT1 mice (see Table 1). Our results 
showed that UsleepEMG was good at separating wakefulness from 
sleep; however, it did not perform well in differentiating between 
sleep stages (Figure 2A). Of the true REM sleep episodes, 59% were 
classified as NREM sleep, and 6.7% of the true NREM sleep epi-
sodes were predicted as REM sleep. UsleepEMG correctly identified 
96.3% of the wakefulness epochs and 89.2% of the NREM sleep 
epochs. The precision for UsleepEMG in wakefulness and NREM 
sleep was 96.7% and 85.4%, (Supplementary Figure S1C) indicat-
ing that among all the epochs that were classified as wakefulness, 
96.7% was correctly classified as wakefulness and out of all NREM 
sleep predictions 85.4% were correctly classified as NREM sleep. 
While the performance for both wakefulness and NREM sleep 
was good, UsleepEMG performed less well for detecting REM sleep. 
Only 35.3% of the true REM sleep epochs were correctly identified 
(Figure 2A), and only 45.5% of the epochs classified as REM sleep 
were manually labeled as REM sleep (Supplementary Figure S1C). 
This indicated that UsleepEMG was conservative in predicting REM 
sleep, and when it predicted REM sleep, it was less precise.

UsleepEEG achieved a high recall for both wakefulness (94.7%), 
NREM sleep (96.1%), and to a lesser extent REM sleep (77.8%; Figure 
2C). The same pattern was seen for the precision (Supplementary 
Figure S1A). Similar to UsleepEMG, REM sleep was the most difficult 
sleep stage to predict: 10.3% of the REM sleep was misclassified 
as wakefulness and 11.9% of the REM sleep was misclassified 
as NREM sleep. However, as opposed to UsleepEMG, the precision 
(Supplementary Figure S1A) for REM sleep was 80.7%, indicating 
that most of the classified REM sleep was also manually labeled 
as REM sleep.

When using the UsleepEMG model, NT1 mice were significantly 
more likely to have an increased number of wakefulness-NREM 
sleep misclassifications (manual versus predicted; 0.8 LOR; 
Supplementary Table S1 for statistics) and wakefulness-REM sleep 
misclassifications (1.4 LOR; Supplementary Table S1). A decreased 
EMG amplitude for these wakefulness-NREM sleep and wakefulness- 
REM sleep epochs was found across genotypes (expressed as RMS, 
Figure 2E), explaining why the models predict these as NREM 
sleep or REM sleep rather than wakefulness. Wakefulness-NREM 
sleep and wakefulness-REM sleep misclassifications were more 
likely to occur in NT1 mice (compared predictions by UsleepEEG 
and manual labels; LOR of 0.8 and 1.3, respectively; see Figure 
2D; Supplementary Table S2 for statistics). An increased delta 
power was found in wakefulness-NREM sleep epochs compared 
to correctly identified wakefulness (Figure 2F), as in contrast to 
little or no relative difference in theta power between wakeful-
ness and wakefulness-REM sleep (Figure 2G). Our results fur-
ther showed that misclassifications of NREM sleep-wakefulness, 
NREM sleep-REM sleep, and REM sleep-wakefulness were more 
likely to occur in NT1 mice (LOR of 0.6, 1.0, and 0.6, respectively; 
see Figure 2D; Supplementary Table S2 for statistics). A decreased 
delta power was observed for NREM sleep-wakefulness relative 
to NREM sleep (Figure 2F). Increased theta power in NREM sleep-
REM sleep relative to NREM sleep and decreased theta power for 
REM sleep-wakefulness relative to REM sleep was found across 
genotypes (Figure 2G).

Collectively, misclassifications were observed in WT and NT1 
mice with both models, UsleepEEG and UsleepEMG. Although our 
data suggest that they occur for the same reason, the misclassifi-
cations are more frequently occurring in NT1 mice.

Misclassifications by UsleepEEG and UsleepEMG can 
be used to identify abnormalities in NT1 mice 
sleep-wake patterns
To examine when misclassifications occurred, we looked at 
sequences that covered some of the misclassification periods of 
an NT1 mouse. While some of the misclassifications occurred 
around transitions from wakefulness to sleep (Figure 3A), 
other misclassifications appeared around microevents such as 
microarousals (Figure 3B). Specifically, for this NT1 mouse, there 
were sequences where both models predicted sleep with high cer-
tainty while the expert labeled it as wakefulness (Figure 3C, Figure 
3D). For both cases, the power spectrum showed either high delta 
or high theta power during the periods of high certainty for sleep, 
as determined by the hypnodensity from UsleepEEG. A low EMG 
amplitude was observed when UsleepEMG predicted sleep (Figure 
3C), whereas a high EMG amplitude was noted when UsleepEMG 
indicated wakefulness (Figure 3D). Thus, such episodes could be 
short sleep or cataplexy episodes missed by the expert.

