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Glioblastoma (GBM) is the most common brain tumor, with rapid proliferation

and fatal invasiveness. Large-scale genetic and epigenetic profiling studies have

identified targets among molecular subgroups, yet agents developed against

these targets have failed in late clinical development. We obtained the genomic

and clinical data of GBM patients from the Chinese Glioma Genome Atlas

(CGGA) and performed the least absolute shrinkage and selection operator

(LASSO) Cox analysis to establish a risk model incorporating 17 genes in the

CGGA693 RNA-seq cohort. This risk model was successfully validated using the

CGGA325 validation set. Based on Cox regression analysis, this risk model may

be an independent indicator of clinical efficacy. We also developed a survival

nomogram prediction model that combines the clinical features of OS. To

determine the novel classification based on the risk model, we classified the

patients into two clusters using ConsensusClusterPlus, and evaluated the tumor

immune environment with ESTIMATE and CIBERSORT. We also constructed

clinical traits-related and co-expression modules throughWGCNA analysis. We

identified eight genes (ANKRD20A4, CLOCK, CNTRL, ICA1, LARP4B, RASA2,

RPS6, and SET) in the bluemodule and three genes (MSH2, ZBTB34, andDDX31)

in the turquoise module. Based on the public website TCGA, two biomarkers

were significantly associated with poorer OS. Finally, through GSCALite, we re-

evaluated the prognostic value of the essential biomarkers and verifiedMSH2 as

a hub biomarker.
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Introduction

Gliomas are the most common primary tumors of the central

nervous system, with devastating progression (Ohgaki and

Kleihues, 2005). Based on its histological and molecular

characteristics, glioblastoma (GBM) is often classified as

WHO grade IV (Louis et al., 2021). The absence or presence

of mutations in IDH1 [which encodes isocitrate dehydrogenase

(NADP)] or IDH2 [which encodes isocitrate dehydrogenase

(NADP), mitochondrial], and a 1p and 19q (1p/19q)

chromosomal co-deletion may be important biomarkers for

GBM diagnosis. Glioblastoma is the most malignant glioma

type, with rapid proliferation and fatal invasion, accounting

for 48.6% of primary malignant brain tumors, having an

annual incidence of 3.23 per 100,000 in the United States (Le

Rhun et al., 2019; Ostrom et al., 2021). At present, surgical

resection combined with radiotherapy and chemotherapy

remains the mainstay of glioma treatment. Some novel

treatments, including PD-1 inhibitors, may also improve OS

(Lim et al., 2018). Although a great deal of research has focused

on improving treatment strategies, glioma patients continue to

experience poor disease prognosis, and the median survival time

is approximately 14 months (Thorsson et al., 2018). As the

mechanisms underlying poor prognosis in GBM patients

remain unclear, research aiming to explore these mechanisms

and identify potential treatment targets may have great clinical

significance.

Up to seven molecular glioblastoma-intrinsic targets

involved in oncogenic signaling have been identified. These

include tyrosine kinase receptors, cell cycle regulators, and

apoptosis-regulating pathway components (Le Rhun et al.,

2019). EGFR, one of the most prominent oncogenes in GBM,

is overexpressed in approximately 60% of tumors, and 40% of

tumors exhibit EGFR gene amplification (Suina et al., 2018).

Numerous studies have failed to demonstrate satisfactory

outcomes with EGFR-related treatments, including tyrosine

kinase inhibitors, vaccines, and rindopepimut (Lassman et al.,

2005; Hegi et al., 2011). TERT promoter mutations, the most

common molecular alteration in GBM, may promote tumor cell

immortalization, but have not yet attracted major attention as

pharmacological targets for cancer therapy in clinical research

(Killela et al., 2013; Takahashi et al., 2019). Notably, several

targeted agents for GBM have failed in late clinical development.

Therefore, it is essential to identify novel biomarkers and reveal

subgroups in which specific therapeutic efficacy could be

achieved.

In the present study, we obtained all clinical characteristics

and gene expression data from the Chinese Glioma Genome

Atlas (CGGA) and defined molecular subtypes of GBM. We

developed a prognostic signature comprising potential

prognostic genes based on one CGGA cohort and validated

this prognostic signature in another CGGA cohort. We also

explored the correlation between clinical features and the

identified prognostic signature genes utilizing weighted gene

co-expression network analysis (WGCNA). Our

comprehensive analyses provide new insights into the

molecular biomarkers involved in GBM progression.

