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Abstract

A number of studies of copy number imbalances (CNIs) in breast tumors support associations between individual CNIs and
patient outcomes. However, no pattern or signature of CNIs has emerged for clinical use. We determined copy number (CN)
gains and losses using high-density molecular inversion probe (MIP) arrays for 971 stage I/II breast tumors and applied a
boosting strategy to fit hazards models for CN and recurrence, treating chromosomal segments in a dose-specific fashion (-1
[loss], 0 [no change] and +1 [gain]). The concordance index (C-Index) was used to compare prognostic accuracy between a
training (n = 728) and test (n = 243) set and across models. Twelve novel prognostic CNIs were identified: losses at 1p12,
12q13.13, 13q12.3, 22q11, and Xp21, and gains at 2p11.1, 3q13.12, 10p11.21, 10q23.1, 11p15, 14q13.2-q13.3, and 17q21.33.
In addition, seven CNIs previously implicated as prognostic markers were selected: losses at 8p22 and 16p11.2 and gains at
10p13, 11q13.5, 12p13, 20q13, and Xq28. For all breast cancers combined, the final full model including 19 CNIs, clinical
covariates, and tumor marker-approximated subtypes (estrogen receptor [ER], progesterone receptor, ERBB2 amplification,
and Ki67) significantly outperformed a model containing only clinical covariates and tumor subtypes (C-Index full model,
train[test] = 0.72[0.71] 6 0.02 vs. C-Index clinical + subtype model, train[test] = 0.62[0.62] 6 0.02; p,1026). In addition, the full
model containing 19 CNIs significantly improved prognostication separately for ER–, HER2+, luminal B, and triple negative
tumors over clinical variables alone. In summary, we show that a set of 19 CNIs discriminates risk of recurrence among early-
stage breast tumors, independent of ER status. Further, our data suggest the presence of specific CNIs that promote and, in
some cases, limit tumor spread.
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Introduction

Gene expression profiling, coupled with patient outcomes, has

demonstrated the extent and clinical importance of molecular

heterogeneity among breast cancers [1–4]. As a result, human

breast cancers have been subclassifed into four reproducible

subtypes: luminal A (LUM A), luminal B (LUM B), ERBB2-

amplified (HER2+), and basal-like [3]. These expression-based

subtypes predominantly divide on the clinical subtypes defined by

immunohistochemical (IHC) measures of estrogen receptor (ER),

where luminal-type tumors are predominantly ER-positive (ER+),

and basal-like tumors are ER negative (ER2) [5]. Luminal-type

tumors, LUM A and LUM B, can be further discriminated by

differences in their proliferation indices assessed by IHC measures

of Ki67 as low or high, respectively [6].

As a consequence of extensive gene expression profiling, first

generation gene signature-based diagnostic tests (e.g., Oncoty-

peDxH and MammaPrintH) have entered clinical diagnostics for

patients with early-stage tumors that are non-amplified for ERBB2,

the gene that codes for the human epidermal growth factor

receptor 2 (i.e., HER2– breast cancers) [7]. These early gene

signatures largely stratify patients on known clinical factors,

showing improved quantitation and reproducibility for measures

of hormone receptor status and proliferation over routine IHC

testing. While these molecular tests show improved reproducibility

for risk classification for a subgroup of patients, the gains in
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prognostication over clinical models are fairly modest, with little to

no discrimination for tumors that are ER-low, ER2, HER2+, or

histologically advanced at diagnosis; all of which exhibit

heterogeneity in terms of patient outcomes [4].

A number of studies demonstrate the coupling of chromosomal

abnormalities as copy number imbalances (CNIs) with the gene

expression-based tumor subtypes [8–13], and, in many cases,

specific CNIs have been shown to directly influence gene

expression [9,14–16]. Importantly, there is also evidence of

sharing of specific genomic alterations across the expression-based

subtypes, some of which seem to be particularly important drivers

for tumor aggressiveness. For example, Chin et al. found that high-

level amplifications and chromosomal alterations at 8p11-12 and

11q13-14, which were strongly associated with poor outcomes,

were present in all expression-based subtypes but at different

frequencies [9]. Because tumor cells that lose genomic stability

acquire a number of secondary somatic mutations and chromo-

somal alterations that include CNIs, we hypothesize that some of

these changes, perhaps under shared selective pressures, directly

influence metastatic potential independent of the expression

subtypes and, if identified, may aid in further refining patient

prognostication.