UsleepEEG and UsleepEMG were solely trained on WT mice 
restricting the models to only make wakefulness, NREM sleep and 
REM sleep predictions. Hence, when disease-specific behaviors 
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such as cataplexy or delta attacks [19] appeared it would be clas-
sified into one of these three main stages. To investigate how 
the models would classify these periods, we visualized scored 
sequences of delta attack (Figure 3E) and cataplexy (Figure 3F). 
For delta attacks, both models predicted a high probability of 

NREM sleep, and the data exhibited the characteristics of NREM 
sleep (Figure 3E; high delta power in the EEG power spectrum and 
a low EMG amplitude). Although there was an increase in theta 
power during the period of cataplexy, UsleepEEG still labeled it as 
wakefulness. Cataplexy was detected as NREM sleep/REM sleep 

Figure 3.  Misclassifications by UsleepEEG and UsleepEMG can be used to identify altered behavior in NT1 mice. Sequences of 120 seconds are plotted 
from one NT1 mouse. The first row shows hypnograms from manual scores (i.e. Hyp; W = Wakefulnss, N = NREM sleep, R = REM sleep, DA = Delta 
Attacks, C = Cataplexy). The second and third rows show hypnodensity from UsleepEEG and UsleepEMG. Below is a spectrogram of the EEG sequence 
where the frequency is on the y-axis, and yellow represents an increase in power. The last row represents the raw EMG signal. (A) Sequence covering 
a transition from NREM sleep to wakefulness. (B) Sequence covering a microarousal event. (C) Sequence with a wakefulness-NREM sleep and 
wakefulness—REM sleep misclassification (i.e., manual label indicates wakefulkness while the models indicate sleep). (D) Sequence of a wakefulness-
NREM sleep misclassification. (E) Sequence covering delta attack. (F) Sequence covering a cataplexy attack.
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by UsleepEMG, because a clear loss in muscle tone was present 
during this period. Essentially the misclassifications reflect the 
altered behavioral phenotypes reported in NT1 mice [19].

Feature extraction from each sleep stage can 
be used to develop a model for probability 
estimation of mouse NT1
Following feature extraction (Figure 1), we decomposed these 
using principal component analysis (PCA) for visualization in 
two dimensions (Figure 4A). A clear separation of WT mice and 
NT1 mice was observed suggesting that the computed features 
could differentiate the two genotypes. The features were thus 
used to train the NT1 classifier using 5-fold cross-validation, 
which achieved an accuracy of 0.97 (Figure 4B). Some of the most 
important features as determined by the model coincide with 
well-known characteristics of the NT1 phenotype, such as the 
average bout length of wakefulness and NREM sleep while other 
features, such as increased slow-delta power in REM sleep, might 
be additional features to characterize the NT1 phenotype in mice 
(Figure 4C).

Performance of different pipelines for probability 
estimation of NT1 in mice.
Once we established that the features we selected worked well 
for probability estimation, we explored if the pipeline could be 
simplified. To do so, we first tested if the global signal across 
sleep stages was strong enough to distinguish WT from NT1 
mice. Using the global signal as the main pipeline would make 
the automatic sleep staging step redundant and therefore greatly 
simplify the approach. Eight features were extracted and used in 
the global pipeline (Figure 5A; seven power band features from 
the EEG signal and the RMS from the EMG signal). Although the 
pipeline is much simpler, there was a clear drop in performance 

(0.79 accuracy; Figure 5B), when features were not extracted for 
each sleep stage. Second, we investigated the effect of only using 
the hypnogram from either the EEG (i.e. Single-EEG pipeline) or 
the EMG (i.e. Single-EMG pipeline; Figure 5A), as opposed to the 
Ensemble Pipeline that uses both individual models. We found 
that the EEG pipeline provided most of the performance gain 
and performed similarly to the Ensemble Pipeline (Figure 5B). 
Finally, we tested how a sleep stage model that relied on both 
EEG and EMG signals (i.e. a multi-channel pipeline) compared 
to the Ensemble approach, and found that it resulted in one 
additional incorrect prediction (Figure 5B). All the models were 
tested against each other with a McNemar test (Supplementary 
Table S3). Although none of the pipeline comparisons yielded 
significant differences, we chose to proceed with the ensem-
ble approach that used the two separate models, UsleepEEG and 
UsleepEMG, expecting this would make the pipeline more robust. 
In cases where one channel is noisy, the other can still be used to 
generate a useful hypnogram, effectively reducing the risk of poor 
performance due to single-channel noise. While the ensemble 
increases model complexity, this is a trade-off to gain robustness 
against channel-specific artifacts.

