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Structural basis for microtubule recognition
by the human kinetochore Ska complex
Maria Alba Abad1,*, Bethan Medina1,*, Anna Santamaria2,*, Juan Zou1, Carla Plasberg-Hill1,

Arumugam Madhumalar3, Uma Jayachandran1, Patrick Marc Redli2, Juri Rappsilber1,4,

Erich A. Nigg2 & A. Arockia Jeyaprakash1

The ability of kinetochores (KTs) to maintain stable attachments to dynamic microtubule

structures (‘straight’ during microtubule polymerization and ‘curved’ during microtubule

depolymerization) is an essential requirement for accurate chromosome segregation. Here

we show that the kinetochore-associated Ska complex interacts with tubulin monomers via

the carboxy-terminal winged-helix domain of Ska1, providing the structural basis for the

ability to bind both straight and curved microtubule structures. This contrasts with the Ndc80

complex, which binds straight microtubules by recognizing the dimeric interface of tubulin.

The Ska1 microtubule-binding domain interacts with tubulins using multiple contact sites that

allow the Ska complex to bind microtubules in multiple modes. Disrupting either the flexibility

or the tubulin contact sites of the Ska1 microtubule-binding domain perturbs normal mitotic

progression, explaining the critical role of the Ska complex in maintaining a firm grip on

dynamic microtubules.
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E
stablishment of physical connections between the chromo-
somes and the spindle microtubules (MTs) via the
kinetochore (KT) is essential for faithfully segregating the

duplicated chromosomes to daughter cells1,2. A key property of
the functional KT is its ability to maintain attachments to the plus
end of MTs, as they undergo cycles of polymerization and
depolymerization commonly known as dynamic instability3–6. As
MT depolymerization contributes to the force required for
driving chromosome segregation7–10, MT-binding factors that
can stay attached to and/or track depolymerizing MTs are
essential. At the outer KT, a protein interaction network
called the KMN network (consisting of the protein KNL1 and
the protein complexes Mis12 and Ndc80) provides the direct
binding site for MTs5,11. Among these components, the Ndc80
complex is the major MT-binding factor, whereas KNL1 also
possesses MT-binding ability11,12.

The Ndc80 complex is a heterotetramer composed of Ndc80,
Nuf2, Spc24 and Spc25. The globular domains of Ndc80 and
Nuf2 are connected to the globular domains of Spc24 and Spc25
via a long coiled-coil structure, resulting in an B60-nm dumb-
bell-shaped architecture5,13,14. Although the globular heads of
Spc24 and Spc25 mediate the KT association, those of Ndc80 and
Nuf2 directly interact with MTs5,13,15,16. The Ndc80 complex can
track depolymerizing MTs when attached to microspheres and it
influences MT dynamics by stabilizing straight MTs17,18.
In budding yeast, a ten-subunit protein complex called Dam1
can form a ring around MTs and cooperates with the
Ndc80 complex in maintaining stable KT attachments to
dynamic MTs19–22. However, no obvious structural Dam1
homologue has been identified in metazoans.

Originally discovered in a proteomics screen23, the Ska
complex is now recognized as a key element required for
maintaining stable KT–MT attachments24–29. The ternary Ska
complex, composed of Ska1, Ska2 and Ska3, localizes to the outer
KT in a KMN-dependent manner. There, it is regulated by the
Aurora B kinase30, much like the Dam1 complex19,20.
Cells depleted of the Ska complex fail to maintain stable KT–
MT attachments, resulting in chromosome congression failure
followed by cell death25,26. The Ska complex can directly interact
with MTs and track depolymerizing MTs in vitro26,31.
Accordingly, it has been proposed that the Ska and Ndc80
complexes form an integrated MT-binding assembly31. The
ability of the Ska complex to track depolymerizing MTs in vitro
and its dependency on the KMN for its localization and function
suggest that the Ska complex may be a functional equivalent of
the Dam/DASH complex in metazoans25,26. Besides stabilizing
KT–MT attachments, the Ska complex has also been
implicated in silencing the spindle checkpoint24,27,32.

During MT growth and shrinkage, MTs undergo important
conformational changes. Protofilaments adopt a curved
conformation during MT depolymerization and a straight
conformation during polymerization. Understanding the
structural basis for how the Ndc80 and Ska complexes interact
with dynamic MTs is indispensable for understanding the
mechanistic aspects of KT–MT attachments. Structural character-
izations of Ndc80–MT interactions have shown that the Ndc80
complex binds MTs by interacting at the dimeric interface
of a- and b-tubulins. This mode of interaction is also thought to
influence the plus-end dynamics of MTs33,34. Although no
atomic structure of the Dam1 complex is available, electron
microscopy studies have provided insight into how multimeric
Dam1 complexes assemble into a ring-like structure encircling
MTs19,35. Our previous work demonstrated that the Ska complex is
a dimer of triple helical bundles formed by Ska1, Ska2 and Ska3,
resulting in a W-shaped structure with a maximum interatomic
distance of B350 Å (ref. 36). The MT-binding domains (MTBDs)

of the Ska complex protrude at the ends of the W-shaped
homodimer, suggesting a transversal mode of MT binding at the
KT–MT interface36. A recently reported nuclear magnetic
resonance (NMR) structure of the Caenorhabditis elegans Ska1–
MTBD revealed the involvement of a winged-helix domain in MT
recognition31. At this point, information on how the Ska complex
interacts with MTs is crucial to understand the role of the Ska
complex in potentially coupling MT dynamics and chromosome
segregation. By combining X-ray crystallography, crosslinking/
mass spectrometry (MS) and biochemistry, we have here
characterized the MTBD of the human Ska complex and
evaluated its interaction with MTs in vitro and in vivo. We show
that the Ska complex, unlike the Ndc80 complex, can bind tubulin
monomers in different orientations via its multiple MT contact
sites, allowing it to recognize MTs in a conformation-independent
manner. These results provide novel structural and functional
insights into the role of the Ska complex in maintaining stable
attachments to dynamic MTs.