The association between genome-wide CNI profiles and breast

cancer outcomes is limited to a handful of highly promising

investigations [8–9,17]. Thus far, however, only measures of the

ERBB2 gene amplicon coding for HER2 have entered the

diagnostic setting and solely for selecting patients for targeted

therapy with HerceptinH [18]. More recent efforts have focused on

associations within tumor subtypes. For example, the RAB11

family-interacting protein 1 gene (RAB11FIP1), which codes for a

RAB-coupling protein [RCP] and the putative driver of the 8p11-

12 amplicon, has been associated with poor outcomes in LUM B

patients particularly when co-amplified with the Ras-related

protein Rab25 gene (RAB25) at 1q22 [19–20]. While promising,

such studies are limited by small numbers of cases and inclusion of

predominantly larger, more-advanced-stage breast tumors for

which fresh frozen material was available. Investigation of larger

sample sets of early-stage tumors with long-term follow-up is

absent, largely as a result of tissues stored as formalin-fixed,

paraffin-embedded (FFPE) blocks and the challenges associated

with deriving copy number (CN) information from FFPE materials

[21].

To overcome the inherent challenges in using FFPE tumor

tissues in CN determination, we applied high-density molecular

inversion probe (MIP) arrays to characterize CN status in 971

stage I/II breast cancers as FFPE. We report specific CNIs

identified through a boosting strategy [22] and their independent

and combined use with clinical covariates and tumor subtypes in

predicting recurrence risk. Our results support the integration of

specific CNIs in prognostication of early-stage breast cancers and

separately for tumors that are LUM B, ER2, or HER2+. In

addition, we show that modeling CNIs in a gene-dose fashion

identified specific chromosomal regions whose gain or loss

demonstrated opposing effects on recurrence risk.

Results

Molecular inversion probe (MIP)-determined CNIs and
their association with tumor marker-defined subtypes

CNIs were determined using MIP-based arrays for stage I/II

breast tumors from 971 patients, whose clinical characteristics are

described in Table 1. Figure 1 shows the pattern of CNIs for all

971 tumors and by subtype defined as LUM A, LUM B, HER2+,

and triple negative breast cancer (TNBC) that were approximat-

ed using tumor markers as described in Materials and Methods.

Using MIP arrays, we found a pattern of recurrent ($10%) gains

and losses in early-stage breast tumors (all combined and by

tumor subtype) that were consistent with those previously

described from studies using comparative genome hybridization

of fresh frozen tumors [8,23]. These are shown in Figure 1 with

detailed annotation by subtype provided in Table S1. For

example, all tumor subtypes showed recurrent gains of the 1q

arm as well as gains of 8p11.23-q24.3, 11q13.2-q13.3, 14q11.2,

and 20q13.13-q13.33 with recurrent losses at 8p23.3-p12. The 41

recurrent CNIs that differ significantly at a false discovery rate

(FDR) of 0.01 across the tumor subtypes are indicated in Table

S1. As reported by others [8], gains of 16p13.3-p11.2 and losses

of 16q12.1-q24.3 were more common in LUM tumors, whereas

losses of 1p36.23-p36.31, 6q14.1-q27, 11q14.1-q25, and 22q11.1-

q13.33 were significantly more common among LUM B tumors.