Materials and methods

Data collection

We downloaded the genomic and clinical data of GBM

patients from the CGGA database (http://www.cgga.org.cn/).

Two CGGA cohorts, including the CGGA325 RNA-seq cohort

(http://www.cgga.org.cn, updated on 28 November, 2019) and

the CGGA693 RNA-seq cohort (http://www.cgga.org.cn,

updated on 28 November, 2019), including gene expression

profiles and clinical-pathological data, were selected for this

study (Zhao et al., 2021). Samples in all datasets diagnosed

with GBM and containing complete clinical information,

including survival, age, grade, IDH1 mutational status, and

1p/19q status, were enrolled for a subsequent study. We

randomly selected the CGGA693 RNA-seq cohort as the

training set and CGGA325 as the validation set. All gene

expression levels were normalized between arrays using batch

and limma packages (Supplementary Figure S1).

Selection of potential prognostic
biomarkers

Initially, we performed a univariate Cox regression analysis

to identify the potential OS in the two CGGA cohorts. Potential

prognostic biomarkers in the progression of GBM were

considered to have similar prognostic values in both

CGGA693 and CGGA325 RNA-seq cohorts. After selecting

the overlapping genes, we included all genes with HR > 1 and

p < 0.05 in our analyses.

Establishment and evaluation of
prognostic risk model in GBM

We developed a prognostic signature by applying LASSO

Cox regression (least absolute shrinkage and selection operator)

to the CGGA693 RNA-seq cohort (as a training cohort). The risk

score was then calculated according to the risk model. The

formula for calculating risk score was as follows: risk score =

coef1 * gene-1-expression + coef2 * gene-2-expression +. . .coefn

* gene-n-expression. Based on the median risk score, CGGA was

classified into high and low-risk groups. A Kaplan–Meier (KM)

plot was constructed to display the difference in overall survival

in the training cohort (CGGA693) and the validation cohort

(CGGA325). A heat map was used to visualize the distribution of
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prognostic gene expression and clinical features. Univariate and

multivariate Cox regression analyses were performed to identify

the independent prognostic predictors of overall survival. Finally,

we established a nomogram to evaluate the clinical value of this

prognostic signature.

Classification of novel subgroups based
on the consensus clustering

We identified the optimal clustering number for visualizing

the consensus matrix, tracking plot, and cumulative distribution

function plot, using the ConsensusClusterPlus R package

(Wilkerson and Hayes, 2010) based on prognostic genes from

LASSO analysis. Additionally, we adopted three methods to

reevaluate the classification: NMDS, tSNE, and PCA (Taguchi

and Oono, 2005; Ringnér, 2008; Cieslak et al., 2020). The

immune scores, stromal scores, and ESTIMATE scores of

GBM were calculated using the “estimate” package (Yoshihara

et al., 2013). The abundance of tumor-infiltrating immune cells

was evaluated using the CIBERSORT package (http://cibersort.

stanford.edu/). Results with p < 0.05 obtained from the

ESTIMATE algorithm and CIBERSORT analysis were used

for further analyses.

Classification of new subgroups based on
WGCNA analysis

WGCNA is a novel method for gene clustering and forming

modules with similar expression patterns. To identify clinical

traits-related modules, we selected the genes with prognostic

value in the Cox analysis, based on the training set, and

constructed a correlation network that incorporated important

clinical features and genes, using the R package “WGCNA”

(Langfelder and Horvath, 2008). Subsequently, we constructed

FIGURE 1
Prognostic risk model construction. (A) Evaluation of LASSO Cox analysis. (B) KM plot in CGGA693 RNA-seq cohort. (C) KM plot in
CGGA325 RNA-seq cohort.
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an adjacency matrix to describe the correlation strength between

the nodes, and the adjacency matrix was transformed into a

topological overlap matrix (TOM). Next, hierarchical clustering

was performed to identify modules with at least 30 genes.

Identification of hub prognostic genes
in GBM

Based on the combined results from the two clustering

methods, we identified hub prognostic genes for further

validation. GEPIA (gepia.cancer-pku.cn/) is a comprehensive

and interactive online server that collects cancer microarray

data from “The Cancer Genome Atlas” (TCGA) (Tang et al.,

2017). We utilized it to validate the hub genes’ correlations with

overall survival. Furthermore, we explored innate signaling using

GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/).