The automated pipeline successfully captures 
disease progression in a held-out dataset of 7/7 
DTA mice
To validate our pipeline, we tested our final model in a held-out 
dataset of seven DTA mice (Cohort G; Table 1). As shown in Figure 
6B, the pipeline correctly captured disease progression across 
weeks for all mice. To further examine robustness towards noise, 
we tested the pipeline in a group of WT and NT1 mice with and 
without artifacts (Figure 6C-D). Since our pipeline heavily relies 
on power spectrum features, the performance of the model 
was compromised when noise was present in both signals. The 

Figure 4.  Feature extraction from each sleep state can be used to develop a model for probability estimation of mouse NT1. (A) Scatter plot of 
principal component one and principal component two, WT mice and NT1 mice. (B) Confusion matrix showing the performance of the NT1 classifier 
trained to predict the probability of having NT1 (C) In table C, the most important features are listed in descending order.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpaf025#supplementary-data
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Figure 5.  Pipeline performances for probability estimation of NT1 (A) Different pipelines tested for developing the best fully automated pipeline. The 
first approach tested was the Global Pipeline, where features of each mouse are averaged across all epochs regardless of the sleep stages. Only nine 
features are extracted: seven power bands from the EEG signal and the root mean square feature from the EMG signal. Next, we used single modality 
classifiers (Single-EEG Pipeline, Single-EMG Pipeline). Finally, we further tested an automatic sleep stage classifier that takes two modalities (multi-
channel) as input instead of one. The Ensemble Pipeline resembles the pipeline represented in Figure 1. (B) Confusion matrices for each pipeline. Both 
the Single-EEG Pipeline and the Ensemble approach achieve a performance of 0.97, with only one mouse being misclassified.

Figure 6.  Automated pipeline captures disease progression in a held-out dataset of 7/7 DTA mice (A) In the DTA NT1 model, orexin neurons 
degenerate across time. In week 0 all orexin neurons exist similar to WT mice, across weeks 2–6 there is a progressive appearance of NT1 symptoms. 
(B) A line plot reflecting the probability of having NT across weeks for seven DTA mice (i.e., mouse model presented in A). (C), An example of an 
artifact-free power plot of the EEG and the EMG and the raw traces below. (D), signals with artifacts. (E-F) Performance of the pipeline when tested in 
WT and NT1 mice with and without artifacts.
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pipeline accurately detected WT and NT1 mice when the data 
was artifact free but failed when recordings contained excessive 
noise (Figure 6E–F).

Discussion
In this study, we propose a fully automated pipeline for prob-
ability estimation of NT1 in mice based on unlabeled EEG and 
EMG recordings. The pipeline achieves an accuracy of 97% (Figure 
4) 100% on hold-out cohort G (Figure 6), and 71.4% on cohort H 
(Figure 6). Subject-wise average on both these cohorts results in 
an accuracy of 80%, a sensitivity of 92%, and a specificity of 62%. 
While there is a performance decrease in the presence of noise 
(Figure 6), overall results indicate that the pipeline generalizes 
well to other laboratories.

Automatic Sleep Stage Classifiers
In our pipeline, UsleepEMG and UsleepEEG generate hypnograms for 
bout analysis, spectral features, and RMS, essential for charac-
terizing phenotypic behavior. Thus, the whole pipeline relies on 
the accuracy of the automatic sleep stage classifiers. Our results 
show that REM sleep is the most difficult sleep stage to score 
(Figure 2), which is in line with current research [32–35]. One of 
the reasons for this could be that REM sleep is the minority class. 
From a modeling perspective, a model can achieve a high accu-
racy by favoring the majority class and neglecting the minority 
class. Hence, techniques such as adjusting the loss function, 
for instance by using weighted cross-entropy, or stratifying the 
dataset to ensure equal representation of each class, are often 
used to balance the data and help the model learn the minority 
class. In this study, we accommodated the imbalanced classes 
with uniform sampling of a class (i.e. all classes are sampled 
with equal probability) during training. However, our results still 
show a lower performance for REM sleep prediction for both 
models compared to NREM sleep and wakefulness (Figure 2A-D). 
Although additional methods could be explored to improve REM 
sleep prediction, numerous studies [32, 34] have previously inves-
tigated various techniques with limited gains, suggesting that this 
stage might inherently have more variability making it harder to 
learn. Comparing UsleepEEG to other state-of-the art models in the 
field [32, 35], UsleepEEG performs on a similar scale particularly 
for wakefulness and NREM sleep (Supplementary Table S4) con-
firming that our approach reaches state-of-the-art performance.