Furthermore, gains at 4q13.3-q21.21 and 17q11.1-q23.2, which

includes the ERBB2 amplicon, were more common among

HER2+ tumors. When separated on ER status (Figure S1),

HER2+/ER+ tumors were similar to HER2+/ER– tumors for

the extent and type of CNIs, with the exception of a significantly

higher proportion of HER2+/ER+ tumors exhibiting gains at

17q distal to the ERBB2 locus (45.7%) and gains at 8p12 (28.4%),

compared with HER2–/ER– tumors (20.8% and 12.2%,

respectively; FDR,0.05). When separated on ER status (Figure

S1), HER2+/ER+ tumors were similar to HER2+/ER– tumors

for the extent and type of CNIs, with the exception of a

significantly higher proportion of HER2+/ER+ tumors exhibit-

ing gains at 17q distal to the ERBB2 locus (45.7%) and gains at

8p12 (28.4%), compared with HER2–/ER– tumors (20.8% and

12.2%, respectively; FDR,0.05). In addition, using a relaxed

FDR,0.1 for exploratory purposes given the small sample size,

gains at 5q35.1, 8p12, 10q21.1, and 17q11.2-q25.2 and losses at

6q14.1-q22.31, 6q27, 9q21.13-q33.1, 11q14.1-q22.3, 13q12.3

and 17p13.1 were more common in HER2+/ER+ when

compared to HER2+/ER–. TNBCs showed numerous recurrent

CNIs including losses at 3p12.3-p12, 14q13.3-q32.31, 15q12-

q14, and Xp22.21-p11.23, and gains at 1p12, 6p25.3-p12.1,

6q16.2-q23.1, 7q22.1-q35, 9p24.3-p21.3, 11p13-p12, 12p13.33-

p11.2, 13q33.3-q34, 18p11.32-p11.21, and 21q22-q22.3. Consis-

tent with prior studies for basal-like tumors [9], TNBCs exhibited

extensive losses on chromosome 4 (4p16.1-q35.2) and losses on

the 5q arm. Recurrent gains at 5p15.33-p13.1 and 17q23.2-

q25.3, and losses at 9p21.2-p21.1, 13q14.2-q31.1, and 17p12

were present among LUM B, HER2+, and TNBC tumors, but

not the LUM A group.

Specific CNIs improve prognostication for any
recurrence, distant metastasis, and overall survival

To assess the prognostic information of individual CNIs

obtained across the whole genome, we built a Cox proportional

hazards model for recurrence from the high-dimensional segment

data using a training set (n = 723) and the CoxBoost algorithm

[24]. Using this strategy, we identified 19 specific CNIs that

combined were significantly associated with risk of recurrence. We

compared the performance of the 19-CNI ‘signature’ to a ‘clinical’

model that included patient age at diagnosis, lymph node status,

and tumor size and a ‘clinical + subtype’ model that included

clinical covariates combined with tumor subtypes (i.e., LUM A,

LUM B, TNBC, and HER2+). The development of the different

multivariate models, including the variable selection approach for

the CNIs, is detailed in Materials and Methods.

When applied across all breast cancers for any recurrence

(Figure 2A), the 19-CNI model is a significantly (p,0.001)

Copy Number Based Prognostic Model for Breast Cancer
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stronger predictor for recurrence (Concordance Index [C-Index]

6 standard error = 0.6860.03) than either the clinical model (C-

Index = 0.6160.02) or the clinical + subtype model (C-Index =

0.6260.02). We next evaluated the performance of a ‘full’ model

that included the 19 CNIs, clinical covariates, and tumor subtypes.

Though not significantly different from the 19-CNI model alone

(p = 0.13), the full model performed the best in both the training

(C-Index = 0.7260.02) and test (C-Index = 0.71) sets.

Table 1. Clinical characteristics of all stage I/II breast cancer patients with MIP derived copy number.