Results
Ska192–255 is essential for correct mitotic progression. We
previously demonstrated that the C-terminal domains of Ska1
(Ska192–255) and Ska3 (Ska3102–412) are essential for the function
of the Ska complex36. Deletion of Ska192–255 completely abolished
the MT-binding ability of the complex, supporting its role in
recognizing MTs36. Secondary structure predictions suggested
that Ska192–255 possesses a globular domain preceded by an
unstructured region of 40 amino acids. Proteolysis experiments
using trypsin and MS analysis identified a stable fragment of Ska1
encompassing residues 133–255 (Ska1133–255; Fig. 1a). Consistent
with our previous work, Ska1133–255 showed weak MT binding on
its own17 (Fig. 1b). As the full-length (FL) Ska complex is a dimer,
we asked whether dimerization of Ska1133–255 would increase
its affinity for MTs. Exploiting the propensity of glutathione
S-transferase (GST) to dimerize, we tested the ability of GST-
fused Ska1133–255 to bind MTs. Although GST–Ska1133–255

is not strictly equivalent to the FL Ska1 dimer in the native
complex, and thus might bind MTs differently, it clearly
interacted with MTs more efficiently than Ska1133–255 (Fig. 1b).
These observations suggest that Ska1133–255 (from now on
referred to as MTBD) is the major MT-binding element within
the Ska complex, which, on dimerization, can bind MTs more
efficiently.

We next evaluated the requirement of the Ska1–MTBD and the
loop (Ska192–132, referred to as Ska1 loop) connecting the amino-
terminal helical domain (Ska11–91) for correct mitotic progres-
sion. As reported earlier25,27,31, Ska1 depletion resulted in a
significant increase in mitotic timing (Fig. 1c; see Supplementary
Fig. S1a for depletion efficiency). A majority of cells showed
metaphase-like appearance (Fig. 1d and Supplementary Movie 1),
but roughly a third of the cells showed prolonged prometaphase
with chromosome congression defects (Supplementary Movie 2),
probably reflecting a more complete depletion of the Ska
complex25,30. FL mCherry-Ska1 efficiently rescued depletion of
endogenous Ska1 (Supplementary Movie 3) and cells progressed
through mitosis comparably with control (GL2-treated) cells
(Fig. 1c). Replacement of endogenous Ska1 by Ska11–132 failed to
rescue normal progression through mitosis (Fig. 1c): onset of
anaphase was delayed and the frequency of apoptosis increased,
but most of the cells showed proper chromosome alignment with
timings comparable to cells rescued with Ska1 wild type (WT;
Fig. 1d, Supplementary Table S1 and Supplementary Movie 4).
Moreover, Ska11–132 localized to KTs but failed to decorate
spindle MTs and showed no bundling activity when compared
with Ska1 WT (Supplementary Fig. S1b,c). These observations are
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consistent with a previous report31 and show the requirement
of the Ska1–MTBD for ensuring stable KT–MT interactions and
timely mitotic progression, although this domain seems
dispensable for initial chromosome alignment. In contrast,

replacement of WT Ska1 by Ska1–MTBD resulted not only in
delayed anaphase onset and problems in maintaining a tight
metaphase plate (Fig. 1c and Supplementary Movie 5) but also
increased the time for initial chromosome alignment
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Figure 1 | Characterization of functional determinants of Ska1. (a) Limited proteolysis of the Ska192–255 with trypsin that led to the formation of a stable

fragment identified by MS as Ska1133–255. Uncropped scan of the gel is shown in Supplementary Fig. S8a. (b) Top, representative SDS–PAGE of cosedimentation

assays comparing the MT-binding activity of Ska1133–255 and GST–Ska1133–255. Bottom, quantification of the MT-binding assays in b (mean±s.d., n¼4,

***Pr0.001, t-test). (c) Box-and-whisker plot showing the elapsed time (min) between nuclear envelope breakdown (NEBD) and anaphase onset/death for

individual cells. The total number of cells (n) from two or more independent experiments is given above each box. Lower and upper whiskers represent 10th

and 90th percentiles, respectively. Table summarizing information from the live cell experiments shown below regarding the average time in mitosis (from

NEBD until anaphase onset/cell death) and the percentage of cells dying in mitosis. (d) Representative stills from time-lapse video-microscopy experiments

illustrating mitotic progression of HeLa S3 cells stably expressing histone H2B-GFP treated as in c. Time in h:min is indicated. T¼0 was defined as the time

point at which NEBD became evident. Scale bar, 10mm. (e) Cartoon representation of the structure of human Ska1–MTBD, which possesses a modified

winged-helix domain with an elongated shape. The length of the structure is B50 Å whereas the width is B30 Å. Secondary structure elements are labelled.

(f) Sequence alignment of human Ska191–255 showing amino acid conservation between H. sapiens (hs), Mus musculus (mm), Xenopus tropicalis (xt) and Danio

rerio (dr). Secondary structure elements are shown below the aligned sequences. Amino acid conservation is highlighted in grey.
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(Supplementary Table S1). Considering that Ska1–MTBD lacks
both the helical domain required for intermolecular interactions
involving Ska2 and Ska3, and the loop that precedes it, these
results highlight the importance of the N-terminal helical domain
and the Ska1 loop for the complete functionality of the complex
(Supplementary Fig. S1). Ska1–MTBD decorated the mitotic
spindle but failed to localize to KTs (Supplementary Fig. S1b).
The removal of amino acids 1–132 of Ska1 promoted the nuclear
localization of the Ska1–MTBD, possibly through a nuclear
export signal encompassing amino acids 52–58 of Ska1 (ref. 37).
This precluded the assessment of the MT-bundling ability of this
construct in vivo (Supplementary Fig. S1c).

We next sought to specifically evaluate the functional
requirement of the Ska1 loop. Transfection of Ska1Dloop(GSSG),
where amino acids 92–132 were replaced by a short linker
sequence (GSSG), delayed both chromosome alignment and
anaphase onset by twofold (Fig. 1c, Supplementary Table S1 and
Supplementary Movie 6). It is to be noted that the Ska1-
Dloop(GSSG) can bind MTs with comparable efficiency to the
WT Ska complex in in vitro MT-binding assays (Supplementary
Fig. S1d). Interestingly, the bulk of the Ska1Dloop(GSSG) mutant
showed no or weak KT localization, suggesting a potential role for
the loop in mediating intermolecular interactions required for KT
localization (Supplementary Fig. S1b). Together, these results
suggest that the flexibility associated with the loop region (and/or
intermolecular interactions mediated by it) is required for timely
progression through mitosis.