Many models in the field use post-hoc methods to correct 
“wrong” predictions in terms of sleep physiology, which inevitably 
improves accuracy during evaluation. As an example, SPINDLE 
[32] uses an HMM to suppress implausible transitions through a 
transition matrix. Although this improves model performance, it 
also constrains the model to only work for WT mice, as some the-
oretically impossible transitions, such as going from wakefulness 
directly to REM sleep, can be observed in NT1 mice [36]. For this 
reason, we did not make any post-hoc corrections, allowing for 
unrestricted sleep transitions to be modeled in NT1 mice, even if 
it meant sacrificing performance.

Misclassifications
For both UsleepEMG and UsleepEEG, we observed that some misclas-
sifications were more likely to occur in NT1 mice. Compared to 
WT mice, NT1 mice exhibit more fragmented sleep/wake pat-
terns [10]. Since there often is inconsistency in scoring sleep stage 
transitions both among experts and between experts and models, 
this might increase the number of misclassifications.

Particularly for UsleepEMG, there was an increased likelihood for 
wakefulness-NREM sleep and wakefulness-REM sleep misclassi-
fications (Figure 2B), due to a decrease in EMG amplitude in some 
of the epochs labeled as wakefulness by manual scoring (Figure 
2E). As the models only score wakefulness, NREM sleep, and REM 
sleep, all epochs with delta attacks and cataplexy annotations 
were left out of the performance evaluation. Such behaviors 
are therefore not contributing to the misclassifications unless 
they have not been labeled by the expert. Instead, the increased 
wakefulness-NREM sleep and wakefulness-REM sleep misclassifi-
cations with the UsleepEMG model could be due to inactive wake-
fulness and an increased number of microsleep episodes or they 
could be unscored delta attacks or cataplexy.

Similar to UsleepEMG, UsleepEEG also has an increased likeli-
hood of wakefulness-NREM sleep and wakefulness-REM sleep 
misclassifications in NT1 mice suggesting alterations in the 
EEG during wakefulness (Figure 2D). One possible reason for the 
wakefulness-NREM sleep misclassification may be the presence 
of increased delta power during wakefulness (Figure 2F). These 
episodes could be unscored delta attacks or perhaps a sign of 
sleepiness. Increased delta power during wakefulness is indeed 
a commonly observed marker in sleep-deprived humans [37, 38], 
but is not as established in mice [39]. Vyazovskiy et al. [39] found 
an increase in delta (1.5–4Hz) and low theta (5-6.5Hz) power in 
wakefulness EEG during 6-h of sleep deprivation in rats. Thus, 
the delta-dominated wakefulness that is misclassified as NREM 
sleep might serve as a marker for sleepiness in NT1 mice. With 
UsleepEEG NREM sleep-wakefulness and REM sleep-wakefulness 
misclassifications are also seen. These indicate that NT1 mice 
exhibit sleep alterations with a drop in delta power in NREM sleep 
(Figure 2F) and theta power in REM sleep (Figure 2G), respectively. 
These alterations are also observed in a study by Christensen et 
al. [40] in humans and could potentially serve as a translational 
diagnostic marker.

The increased likelihood of NREM sleep—REM sleep misclassi-
fication in NT1 (Figure 2D) and these epochs showing character-
istics of REM sleep (high theta peak; Figure 2G) suggest that some 
epochs scored as NREM sleep might indeed be REM sleep. This 
might in part be caused by the scoring criteria used by manual 
experts. Since direct transitions into REM sleep is basically absent 
in WT mice, early and short REM sleep episodes in NT1 [36] mice 
might be overlooked and scored as NREM sleep.