Characteristic White Black Hispanic Other Total

(N = 715) (N = 125) (N = 123) (N = 8) (N = 971)

Age (yrs), mean (s.d.) 55 (12.7) 54 (13.8) 52.1 (10.9) 51.8 (8.7) 54.4 (12.6)

Year of Diagnosis

$1995 304 (42.5) 45 (36) 56 (45.5) 0 405 (41.7)

1990–1994 227 (31.8) 4 2(33.6) 38 (30.9) 0 307 (31.6)

1985–1989 174 (24.3) 36 (28.8) 27 (22) 0 237 (24.4)

Missing 10 (1.4) 2 (1.6) 2 (1.6) 8 (100) 22 (2.3)

Stage, # (%)

I 224 (31.4) 33 (26.4) 47 (38.2) 0 303 (31.2)

IIa 337 (47.1) 54 (43.2) 49 (39.9) 1 (12.5) 441 (45.4)

IIb 151(21.1) 37(29.6) 26(21.1) 7(87.5) 221(22.8)

Missing 3(0.4) 1(0.8) 1(0.8) 0 5(0.01)

Tumor Subtype1, # (%)

LUM A 310 (43.3) 33 (26.4) 45 (36.6) 1 (12.5) 389 (40.1)

LUM B 110 (15.4) 23 (18.4) 19 (15.5) 4 (50) 156 (16.1)

Her2 107 (15) 25 (20) 24 (19.5) 2 (25) 158 (16.4)

TNBC 123 (17.2) 34 (27.2) 26 (21,1) 1 (12.5) 184 (18.8)

Missing 65 (9.1) 10 (8) 9 (7.3) 0 84 (8.6)

Nuclear Grade2, # (%)

1–2 434 (60.7) 60 (48) 75 (61) 0 569 (58.6)

3 234 (32.7) 58 (46.4) 44 (35.8) 0 336 (34.6)

Missing 47 (6.6) 7 (5.6) 4 (3.2) 8 (100) 66 (6.8)

Tumor size, # (%)

,2cm 419 (58.6) 58 (46.4) 89 (72.4) 0 566 (58.3)

$2 cm 276 (38.6) 62 (49.6) 31 (25.2) 0 369 (38.0)

Missing 20 (2.8) 5 (4) 3 (2.4) 8 (100) 36 (3.7)

Lymph node, # (%)

0 409 (57.2) 82 (65.6) 74 (60.2) 0 565 (58.2)

$1 295 (41.3) 41 (32.8) 47 (38.2) 0 383 (39.4)

Missing 11 (1.5) 2 (1.6) 2 (1.6) 8 (100) 23 (2.4)

Endocrine treatment

No 382 (53.4) 74 (59.2) 66 (53.7) 0 (0) 522 (53.8)

Yes 320 (44.8) 47 (37.6) 55 (44.7) 0 (0) 422 (43.5)

NA 13 (1.8) 4 (3.2) 2 (1.6) 8 (100) 27 (2.7)

Chemotherapy

No 353 (49.4) 68 (54.4) 59 (48) 0 (0) 480 (49.4)

Yes 327 (45.7) 51 (40.8) 59 (48) 0 (0) 437 (45)

NA 35 (4.9) 6 (4.8) 5 (4.1) 8 (100) 54 (5.6)

Radiation therapy

No 397 (55.5) 73 (58.4) 65 (52.8) 0 (0) 535 (55.1)

Yes 305 (42.7) 49 (39.2) 56 (45.5) 0 (0) 410 (42.2)

NA 13 (1.8) 3 (2.4) 2 (1.6) 8 (100) 26 (2.7)

1Tumor subtype defined by ER, PR, Ki67 and HER2 as described in Materials and Methods.
2Nuclear grade was determined by the Modified Black’s method.
doi:10.1371/journal.pone.0023543.t001
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To evaluate the prognostic value of the 19 CNIs for additional

patient outcomes, we next compared the four models (19-CNI,

clinical, clinical subtype, and full) for time-to-distant metastasis,

overall survival, and death from breast cancer (Figure 2B–D). For

time-to-distant metastasis (n = 208 events), the full model (C-Index

= 0.7660.04) performed significantly better (p = 0.01) when

compared with the clinical model (C-Index = 0.6660.04) and

clinical subtype model (C-Index = 0.6860.041). For overall

survival, the final combined model outperformed both clinical

models with and without tumor subtypes (p = 0.01) with a similar,

but not significant (p = 0.18), improvement for death due to breast

cancer (n = 149 deaths). The features of the full multivariate model

are shown in Table 2 with more detailed information on the 19

CNIs and the genes contained within the segments provided in

Table S2.