Ska1–MTBD possesses a modified winged-helix motif. To
understand the structural basis for the ability of human Ska
complex to bind MTs, we obtained crystals of the Ska1–MTBD in
two different crystal forms that diffracted X-rays to about 2 Å
(Table 1). The structure was determined by single anomalous
dispersion (SAD) experiments using crystals obtained from
selenomethionine-incorporated samples. Models from crystal
form I (space group C2221) and II (space group P32) were refined
to 2.1 and 2.3 Å with R factors of 19.6 and 22.5, and Rfree factors
of 25.1 and 26.8, respectively (Table 1), and superpose well with
an overall root mean square deviation of 0.6 Å. Residues 133–142
are stabilized in an extended conformation, followed by eight a-
helical segments (a1–a8) and a C-terminal b-hairpin (Fig. 1e,f).
The structural analysis showed that the Ska1–MTBD is related to
a winged-helix domain, a domain known for its ability to bind
DNA and in mediating protein–protein interactions38–42. The
Ska1–MTBD differs from the canonical winged-helix domain by
the incorporation of two additional modules (Fig. 1e and
Supplementary Fig. S2a).

Human and C. elegans Ska1–MTBDs show structural varia-
tions. During the course of this work, the NMR structure of the
MTBD of the C. elegans Ska1 was reported31. The Ska1–MTBD of
C. elegans shares 28% sequence identity and 46% sequence
similarity with its human counterpart. Structural comparisons
show that the overall topology of the human and C. elegans Ska1–
MTBDs is the same (structures superpose with an overall root
mean square deviation of 3.0 Å). However, in the C. elegans
structure, helices a5 and a8, and the b-strands b2 and b3 are in a
different orientation relative to the rest of the structure, resulting
in noticeable changes in the surface charge distribution of the
MTBD (Supplementary Fig. S2b–d). Structure-based sequence
alignment reveals that C. elegans amino acid Thr168 acts as a
hinge residue between a3 and a5 (Supplementary Fig. S2c). In
contrast, the corresponding amino acid in higher vertebrates is
proline (182, human numbering), an amino acid that has limited
backbone conformational flexibility (Supplementary Fig. S2c).

To uncover potential differences in the properties of human
versus C. elegans Ska1–MTBDs, as manifested by sequence and
structural variations, 50 ns molecular dynamic simulations (MDS)
were carried out using the two structures. The analysis of the root
mean squared fluctuations of the Ca atoms during MDS shows
that the MTBD domain of C. elegans Ska1 has more intrinsic
structural flexibility (particularly regions that show conforma-
tional variation) than its human counterpart (Supplementary
Fig. S2e). Considering the modest sequence similarity between the
human and C. elegans Ska1–MTBDs, the suggested conforma-
tional variability in the respective structures seems reasonable.
However, it is to be noted that the structures we are comparing
were obtained by crystallography and NMR, respectively; thus,
definitive conclusions on the proposed structural variations
require further validation.

Ska interacts with MTs using a multipartite mode of binding.
The basic nature of the Ska1–MTBD (predicted pI¼ 9.2) led us to
hypothesize that the Ska complex recognizes MTs through
electrostatic interactions. Analysis of the electrostatic surface
potential revealed the existence of contiguous positively charged
patches all over the Ska1–MTBD surface (Fig. 2a), suggesting the
potential involvement of multiple MT contact sites. Of the 23 Lys
(K)/Arg (R) residues that are present in the Ska1–MTBD, 14 are
clearly exposed to solvent (Fig. 2a). To identify the critical resi-
dues required for MT binding, K/R residues that cluster on the
surface were mutated to Ala (A) in the context of the FL human
Ska complex. Before subjecting the mutants to MT cosedi-
mentation assays, we analysed their size-exclusion chromato-
graphic profiles to rule out the influence of the mutations on the
overall structure of the complex. All the mutants behaved iden-
tically to the WT Ska complex, suggesting that mutations do
not affect the proper folding of the Ska complex (Supplementary
Fig. S3c). Although mutations at K170/177 and K135/203/206

Table 1 | Data collection, phasing and refinement statistics.

Crystal form 1 Crystal form 2

Data collection
Space group C2221 P32

Cell dimensions
a, b, c (Å) 39.01, 161.58, 104.48 47.18, 47.18, 116.50
a, b, g (�) 90, 90, 90 90, 90, 120

Peak
Wavelength 0.98 1.541
Resolution (Å) 63.9–2.0 (2.12–2.01) 58.3–2.3 (2.37–2.25)
Rmerge 7.8 (45.5) 4.8 (30.8)
I/sI 15.2 (3.8) 17.3 (3.6)
Completeness (%) 99.8 (99.6) 98.5 (90.1)
Redundancy 7.5 (7.5) 4.5 (4.0)

Refinement
Resolution (Å) 27.0–2.1 58.3–2.3
No. of reflections 169,025 60,423
Rwork/Rfree 19.4/24.6 22.5/26.8
No. of atoms 2,161

Protein 2,026 1,962
Water 135 40

b-Factors
Protein 52.9 68.2
Water 50.5 50.3

Root mean square deviation
Bond lengths (Å) 0.008 0.008
Bond angles (�) 1.09 1.12

Values in parentheses are for highest-resolution shell.
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showed no major effects on MT binding, mutations at R155/236/
245, a region reported recently to be critical for MT binding31,
together with two new regions identified in this study, K183/184/
203/206 and K217/223/226/227, all showed significant reductions
in MT binding (Kd¼ 20±4.5, 17.1±5.5 and 14.5±2.8 mM,
respectively, versus WT¼ 2.9±0.6 mM), pointing to the
existence of multiple MT interaction sites (Fig. 2b and
Supplementary Fig. S3a). Confirming this notion, a
combination of R236/245A with R155A resulted in stronger
reduction in MT binding than R236/245A alone (Fig. 2b and
Supplementary Fig. S3b), and the simultaneous mutation of

multiple clusters (K183/184/203/206/217/223/226/227/R236/
245A) almost completely abolished MT binding (Fig. 2b). These
results provide clear evidence that the human Ska complex binds
MTs through a multipartite binding mode of Ska1–MTBD.

Multipartite MT binding is required for Ska complex function.
We next evaluated the functional significance of the positively
charged clusters of the Ska1–MTBD using small interfering RNA
(siRNA) rescue assays with the above K or R to A mutants. In line
with in vitro results, cells transfected with K170/177A and K135/
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Figure 2 | The Ska complex binds MTs through multiple positively charged clusters. (a) Cartoon representation of the Ska1–MTBD where surface-

exposed K/R residues are shown as sticks (left). Surface representation of the Ska1–MTBD in the same orientation with electrostatic surface potential

revealing the presence of positively charged patches (right). Residues clustered based on their proximity and mutated to A to test their involvement in MT

recognition are highlighted in different colours. (b) Cosedimentation assays of the different K/R- to A-untagged Ska mutants were performed.