All these different misclassifications raise the question of 
whether it is the manual expert or the model that is correct. In 
this context, it should be considered that human experts often 
rely on video to score sleep and wake states, especially in mouse 
models of diseases. While the video can enable more precise 
scoring, it also contributes to greater variation between experts, 
as some rely more on video and others more on EEG/EMG sig-
nals. Further, both manual scoring and video analysis are highly 
repetitive tasks that lead to fatigue errors. Sleep/wake transitions 
(Figure 3A) and microevents (Figure 3B) are also a source of varia-
tion, as these can be difficult to label manually. One reason is that 
the transition does not always happen at exactly the same time 
according to the EEG power spectrum and the EMG signal (Figure 
3A). Transitions can also show elements of two different stages in 
one epoch, thus forcing them into discrete wakefulness and sleep 
stage categories that cause inconsistencies.

The fact that UsleepEMG and UsleepEEG are trained on healthy 
mice means that altered behaviors such as delta attacks might 
end up classified as NREM sleep (Figure 3D). As a result, it may 
be difficult to compare delta and theta power in wakefulness, 
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NREM sleep, and REM sleep with previous work because much 
of the altered behavior captured by manual experts may end up 
being classified in other stages. Naturally, the misclassifications 
will affect evaluation of sleep stages in terms of computing the 
average bout length, EMG amplitude, and spectral features. Thus, 
our model cannot be used for accurate quantification of features 
such as sleep stage bout length. However, the pipeline can still 
effectively distinguish between phenotypes which was our goal.

Feature extraction and classification model
Handcrafted feature extraction for NT1 detection has previously 
been proposed and used in humans [13]. However, to the best of 
our knowledge, this is the first fully automated tool for probability 
estimation in NT1 mice. Given the known signs of NT1 (i.e. altered 
EEG power spectra, altered REM sleep amplitude, and increased 
sleep/wake fragmentation [5]), we selected specific features that 
would capture these changes. We used spectral power features 
to capture altered EEG, altered EMG amplitude, and average bout 
length and counts of bouts, along with time spent in the differ-
ent sleep stages, to measure sleep/wake fragmentation. We could 
have expanded our feature space by incorporating more features 
similar to Stephansen et al. [13], however, we chose to keep the 
feature space small due to the smaller sample size, and due to 
the scope of this study being to develop a simple pipeline for 
probability estimation of NT1 rather than identifying biomarkers.

Validation and Limitations of the Framework
We found that the pipeline does not perform well in the pres-
ence of noisy data (Figure 6C). Since movement artifacts appear 
as low-frequency noise in the signal, they directly mask the signal 
of interest and affect the computation of oscillations in the low 
and high delta range, which are variables the model relies on for 
the classification (Figure 4). This could suggest that the pipeline 
would benefit from a noise detection step prior to feature extrac-
tion, where methods such as Independent Component Analysis 
[41] could be used to remove artifacts. While we demonstrated 
that the pipeline is sensitive to noise, we have shown that it gen-
eralizes to multiple laboratories.

In this study, we focused on the DTA model, but a similar 
approach could be taken in future studies with other NT1 mouse 
models, such as the HCRT-KO and Ataxin-3 mouse models. 
Similarly, extending the work to the study of HcrtR1 and HcrtR2 
knock-out mice could help better define various aspects of the 
phenotypes. Although HcrtR2 may play a greater role in the NT1 
phenotype, both HCRT receptors are likely to be involved in the 
full NT1 phenotype [42–44]. Additionally, it would be interesting 
to explore whether a similar pipeline could be applied to mouse 
models in other domains, such as Alzheimer disease, depression, 
epilepsy, rapid eye movement sleep behavior disorder, or restless 
legs syndrome. This could potentially lead to faster and more 
unbiased tools for testing different treatment options across var-
ious mouse models.

Our pipeline focuses on sleep architecture specifically NREM 
and REM sleep rather than the direct detection of cataplexy. This 
aligns with real-world diagnostic practices, where abnormalities 
in sleep structure and REM sleep onset play a central role in sup-
porting an NT1 diagnosis in the absence of observed cataplexy. 
While further work is needed to adapt the framework to human 
data, this study can serve as a foundation for developing similar 
automated diagnostic tools for clinical use. By providing a fully 
automated and scalable method for sleep stage classification and 
phenotypic profiling, our approach has the potential to assist in 

early or ambiguous NT1 diagnoses, particularly when cataplexy 
is not clearly present.

Supplementary material
Supplementary material is available at SLEEP Advances online.
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