Cell culture and transfection

The U-118 MG human GBM cell line was purchased from

the Procell Life Science and Technology Company (Wuhan,

China). U-118 MG cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM; Procell, Wuhan, China)

supplemented with 10% fetal bovine serum (FBS; Procell) and

1% penicillin-streptomycin liquid (Procell). U-118 MG cells were

cultured in an atmosphere with 5% CO2, at 37°C. Small

FIGURE 2
Prognostic risk model estimation. (A)Distribution of risk score, survival status, and expression of genes. (B)Univariate Cox regression analysis of
clinical features and risk score. (C) Multivariate Cox regression analysis of clinical features and risk score.
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interfering RNAs (siRNAs) targeting MSH2 were synthesized by

GenePharma (Shanghai, China). Lipofectamine 2000

(Invitrogen, Carlsbad, CA, United States) was used to

transfect siRNAs into U-118 MG cells according to the

manufacturer’s protocol. The primer sequences of siRNAs

targeting MSH2 are listed in Supplementary Table S4.

Quantitative reverse transcription
polymerase chain reaction

TRIzol reagent (TaKaRa Bio, Dalian, China) was used to

extract cellular RNAs, according to the manufacturer’s

instructions. One microgram of RNA was used to synthesize

cDNA using a reverse transcription kit (RR037A; TaKaRa Bio).

Quantitative reverse transcription-polymerase chain reaction

(qRT-PCR) was performed using a TB Green Premix Ex Taq

Kit (RR820A; TaKaRa Bio, Dalian, China). The silencing

efficiency of siRNAs was evaluated using the 2−ΔΔCt method.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used

as an internal control. The primer sequences for GAPDH and

MSH2 are listed in Supplementary Table S4.

Cell counting kit-8 assay

U-118 MG cell proliferation was assessed using a Cell

Counting Kit-8 (CCK-8) kit (Biosharp, Hefei, Anhui, China).

U-118 MG cells were transfected with negative control (si-NC)

or siRNAs targeting MSH2. 10-μL of CCK-8 was added to the

cells, and cells were then cultured at 37°C for the indicated days.

Optical density at 450 nm (OD450) was measured using a

microplate spectrophotometer.

5-Ethynyl-2′-deoxyuridine (EdU) assay

U-118 MG cells were stained using BeyoClick™ EdU-488

Cell Proliferation Kit (Beyotime, Shanghai, China). In brief, U-

118 MG cells (1.5 × 105 cells/well) were seeded in a 6-well plate,

transfected with NC or si-MSH2, and cultured in an incubator

at 37°C. After 96 h of transfection, U-118 MG cells were

incubated with EdU for 3 h, fixed with 1 ml

paraformaldehyde (4%) for 15 min, and permeabilized with

0.3% Triton X-100 (Beyotime) for 15 min. Next, the U-

118 MG cells were incubated with 500-µL of the click

FIGURE 3
Novel classification construction and evaluation. (A) GBM patients were grouped into three clusters according to the consensus clustering
matrix (k = 3). (B) Re-evaluation of novel classification by NMDS1. (C) Re-evaluation of novel classification by tSNE. (D) Re-evaluation of novel
classification by PCA.
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FIGURE 4
GBM tumor immune environment. (A) ESTIMATE algorithm analysis of clusters. (B) CIBERSORT analysis of clusters (***p < 0.001; **p < 0.01;
*p < 0.05).

FIGURE 5
New subgroups based on the WGCNA analysis. (A) Sample GBM dendrogram and trait heat map. (B)GBM cluster dendrogram. (C)Module-trait
relationships of WGCNA. (D) Display of network heat map plot and selected genes.
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reaction mixture for 30 min in the dark, washed three times,

and incubated with Hoechst buffer for 15 min.

Clone formation assay

U-118MG cells (3 × 105 cells/well), seeded in 6-well plates, were

transfected with si-NC or si-MSH2. Cells were fully trypsinized 24 h

after transfection. Cells (n = 1,000) were seeded in a 6-well plate and

maintained at 37°C for 2–3 weeks. The cells were fixed with

paraformaldehyde (4%) for 15 min and stained with crystal violet

buffer (Solarbio, Beijing, China) for 30 min.