Representative gels (upper panel) and quantifications of MT cosedimentation assays (bottom panel). Concentration of Ska1 mutants and MTs used in

the assays are 3mM and 6 mM, respectively (mean±s.d., nZ3, *Pr0.05, ***Pr0.001; t-test; right bottom panel). Kd values were calculated using 1 mM

Ska and 0–12mM MTs (bottom left panel). Uncropped scans of the gels are shown in Supplementary Fig. S8b.
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203/206A mutants showed normal mitotic progression (Fig. 3).
Similar to WT cells, cells transfected with K170/177A kept the
ability to strongly bundle MTs (Supplementary Fig. S4a), high-
lighting the preserved MT-binding activity in this mutant.
Transfection of the Ska1 K135/203/206A mutant resulted in fewer
and weaker MT bundles in interphase cells (Supplementary
Fig. S4a), most likely to be reflecting a role of K203/206 in MT
binding (Fig. 2b); as shown below, this becomes apparent in
combination with mutations at other residues (see below). In
contrast, rescues by the Ska1 K183/184/203/206A, R155/236/
245A and K217/223/226/227A mutants resulted in perturbed
mitotic progression, characterized by a prolonged delay in ana-
phase onset and an increase in the number of apoptotic cells, but
no MT bundling in interphase cells (Fig. 3, Supplementary
Fig. S4a and Supplementary Table S2). In agreement with the
results of the in vitro MT-binding assay, the R236/245A mutant
on its own showed a milder phenotype, but when combined with
R155A it showed a much more pronounced phenotype (Fig. 3),
suggesting cooperation between R236/245A and R155A.

All Ska1 mutants tested were able to form a complex with Ska2
and Ska3 (Fig. 2b), and they localized to KTs, indistinguishable
from WT Ska1 (Supplementary Fig. S4b), indicating that the
mitotic defects described above are due to interference with MT
binding. Indeed, the majority of cells expressing R155/236/245A,
K217/223/226/227A and K183/184/203/206A contained aligned
chromosomes (Fig. 3b, Supplementary Table S2 and Supplemen-
tary Movies 7–9, respectively), reminiscent of Ska1–MTBD
expression (see above) and indicative of the requirement of the
MT-binding activity for robust KT–MT attachments, but not for
the initial contact between KTs and MTs.

Ska1 interacts with tubulin monomers at multiple sites. Having
established a multipartite mode of MT binding by the Ska com-
plex, we next aimed at identifying the structural features of MTs
that are recognized by the Ska complex. For this purpose, we
crosslinked the Ska1–MTBD/Ska complex with MTs, using
1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride
(EDC). This reagent crosslinks K (and less favourably S, T, Y) to
E or D. Analysis of the crosslinked products in SDS–
polyacrylamide gel electrophoresis (SDS–PAGE) showed a pre-
dominant band that migrated at the expected molecular weight
for one Ska1–MTBD/Ska1 crosslinked to an a-/b-tubulin
monomer (marked by asterisks in Supplementary Fig. S5a,b).

MS analysis of the crosslinked products allowed us to pinpoint
the residues involved in intermolecular recognition between the
Ska complex and tubulins (Fig. 4 and Supplementary Fig. S5e).
The overall sequence coverage for Ska1/Ska1–MTBD and tubulin
monomers was almost complete, except for the flexible
C-terminal tails of tubulin (Supplementary Fig. S5f). Consistent
with our biochemical and functional analyses, most of the
crosslinks observed for the FL Ska complex bound to MTs
involved the MTBD of Ska1. The Ska1–MTBD made almost
identical crosslinks with MTs, regardless of whether it was
analysed on its own or in the context of the Ska complex,
highlighting the specificity of the interaction (Fig. 4a,b). Further-
more, Ska2, which has been shown not to have any MT-binding
activity, did not produce any crosslinked peptides with tubulin,
confirming the specificity of the crosslinking reaction. Among the
three K/R clusters that we identified to be crucial for MT binding
and function, two (K183/184/203/206 and K216/217/223/226)
showed crosslinks with tubulin monomers. Mapping of the
crosslinked residues on the three-dimensional structures of Ska1–
MTBD and MTs showed that these clusters contact globular/
folded regions of tubulin monomers (unlike most MT-binding
proteins that interact with MTs by recognizing acidic tails of

tubulins) mainly at two helices: H3 and H4 of b-tubulin and H3
and H12 of a-tubulin (Fig. 4c). Interestingly, intermolecular
contacts of Ska1 with H4 of b-tubulin and H12 of a-tubulin seem
to be sequence specific, as these tubulin residues are unique to
a- and b-isoforms (results not shown).

To rule out the possibility that the crosslinking peptides
observed are due to nonspecific interactions with free tubulin
monomers, we pelleted MTs crosslinked to Ska1–MTBD
before MS analysis and compared the results with those obtained
from non-pelleted samples (Fig. 4). Analysis of both samples
by SDS–PAGE showed identical crosslinked products
(Supplementary Fig. S5g). Furthermore, the contact sites observed
were almost identical in both pelleted and non-pelleted samples
(Supplementary Fig. S5h), attesting to the specificity of the
interactions.

In this analysis, we did not detect crosslinks involving the
R155/236/245 cluster. This, as well as the fact that we did not
detect acidic tails of tubulin monomers, may be due to the
following technical reasons: first, EDC, the crosslinking reagent
used in this study, does not crosslink arginines; second, peptides
derived from the acidic tails of tubulins may have escaped
detection by MS possibly because of the presence of posttransla-
tional modifications (notably polyglutamylation) and/or the lack
of tryptic cleavage sites, which would result in large peptide
fragments that cannot be detected in crosslinked/MS analysis. To
overcome the former limitation, we have mutated R155/236/245
to lysine residues in the context of both Ska1–MTBD and FL
Ska1, and then tested these mutants in crosslinking/MS
experiments (Supplementary Fig. S5c,d). Indeed, the R155/236/
245K mutant did reveal interactions between K155 and K245 of
Ska1 with H3 of a- and b-tubulin, respectively (Fig. 4c).