Prognostic CNIs, recurrence, and frequency by tumor
subtype

With the selection of the 19 CNIs, we confirm previous studies

reporting higher risk of recurrence among breast tumors

exhibiting losses at 8p22 and 16p11.2, and gains at 10p13,

11q13.5, 12p13, 20q13, and Xq28 [8-9]. In addition, we identified

12 CNIs not previously associated with breast cancer recurrence:

1p12, 2p11.1, 3q13.12, 10p11.21, 10q23.1, 11p15, 12q13.13,

13q12.3, 14q13.2-13.3, 17q21.33, 22q11, and Xp21. Figure S2

shows the time-to-recurrence for each of the individual CNIs.

Consistent with the previous report for CNIs [9], the CNIs in the

19 segments were present across all IHC-defined subtypes but

differed significantly in frequency by subtype (Table S3). For

example, gains at 1p12, 2p11.1, and 10p13, and losses at Xp21.1,

were more common (p,0.001) in TNBCs, whereas gains at

17q21.33 and 20q13.33 were more common (p,0.001) among

LUM B and HER2+ tumors.

CNI model improves prognostication within tumor
subtypes

When separated on ER status (Figure 3A and 3B) the 19 CNI

model significantly improved prognostication when compared with

the clinical plus tumor subtypes: ER+ (C-Index = 0.72 vs. 0.62,

p,0.0001) and ER– (C-Index = 0.78 vs. 0.63, p = 0.001). Further,

Figure 1. The five panels show the percentage of samples showing gain (red) or loss (green) for all 971 tumors (top) and
individually for each clinical subtype. The horizontal black lines at the top (and bottom) of a panel associated with a particular clinical subtype
indicate regions showing statistically significant increase in gain (and loss) frequencies (FDR,0.01) for this subtype compared with the other
subtypes.
doi:10.1371/journal.pone.0023543.g001
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when assessed within each tumor subtype group separately, the 19

CNIs plus clinical covariates (age of diagnosis, lymph node status,

tumor size) showed improved prognostication across all subtypes

(Figure 3C-F) compared with the clinical model: LUM A (C-Index

= 0.71 vs. 0.63, p = 0.047), LUM B (C-Index = 0.71 vs. 0.50,

p = 0.002), any HER2+ (C-Index = 0.78 vs. 0.64, p = 0.014), and

TNBC (C-Index = 0.72 vs. 0.64, p = 0.046).

Risk index based on CNIs and recurrence probability
To classify individuals based on the 19 CNIs alone and to gain

some insight on how information on the 19 CNIs relates to clinical

characteristics, we next created risk categories of ‘low’, ‘no CNI’

(no CNIs in any of the 19 segments), and ‘high’, as described in

Materials and Methods. Figure 4 shows the recurrence probability

for all breast cancers classified as low (15.8%), no-CNI (46.2%), or

high (38%) risk for both the training (Figure 4A) and test

(Figure 4B) sets. In the training set, the probability of recurrence

was greatest for patients presenting with the high-risk CNI

signature. For example, among the high-risk group, 31% recurred

by 5 years compared with 6.5% of the low-risk patients. Patients

showing no imbalances in the 19 CNIs experienced intermediate

risk, with 17.8% recurring in the same time periods. Compared

with the patients in the no-CNI group, those in the high-risk CNI

group had a significant increase in risk of recurrence [hazard ratio

(HR) = 1.8; 95% confidence interval (CI), 1.37-2.36], whereas

those classified into the low-risk CNI group had significantly lower

risk HR = 0.39 (0.23–0.69).

Table 3 shows the association between the clinical character-

istics and the prognosis signature for the CNI-defined risk groups.