Transwell assay

To detect migration and invasion, Transwell chambers

(Corning, NY, United States) were prepared uncoated or coated

with Matrigel matrix (Corning, NY, United States). U-118MG cells

were collected by trypsinization, 24 h after transfectionwith different

siRNAs. U-118MG cells (4 × 105 cells/mL) were diluted in a serum-

free culture medium and cell suspensions (200 μl, 8 × 104 cells/well)

were seeded into the transwell upper chambers. Then, 600 μL

DMEM (containing 20% FBS) was added to each lower

chamber. The U-118MG cells were incubated for 36 h. The cells

that invaded the chamber membrane were fixed and stained with

crystal violet stain buffer (G1073; Solarbio, Beijing, China) for

40 min. Invading cells were counted using an inverted microscope.

Statistical analyses

Statistical analyses were performed using R software. Cox

proportional hazards regression analysis was used to select the

independent prognostic genes associated with OS. KM curves

were used to compare the clinical outcomes of the subgroups. In

all analyses, the statistical p-values were bilateral and statistical

significance was set at p < 0.05.

Results

Primary prognostic biomarkers identified
by Cox analysis

First, we selected two cohorts: CGGA325 and

CGGA693 RNA-seq cohorts with GBM. In the

CGGA693 RNA-seq cohort, 235 patients were included in the

FIGURE 6
Relationship between modules and clinical features. (A) Relationship between IDH status and turquoise module. (B) Relationship between
MGMT status and turquoise module. (C) Relationship between 1p19q status and turquoise module. (D) Relationship between PRS type and blue
module.
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FIGURE 7
Hub prognostic genes selection. (A) Kaplan–Meier curve of MSH2 based on the TCGA dataset. (B) Kaplan–Meier curve of CNTRL based on the
TCGA dataset. (C) MSH2 pathways based on GSCALite.
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training set, and 137 patients in CGGA325 were included in the

validation set. All clinical data are presented in Supplementary

Table S1. After Cox analysis, 718 potential genes were found to be

associated with poor overall survival in CGGA693, and

1,682 regulators were associated with poor clinical outcomes

in CGGA325 (Supplementary Table S2). Upon selection of the

overlapping genes, 31 biomarkers were identified as primary

prognostic molecules for constructing the next risk model.

Prognostic risk model construction and
evaluation

We performed LASSO Cox analysis based on these

31 biomarkers and selected 17 genes to establish a risk model

(Figure 1A, Supplementary Table S3), including MSH2 and

CLOCK. In the CGGA693 RNA-seq cohort, the KM plot

showed that the high-risk score was closely related to poor

survival, with p < 0.05 (Figure 1B). Similarly, we observed in

the validation set that the risk score correlated with poor clinical

survival (p = 0.04) (Figure 1C). Thus, we constructed a heat map

to display the expression profile, distribution of the risk score,

patient survival status, and expression pattern of the

17 prognostic genes in the CGGA dataset (Figure 2A).

According to univariate and multivariate Cox regression

analyses, we found that age and PRS type (primary or

recurrent tumor) were correlated with poor survival, and

1p19q status may imply a better clinical outcome. Moreover,

treatments such as radiotherapy and chemotherapy may be

suitable for improving the prognosis of GBM (Figures 2B,C).

The risk score calculated from the prognostic model may be an

independent indicator of clinical efficacy. Using this risk score

and all clinical characteristics, we developed a survival

nomogram prediction model for the OS of patients with GBM

using the CGGA dataset (Supplementary Figure S2A). In

addition, the calibration curves displayed excellent agreement

FIGURE 8
Hub prognostic genes evaluation. (A) Role of MSH2 in the CGGA693 cohort. (B) Role of MSH2 in the CGGA325 cohort.
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FIGURE 9
Relationship between MSH2, immune score, and cells.

FIGURE 10
Biological functional validation of MSH2 in GBM cell. (A) Silencing efficiency of MSH2. CCK8 assay (B), EDU assay (C), and colony formation
assay (D) showing the effect of MSH2 knockdown on proliferation of U-118 MG cells. (E) Transwell assay indicating that MSH2 depletion markedly
weakens migration and invasion by U-118 MG cells (*p < 0.05, **p < 0.01, and ***p < 0.001, n = 3).