Ska complex can bind MTs in multiple different orientations.
The Lys clusters of Ska1 and the Asp/Glu clusters of tubulin
monomers crosslinked in different ways with each other, sug-
gesting the presence of multiple modes of Ska–MT interactions
(Fig. 4c). For example, the K183/184 cluster (Ska1cluster1) cross-
linked with both E110/E113/Y108 (b-tubcluster1) and E159/E160/
Y161 (b-tubcluster2) clusters of b-tubulin and the same could also
be observed for the K203/206 cluster (Ska1cluster2; Fig. 4c).
Moreover, the distance between Ska1cluster1 and Ska1cluster2 is the
same as that between b-tubcluster1 and b-tubcluster2. Straightfor-
ward rigid body docking experiments show that Ska1 can interact
with b-tubulin with Ska1cluster1–Ska1cluster2, either facing
b-tubcluster1–b-tubcluster2 or b-tubcluster2–b-tubcluster1. In addition,
each Ska1 Lys cluster can interact individually with all tubulin
Asp/Glu clusters. However, the assertion on the ability of the Ska
complex to interact with MTs in multiple different orientations
needs further validation.

Ska and Ndc80 complexes recognize different features of MTs.
Structural characterizations of Ndc80–MT interactions revealed
that the Ndc80 complex binds MTs by recognizing the dimeric
interface of a- and b-tubulins33. This mode of MT binding by the
Ndc80 complex makes the interaction sensitive to the
conformation of MT protofilaments. Indeed, the Ndc80
complex preferentially binds straight MTs over curved MT
protofilaments (vinblastine spirals; Fig. 5a and Supplementary
Fig. S6b), in line with previous reports31,33. Our crosslinking/MS
and cosedimentation data presented here show that the Ska
complex, in contrast to the Ndc80 complex, interacts with MTs
by recognizing the regions of tubulin monomers whose
accessibility is not perturbed when MTs adopt different
conformations. Thus, the Ska complex can bind straight and
curved MT protofilaments indiscriminately using the same
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contact sites (see Kd values for straight MTs in Fig. 2b and
corresponding values for vinblastine spirals in Fig. 5b). In future,
it will be interesting to explore the possibility that the presence of
the Ndc80 complex (or other Ska-binding partners) could induce
some of the binding sites to discriminate between different MT
structures.

MT-interacting proteins often interact with MTs by recogniz-
ing the acidic tails of tubulin, called ‘E-hooks’. Biochemical and
structural characterizations of Ndc80–MT interactions carried
out in different laboratories have also highlighted the important
contribution of the acidic tail of tubulin in the overall recognition
of MTs by the Ndc80 complex13,33. Our crosslinking MS analysis
does not provide insight into the possible role of acidic tubulin
tails in Ska complex binding, owing to the technical reasons
discussed in the previous section. However, as the Ska complex
makes multiple contacts with the structured regions of tubulins,
we hypothesized that the acidic tail of tubulin may not
significantly contribute to the overall recognition of MTs. To
evaluate this hypothesis, we tested the ability of the Ska complex

to bind subtilisin-treated MTs (where E-hooks are removed by
subtilisin treatment) in cosedimentation assays. As expected, the
Ndc80 complex showed reduced binding to subtilisin MTs.
Interestingly, the Ska complex did not show any noticeable
reduction in its ability to bind subtilisin MTs, in line with the
view that the critical contacts involve the structured regions of
tubulin monomers rather than the acidic tails (Fig. 5c and
Supplementary Fig. S6c).

Aurora B sites lie within the MT-binding K/R clusters. The role
of Aurora B kinase in correcting erroneous KT–MT attachments
by phosphorylating components of the KMN network, notably
the Ndc80 complex and KNL1, is well established11,34,43,44.
Recent work also showed that Aurora B negatively regulates the
KT localization of the Ska complex, possibly influencing
interactions with the KMN network30. As noted elsewhere31, all
four Aurora B consensus sites (T157, S185, T205 and S242) are
located within the Ska1–MTBD (Fig. 6a). Interestingly, two of
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these sites (S185 and T205) are located within the K/R cluster
K183/184/203/206 that we have identified as being important for
the MT-binding activity of the Ska complex (Fig. 6a). This
suggested a direct involvement of S185 and T205 in the Aurora
B-mediated phosphoregulation of Ska–MT interactions. To test
this possibility, we made phosphomimicking mutants of Ska1
(S185D and S185/T205D) and tested them in MT-binding assays.
Although S185D did not show any noticeable reduction in its
ability to bind MTs, S185/T205D showed a drastic reduction
(Fig. 6b and Supplementary Fig. S7). However, in line with our
previous study30, pre-incubation of the Ska complex with Aurora
B did not reduce its MT-binding ability, although the Ndc80
complex analysed for control responded as expected (Fig. 6c). To
explain these apparently contradictory findings, we considered

the possibility that efficient phosphorylation of Ska1 by Aurora B
might require prior conformational rearrangements within the
MTBD, which might occur either on MT binding or in the
context of other KT-associated proteins. To test the former
possibility, we first allowed the Ska complex to bind MTs before
incubating the MT-bound Ska complex with Aurora B and
evaluating the consequences in MT-binding assays. This
experiment revealed a small but statistically significant
reduction in the Ska–MT interaction in response to Aurora B
(Fig. 6d). In line with the above model, normal mode analysis of
the MD simulated structures of Ska1–MTBD shows the presence
of an intrinsic flexibility associated with the structural element
that harbours this MT-binding site and Aurora B consensus sites
(Supplementary Movie 10). The other Aurora B sites, S157 and
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S242, are also close to the R cluster R155/236/245, but insertion
of phosphomimicking mutations did not show any influence on
MT binding (Supplementary Fig. S7). It is interesting that
combination of a phosphomimic mutation at S242D did not
abolish MT binding in combination with T157D (this study),
although it has been previously shown that combined mutations
at S242D and S185D strongly reduced MT binding. This
observation, together with our observation that the S185D/
T205D combination also drastically diminishes MT binding,
demonstrates that Aurora B phosphorylation of Ska1–MTBD
can negatively regulate Ska–MT interactions via multiple
phosphorylation events.

Discussion
MT-binding activity at the KT is a prime requirement for driving
accurate chromosome segregation. Although the Ndc80 complex
is considered to be the major contributor to MT binding by the
KT, other factors such as the Dam1 complex in budding yeast and
the Ska complex in vertebrates are required to efficiently couple
MT binding at the KT with chromosome segregation5. The ability
of the Dam1 complex to form rings around MTs suggested that
Dam1-like proteins might work as force couplers that harness the
force associated with MT depolymerization with chromosome
movement5,45. However, the proposed functional homologue of
Dam1 in humans, the Ska complex, forms a flexible W-shaped
structure of triple helical bundles with a maximum interatomic
distance of 35 nm (ref. 36). With MTBDs symmetrically
positioned at both ends of the dimer, the Ska complex thus
appears to exert its function via a different mechanism.

Here we have used biochemical and high-resolution structural
analysis to show that the human Ska complex interacts with MTs
through the C-terminal domain of Ska1, which forms a variant
form of winged-helix domain. This domain has previously been
seen as a DNA-binding module in transcription regulators but
also as a protein interaction module in a small number of proteins
with diverse functions38,41,42. The Ska complex provides the first
instance where this module is used as a MTBD. However,
considering that, first, both DNA molecules and MTs are often
recognized through electrostatic interactions exploiting the
negatively charged nature of these molecules, and, second, that
MT-based diffusional motility and DNA-based diffusion shows
striking similarities with comparable diffusion coefficients46, the
use of a winged-helix domain for the Ska1–MTBD may not be
surprising. It will be interesting to see whether the Dam1 complex
also possesses winged-helix domains in its MT-binding
components.

Structural comparisons of human and C. elegans Ska1–
MTBDs31 show conformational variations in the regions that
we demonstrate here to be critical for MT binding. This adds to
species-specific differences in the overall composition and
architecture of the Ska complexes, in that Ska1 and Ska3
associate in a 2:1 complex in C. elegans31, whereas the human
Ska complex is made of Ska1, Ska2 and Ska3 in a 2:2:2 ratio36. It
is tempting to suggest that the attachment of chromosomes to
spindle MTs in vertebrates versus nematodes may exhibit
different dynamic properties. In organisms with ‘holocentric’
chromosomes, such as C. elegans, MTs are attached at multiple
sites along the chromosome arms, resulting in chromosomes with
no apparent dynamic oscillations at metaphase. In contrast, in
‘monocentric’ mammalian cells, chromosomes are attached to
MTs at a discrete site and metaphase-aligned chromosomes show
pronounced dynamics47.

Using MT-binding assays in combination with siRNA-based
rescue assays, we demonstrate here the involvement of at least
three tubulin contact sites within Ska1–MTBD for MT recognition.

Remarkably, the tubulin contact sites are dispersed across the
surface of the Ska1–MTBD and distances between different contact
sites range between 15 and 30 Å. Disruption of even one of the
tubulin contact sites is enough to perturb normal mitotic
progression, suggesting the requirement of all contact sites for
efficient function. Crosslinking/MS analysis revealed important
molecular details of these Ska–MT interactions, in particular the
novel ability of the Ska–MTBD to bind to tubulin monomers. This
data together with those from quantitative MT cosedimentation
assays demonstrated that tubulin contacts of the Ska1–MTBD can
bind straight and curved MTs with no apparent preference.

Identifying and characterizing the unique properties of the
Ndc80 and Ska complexes is crucial for understanding how these
complexes complement each other in providing an integrated
interface for efficient MT binding and MT-driven motility. The
Ndc80 complex binds MTs through the interaction of the Ndc80-
CH (Calponin Homology) domain (called the ‘toe’) at the tubulin
dimeric interface (called the ‘toe print’) in a way that favours
interactions with the straight conformation of MT protofila-
ments33. Our results show that the Ska complex interacts with the
structured regions of tubulin monomers, mainly at helices H3 and
H4 of b-tubulin and H12 of a-tubulin, whose accessibility is not
perturbed on MTs assuming different conformations. This feature
gives the Ska complex the ability to bind both straight and curved
protofilaments with equal efficiency (Fig. 7). One of the sites
(Glu110, 156 and 162 in H3) through which b-tubulin makes
contact with the Ska1–MTBD is particularly intriguing, as this
site is close to the GTP-binding site and also near the regions
involved in lateral contacts between adjacent MT protofilaments.
Furthermore, this site is recognized by EB1 and has been
suggested to be important for EB1’s end-tracking activity and for
stabilizing growing MTs48. In this context, it would be interesting
to know whether the Ska complex can also influence MT
dynamics.

One of the intriguing observations made in our study concerns
the ability of the Ska complex to bind MTs in multiple different
orientations. This combines with the fact that the Ska1–MTBDs
are loosely connected to the W-shaped triple helical structure
through a 40 amino acid loop, thus providing additional
flexibility that may be important to allow the KTs to track
disassembling MTs (Fig. 7). This is in stark contrast to the Ndc80
complex, where CH domains of Ndc80 are connected to a rather
rigid helical bundle13,33. We further envisage that the presence of
this loop in Ska1 is likely to be critical for efficient MT tracking by
the Ska complex and possibly for mediating protein–protein
interactions with other KT components. In support of this view,
we found that deletion of the Ska1 loop delays mitotic
progression of dividing cells.

In summary, our results indicate that the function of the Ska
complex is conferred by its ability to interact with regions of
tubulin monomers whose accessibility is not affected by different
MT structures. These interactions involve multipartite binding
sites and allow MT binding in multiple orientations (Fig. 7).
Future structural and functional studies on whether and how
Ska–MT interactions are modulated by the presence of other
MT-binding proteins, notably the Ndc80 complex, will advance
our understanding of the molecular underpinnings of KT–MT
attachments and chromosome segregation.