Frontiers in Genetics frontiersin.org10

Jin et al. 10.3389/fgene.2022.900911

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.900911


between observations and predictions in the CGGA dataset

(Supplementary Figure S2B).

Novel classification, construction, and
evaluation based on the risk model

When the optimal k value was three, the consensus matrix

showed a relatively sharp clear boundary, indicating stable and

robust clustering (Figure 3A and Supplementary Figure S3). Owing

to the relatively small sample size in cluster 3, we divided the

patients into two clusters after excluding the samples in cluster 3.

Interestingly all methods—NMDS1, tSNE, and PCA—verified

subclass stability by consensus subtype clustering (Figures

3B–D). We used the ESTIMATE algorithm to explore the

relationship between immune cell infiltration and the two

subgroups and failed to find differences in immune scores

across multiple classifications (Figure 4A). Furthermore, an

assessment of the prevalence of twenty-two immune cell

subtypes revealed that M2 macrophages were obviously elevated

in cluster 1 relative to cluster 2 (Figure 4B).

New classification establishment and
evaluation based on WGCNA

After data preprocessing, we obtained the gene expression

matrix, and a sample clustering tree was drawn to visualize

distribution, using a soft threshold of 10 (R2 = 0.63) to

construct a scale-free network (Figure 5A), which may exclude

biased samples. Next, adjacency and topological overlap matrices

were built for further analyses. Subsequently, a dendrogram of all

differentially expressed gene clusters was established based on

dissimilarity (Figure 5B). As shown in Figure 6C, the blue module

was negatively related to PRS type, and the turquoise module was

negatively correlated with IDH and 1p19q status (Figure 5C).

Thus, these two modules were selected as clinically important

modules. The co-relationships among these clinical modules are

presented in Figure 6D. We also performed correlation analyses

between important clinical features and the selected co-expression

modules (Figures 6A–D). Based on the previous risk model, we

identified eight genes (ANKRD20A4, CLOCK, CNTRL, ICA1,

LARP4B, RASA2, RPS6, and SET) in the blue module and three

genes (MSH2, ZBTB34, and DDX31) in the turquoise module.

Hub prognostic gene selection and
evaluation

To further explore the innate mechanism and determine hub

genes in GBM, we utilized a publicly available website to test the

survival rate of these 11 expression levels in patients with GBM.

The KM curve suggested that increased MSH2 and CNTRL were

significantly associated with poorer OS, using median expression

as a cut-off value (p < 0.05) (Figures 7A,B). Based onGSCALite, we

observed thatMSH2may activate the cell cycle and DNA damage

response and inhibit epithelial–mesenchymal transition (EMT)

and RAS/MAPK signaling. However, we failed to reveal the

pathways involved in CNTRL (Figure 7C). Therefore, MSH2

was comprehensively evaluated as the most important

biomarker, using the CGGA dataset. In the CGGA693 RNA-

seq cohort, we observed that MSH2 was elevated relative to all

glioma patients in patients lacking the 1p/19q co-deletion.

MSH2 was particularly elevated in patients with WHO III or

IV pathology (Figure 8A). In the CGGA325 cohort,MSH2was also

higher in patients lacking the 1p/19q co-deletion, particularly in

those diagnosed asWHOgrade II or III. Specifically,MSH2may be

positively associated with recurrence (Figure 8B). Considering the

bright prospects of immunology, we showed that the expression of

MSH2 was negatively correlated with the immune score, and the

levels of monocytes and NK cells were elevated (Figure 9).

Effect of MSH2 silencing on proliferation,
migration, and invasion of GBM

We further investigated the function of the hub genes in GBM

development and progression. To further verify the reliability and

accuracy of our diagnostic model, we selected MSH2 after a careful

literature review revealed that it has rarely been studied in GBM.

Subsequently, siRNAs targeting MSH2 were designed and

synthesized. Compared to NC-transfected cells, MSH2 expression

was lower in cells transfected with si-MSH2 (Figure 10A), and since

the silencing efficacy of si-MSH2#3 (termed si-MSH2) is the highest,

we have chosen it for further study. CCK8 and EdU assays showed

that MSH2 depletion significantly suppressed GBM cell growth

(Figures 10B,C). Similarly, the proliferative capacity of GBM cells

was strikingly suppressed after silencing MSH2 by clone formation

(Figure 10D), indicating that MSH2 plays an important role in the

growth of GBM. The results of the Transwell assay revealed that

MSH2 knockdown markedly attenuated GBM cell migration and

invasion (Figure 10E).