Methods
Expression and purification of recombinant proteins. Ska1133–255 was cloned
into a pEC-K-3C-His-GST vector as an N-terminally His-GST-tagged protein
with a 3C-cleavage site. Ska1, Ska2 and Ska3 V58I were cloned individually in a
pEC-S-CDF-His, pEC-A-HT-His GST and pEC-K-HT-His vectors, respectively,
with TEV cleavage sites. Ska1 mutants were generated following the Quikchange
site-directed mutagenesis method (Stratagene; primer details are given in
Supplementary Table S3). To express the Ska complex containing Ska1Dloop,
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Ska1Dloop(GSSG) and phosphomimic mutants, Quikchange site-directed muta-
genesis was performed on a polycistronic vector (primer details are given in
Supplementary Table S3), pETMCN (gift from C. Romier, IGBMC, Strasbourg)
containing GST-Ska2 (3C-cleavable), untagged Ska1 and Ska3. All protein com-
plexes were expressed in Escherichia coli strain BL21 Gold, either using the poly-
cistronic constructs or by cotransforming all the three plasmids containing
individual Ska components. Cultures were induced overnight at 18 �C and purified
using a similar protocol. Cells were lysed in a buffer containing 20 mM Tris, pH 8,
500 mM NaCl and 5 mM dithiothreitol (DTT). The protein complexes were purified
by affinity chromatography in batch mode using glutathione sepharose (GE
Healthcare) beads. Protein-bound beads were washed with 20 mM Tris, pH 8,
500 mM NaCl and 5 mM DTT, followed by 20 mM Tris, pH 8, 1 M NaCl, 50 mM
KCl, 10 mM MgCl2, 2 mM ATP and 5 mM DTT, then finally with 20 mM Tris, pH 8,
100 mM NaCl and 5 mM DTT. Proteins with 3C-cleavage sites were cleaved, while
the proteins were still bound to the beads. TEV cleavable proteins were eluted with
50 mM glutathione, 20 mM Tris, pH 8, 100 mM NaCl and 5 mM DTT, and the tags
were removed in solution overnight. Subsequently, proteins/protein complexes were
purified by size-exclusion chromatography in 20 mM Tris, pH 8, 100 mM NaCl and
5 mM DTT (Superose 6, GE Healthcare). Ndc80 Bonsai (kindly gifted by Andrea
Musacchio) was expressed in E. coli BL21 (DE3)13. Cells were lysed in lysis buffer
containing 50 mM Tris, pH 7.6, 300 mM NaCl, 1 mM DTT and 1 mM EDTA. Cleared
lysate was incubated with glutathione sepharose beads. After 3 h incubation at 4 �C,
beads were washed with 50 mM Tris, pH 7.6, 150 mM NaCl, 1 mM DTT and 1 mM
EDTA, and cleaved with 3C protease for 16 h at 4 �C. Concentrated protein was
loaded onto a Superose 6 size-exclusion chromatography column (GE Healthcare)
equilibrated with 20 mM Tris, pH 7.6, 100 mM NaCl, 1 mM DTT and 10% glycerol.

Crystallization and data collection. Crystallization trials were performed using a
nanolitre crystallization robot at the Edinburgh Protein Production Facility.
Crystals of form I (C2221) were grown by vapour diffusion method using Mor-
pheus condition C2, mother liquor containing 0.1 M Imidazole-MES buffer, 0.09 M
NPS mix (NaNO3, Na2HPO4, (NH4)2SO4) and 30% EDO_P8K (ethylene glycol;
PEG 8 K) (with 1 ml of 15–20 mg ml� 1 protein sample mixed with 1 ml of mother
liquor). Crystals of form II (P32) were grown in mother liquor containing 24%
(w/v) PEG 1,500 and 20% glycerol. As the crystallization conditions were suitable
to act as cryoprotectants, crystals were directly flash frozen in liquid nitrogen. The
crystals diffracted to about 2 Å resolution at the MX beamlines of the Diamond
Light Source (Table 1).

Crystal structure solution and refinement. The structure of the Ska1–MTBD
(form I) was determined by the SAD method, using the data collected at the
selenium (SE) edge (0.97 Å). Data was processed using XDS and scaled with
SCALA of CCP4 (ref. 49). SAD phasing and the calculation of the initial map were
performed using phenix.autosol from the PHENIX suite of programmes50. The
model was built by iterative rounds of manual building with COOT51 and

refinement using phenix.refine of PHENIX suite of programmes50. The structure
of the Ska1–MTBD from P32 space group was determined using molecular
replacement method using PHENIX suite of programmes50. Data collection,
phasing and refinement statistics are shown in Table 1.

Molecular dynamics simulations. For the MDS, chain B of crystal form I (C2221)
and model 1 of NMR structure of the C. elegans (pdb: 2LYC) was used. MD studies
were carried out using the AMBER12 (ref. 52) package. The missing atoms were
built using standard geometries as implemented in AMBER. Each system was
solvated with a box of TIP3P water molecules such that the boundary of the box
was at least 10 Å from any protein atom. The net positive charges in the system
were balanced by adding chloride ions. The force field ff12SB was used for
intermolecular interactions. The particle mesh Ewald method was used for treating
the long-range electrostatics. All bonds involving hydrogen were constrained by
SHAKE. An integration time step of 2 fs was used for propagating the dynamics.
Each system was initially minimized for 3,000 steps to remove any unfavourable
interactions between the protein and the solvent, followed by heating to 300 K over
30 ps under normal pressure/temperature conditions. Subsequently, each system
was simulated for 50 ns at constant temperature (300 K) and pressure (1 atm), and
the structures were stored every 10 ps for analysis. Analysis was carried out using
VMD53.

MT cosedimentation assays. Tubulin was purchased from Cytoskeleton Inc. and
MTs were polymerized according to manufacturer’s instructions. To generate
vinblastine spirals, tubulin was diluted to 3 mg ml� 1 in 80 mM PIPES, pH 6.8,
1 mM EGTA, 1 mM MgCl2, 1 mM DTT and 5% sucrose supplemented with 3 mM
vinblastine sulphate (Sigma-Aldrich) at room temperature for 2 h. Subtilisin-trea-
ted MTs were obtained after incubation of 6 mM taxol-stabilized MTs for 45 min at
30 �C with 100 mg ml� 1 subtilisin A (Sigma-Aldrich) following a previously
reported procedure13. The reaction was stopped with 10 mM phenylmethyl
sulphonyl fluoride and the digested MTs pelleted (434,400g, TLA 100.3, 10 min,
25 �C) and resuspended in the original volume of general tubulin buffer (80 mM
PIPES, pH 6.9, 2 mM MgCl2 and 0.5 mM EGTA).

For MT-pelleting assays, taxol-stabilized MTs, vinblastine spirals or subtilisin-
treated MTs (0–12 mM tubulin dimer as stated in each experiment) were incubated
at room temperature for 10 min with 1 or 3 mM protein (Ska or Ndc80 bonsai) in a
50-ml reaction volume in BRB80 buffer (80 mM PIPES, pH 6.9, 1 mM EGTA and
1 mM MgCl2) with 100 mM NaCl and 4 mM DTT in the presence of 20 mM taxol
or 3 mM vinblastine. The reaction was then layered onto a 250-ml glycerol cushion
buffer (BRB80, 50% glycerol, 4 mM DTT for taxol-stabilized MTs and BRB80, 30%
glycerol, 4 mM DTT for vinblastine spirals with the appropriate drug) and
ultracentrifuged for 10 min at 434,400g in a Beckman TLA 100.3 rotor at 25 �C.
Pellets and supernatants were analysed by SDS–PAGE. Gels were stained with
Coomassie Blue gel staining and quantification was performed with ImageJ54.
Normalized binding data were obtained by dividing the values of the pellet fraction

Ska1–MTBD interacts with globular regions of tubulin monomers,
multiple tubulin contact sites and multiple binding modes

Ska–MT binding

MTBD flexibly connected to core
structure, flexibility essential for function

Ndc80 interacts at the tubulin dimeric
interface, selective binding to straight MTs

Kinetochore

Straight

Curved

Ska1 loop

Ndc80–MT binding

Figure 7 | Schematic model. Schematic model summarizing the mode of MT binding of Ska1 and its implications for maintaining stable KT–MT

attachments.
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by the sum of pellet and supernatant. Fitting analysis and Kd calculations were
carried out using GraphPad Prism, version 6.0 (GraphPad Software, Inc).