Discussion

Glioblastoma is an aggressive intrinsic brain tumor that may

occur at any age and has a high incidence of recurrence. Surgery

followed by involved-field radiotherapy in combination with

temozolomide chemotherapy constitutes the standard therapy

for newly diagnosed GBM patients (Stupp et al., 2005).

Simultaneously, an emerging area of interest in cancer

therapy, notably for GBM, has promoted the discovery of a

variety of targeted therapies. For example, alkylating agent

chemotherapy, and aberrant CpG methylation of the

promoter region of the O6-methylguanine DNA
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methyltransferase (MGMT) gene has been confirmed to have a

predictive value for patients using temozolomide (Hegi et al.,

2005; Hegi et al., 2019). However, no targeted therapeutic

intervention has been shown to prolong overall survival or to

be superior to current treatments for GBM.

In this study, filtering analysis was performed from the

CGGA and TCGA datasets (only GBM) and multiple key

genes, including MSH2 and CNTRL were identified. KM

survival analysis, univariate Cox analysis, and multivariate

Cox analysis validated the predictive value of these genes. To

visualize the practicability of these genes, LASSO analysis was

performed to calculate the risk score and construct a risk model.

Interestingly, the risk score may be an independent biomarker to

evaluate clinical efficacy, which is superior to other clinical

features. Notably, multiple analyses have suggested that these

potential molecules might function as regulators in cancer

pathogenesis, but how they act in an mRNA-interactive

manner during GBM progression remains unknown. Thus, we

used unsupervised classification to classify patients into specific

groups with potential gene co-expression. Moreover, we utilized

WGCNA to identify the relationship between the co-expression

of genes and clinical features. Taken together, our data support

that MSH2 plays a key role in GBM progression.

The MSH2 gene, which plays a key role in DNA mismatch

repair (MMR), may form a complex with BLM-p53-RAD51 in

response to DNA damage repair (Yurgelun et al., 2017; Xu et al.,

2021). When DNA is damaged, MSH2 promotes apoptosis by

regulating ATR/Chk2/p53 signal transduction (Yang et al., 2004).

MSH2 is intimately linked to the occurrence and development of

multiple cancers. In multiple gastric cancers (MGC) characterized

by the presence of more than two different tumors in the stomach,

the MSH2 mutations, particularly germline MSH2 X314_splice

variants, may contribute to carcinogenesis, suggesting the

consideration of more radical surgery and/or anti-PD-1/PD-

L1 therapy (Wang et al., 2020). In oral diseases, the study

supports that patients with MSH2 overexpression may easily

present with oral squamous cell carcinoma (Donís et al., 2021).

Moreover, MSH2 mutation was found in 31% of patients with

Lynch syndrome-associated GBMs, indicating that MSH2 may

play important role in the progression of GBM (Kim et al., 2022).

In this study, to verify the accuracy of our prognostic model, the

relationship betweenMSH2 expression and clinical characteristics

was evaluated usingWGCNA.We found thatMSH2 plays the key

role in the turquoisemodule, and is negatively associated with IDH

and 1p19q status. Furthermore, gene set enrichment analysis

(GSEA) revealed a role of MSH2 in tumor progression, which

is generally enriched in activation of the cell cycle, DNA damage

response, and inhibition of EMT and RAS/MAPK pathways. We

further investigated the function of the hub genes in GBM

development and progression. To verify the reliability and

accuracy of our diagnostic model, we performed several

experiments and demonstrated that depletion of MSH2

significantly suppressed proliferation, and weakened the

migration and invasion ability of GBM cells, indicating that

MSH2 is a prognostic and therapeutic target for GBM.

Conclusion

Our study comprehensively analyzed the CGGA datasets of

GBM and constructed a 17-gene risk signature using LASSO

regression analysis. Furthermore, we developed a novel

classification using ConsensusClusterPlus based on these

17 genes and evaluated the tumor immune environment using

ESTIMATE and CIBERSORT. Further, by applying WGCNA

analysis, we identified eight and three genes from the blue and

turquoise modules, respectively. Finally, through validation of

public websites and experiments, MSH2 was verified as the hub

biomarker.
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