For the Aurora B assay, we incubated 3 mM Ska complex or Ndc80 bonsai with
10 mM ATP, 20 mM MgSO4 and 900 nM Aurora B for 30 min at 30 �C. Taxol-
stabilized MTs (6mM tubulin dimer) were then added for 10 min at room
temperature and cosedimentation assays were performed as described above. In the
second batch of experiments, we first incubated the protein (Ska complex or Ndc80
bonsai) with the taxol-stabilized MTs for 10 min and then after we incubated for
30 min at 30 �C with Aurora B.

Chemical crosslinking and MS analysis. Crosslinking experiments were carried
out using a zero-length crosslinking agent, EDC (Thermo Fisher Scientific) in the
presence of N-hydroxysulphosuccinimide (Thermo Fisher Scientific). Ska complex
(6mM) and 10 mM MTs were incubated with 10 mg EDC and 22mg N-hydro-
xysulphosuccinimide in a final volume of 20 ml. The reaction mixture was incu-
bated for 90 min at 25 �C and was quenched by adding Tris-Cl to a final
concentration of 100 mM. The reactions were resolved by SDS–PAGE (4–12%
Bis-Tris NuPAGE, Invitrogen) gel separation and stained using Instant Blue
(Expedeon). The bands corresponding to crosslinked complexes were excised and
the proteins therein were reduced using 10 mM DTT for 30 min at room tem-
perature, alkylated with 55 mM iodoacetamide for 20 min in the dark at room
temperature and digested using 13 ng ml� 1 trypsin (sequencing grade; Promega)
overnight at 37 �C (ref. 14). The digested peptides were desalted using C18-Stage-
Tips55 and analysed on a LTQ Orbitrap Velos mass spectrometer (Thermo Fisher
Scientific)56–58. An analytical column with a spray emitter (75 mm inner diameter,
8 mm opening, 250 mM length; New Objectives) that was packed with C18 material
(ReproSil-Pur C18-AQ 3 mm; Dr Maisch GmbH, Ammerbuch-Entringen,
Germany) using an air pressure pump (Proxeon Biosystems). Mobile phase A
consisted of water with 0.1% formic acid. Mobile phase B consisted of 80%
acetonitrile with 0.1% formic acid. Peptides were loaded onto the column with 1%
B at 600 nl min� 1 flow rate and eluted at 300 nl min� 1 flow rate, with a linear
gradient increased from 5 to 35% acetonitrile in 0.1% formic acid in 150 min to
elute peptides. Peptides were analysed using a high/high strategy; both MS spectra
and MS2 spectra were acquired in the Orbitrap56. Mass spectra were recorded at
100,000 resolution. The eight highest intensity peaks with a charge state of three or
higher were selected in each cycle for ion-trap fragmentation. The fragments were
produced using collision-induced dissociation with 35% normalized collision
energy and detected by the Orbitrap at 7,500 resolution. Dynamic exclusion was set
to 30 s and repeat count was 1. The data were processed, generating peak lists by
MaxQuant59 and matching crosslinked peptides to spectra using in-house
developed Xi software.

Cell culture and siRNA depletion. HeLa S3, and HeLa S3 cells expressing histone
H2B-GFP60, were routinely maintained in DMEM (Invitrogen) supplemented
with 10% fetal bovine serum and penicillin/streptomycin (100 IU ml� 1 and
100 mg ml� 1, respectively; Gibco). For synchronization studies, cells were arrested
for 20 h with 2 mM thymidine, followed by a release into fresh medium for 6–8 h
and a second thymidine block of 16 h and release for 10 h before fixation or
visualization30,36. All Ska constructs were generated in the pcDNA3.1 plasmid
(Invitrogen), driven by the cytomegalovirus promoter, and modified to carry an
N-terminal triple-Myc tag or a single mCherry tag. For rescue experiments, Ska1
siRNA-resistant constructs were used. Plasmid transfections were performed using
TransIT-LT1 reagent (Mirus Bio Corporation) according to the manufacturer’s
instructions. siRNA duplexes were transfected using Oligofectamine (Invitrogen)
according to the manufacturer’s instructions. The sequences of the Ska1 (ref. 27)
and control GL2 duplexes61 are: 50-CCCGCTTAACCTATAATCAAA-30 and
50-AACGTACGCGGAATACTTCGA-30 , respectively. For western blotting, a
rabbit anti-Ska1 antibody (1:1,000) and a mouse anti-a-Tubulin antibody (DM1a
1:2,000; Sigma) were used27.

Immunofluorescence and time-lapse microscopy. Cells grown on coverslips
were fixed and permeabilized simultaneously in PTEMF buffer (0.2% Triton X-100,
20 mM PIPES, pH 6.8, 1 mM MgCl2, 10 mM EGTA and 4% formaldehyde). Cells
were stained with mouse anti-myc 9E10 monoclonal antibody (culture supernatant,
1:2) and human CREST autoimmune serum (1:2,000; Immunovision). DNA was
visualized with 40,6-diamidino-2-phenylindole (2mg ml� 1). All primary antibodies
were detected with Cy2/Cy3-conjugated donkey antibodies (Dianova). A Deltavi-
sion microscope (Applied Precision) was used for immunofluorescence processing
and image acquisition60. For time-lapse microscopy, all treatments within a single
experiment were performed simultaneously. Cells were imaged using a Nikon
ECLIPSE Ti microscope equipped with a CoolLED pE-1 excitation system and a
20� /0.75 air Plan Apo objective (Nikon). During imaging, the atmosphere was
maintained at a temperature of 37 �C, humidity 60 and 5% CO2. Images were
captured at 5-min intervals for 22 h at multiple positions. Green fluorescent protein
and mCherry fluorescence images were acquired at each time point with 30 ms and
60 ms exposure times, respectively. mCherry fluorescence was imaged only every
five time point to monitor transfected cells. MetaMorph 7.7 software (MDS
Analytical Technologies) was used to collect and process data.
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