There were no differences among the three groups by race/

ethnicity, lymph node status, hormone therapy, or radiation

therapy. Tumors in the low- and high-risk groups were

significantly more likely to be larger, be nuclear grade III, and

have $20% positive staining for the proliferation marker Ki67

than the no-CNI, intermediate-risk group. The two CNI-defined

groups showed similar within-group occurrence of ERBB2

amplification (,20%). While similar to the low-risk group on a

number of clinical features, the high-risk group was more likely to

be ER–, receive chemotherapy, and be younger at diagnosis than

the low- or intermediate-risk groups.

The frequency and nature of gains and losses across the three

risk groups are shown in Figure 5A. Both the low- and high-risk

group display an overall pattern of greater gains and losses than

the no-CNI group. Next, we assessed the association of the groups

with the previously described ‘simplex’ tumors (i.e., tumors

enrichment for gains at 1q and 16q and over-represented in

LUM A) [22]. Consistent with a general defect in genomic

stability, both the low- and high-risk CNI groups (Table 3) showed

significantly higher representation of gains at 1q and 16q as well as

loss at 16p (p,0.001), suggesting that the discrimination between

the high-risk and no-CNI group is not simply driven by

enrichment of ‘simplex’ tumors in the no-CNI group. When

compared across the 19 CNIs that define the three groups, the

high-risk group displayed a greater overall pattern of amplification

Figure 2. The performance of the clinical, 19-CNI, combined (clinical + tumor subtype) and full (19-CNIs, clinical, tumor subtype)
prognostic models by Concordance Index: (A) recurrence, (B) distant metastasis, (C) overall survival, and (D) death from breast
cancer. Concordance indices of prognostic models for the various outcomes are shown for the training and test set. The closed square indicates the
training set with the 95% confidence interval for the estimate, and the open square represents performance in the test set.
doi:10.1371/journal.pone.0023543.g002
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in the 19 CNIs compared with the low-risk group (Figure 5B),

which suggest the high-risk group may be enhanced for oncogenes

as putative driver events.

CNI-based risk index identifies a low-risk group among
ER2 patients

Consistent with a more aggressive biology, patients with ER2

tumors had a significantly higher risk of recurrence [HR = 1.3

(1.01-1.64), p = 0.04] compared with ER+ cases. In our compar-

ison of models, the 19-CNI model showed a significant

improvement in prognostication for ER2 tumors over clinical

covariates (C-Index = 0.78 vs. 0.63, p = 0.001) (Figure 3B). To

explore the importance of the 19-CNI model for ER2 tumors,

recognizing treatment heterogeneity, we assessed the performance

of the 19 CNI-based risk score among ER2 cases by

chemotherapy (Figure 6). There is a strong relationship between

risk score and time-to-recurrence in ER2 patients. For the CNI-

based models, ,14% of ER2 cases experienced a very low hazard

of recurrence [HR = 0.06 (0.01-0.42), p = 0.005] relative to the

group with none of the 19 CNIs, independent of treatment with

chemotherapy. While limited to a small sample size, these data

suggest that women with the low-risk signature may not benefit

Table 2. Full Multivariate Cox model, based on the training set (n = 728)1.

Factor N (N_recurrence) Hazard Ratio (95% CI) P value

Age at Dx, yrs

.50 414 (115) 1

#50 295 (109) 1.13 (0.84–1.51) 0.42

Missing 19 (9)

Tumor size, cm

#2 422 (116) 1

.2 277 (103) 1.15 (0.85–1.55) 0.36

Missing 29 (14)

Lymph node status

0 422 (106) 1

$1 286 (117) 2.04 (1.45–2.78) ,0.001

Missing 20 (10)

Subtype

LUM A 285 (78) 1

LUM B 110 (47) 1.50 (1.02–2.22) 0.015

HER2 125 (39) 1.03 (0.67–1.57) 0.90

TNBC 142 (48) 1.3 (0.85–1.99) 0.22

Missing 66 (21)

Cytoband Start-Stop Gain or Loss

1p12 nt119315210-nt119747280 loss 1.96 (1.10–3.45) 0.02

2p11.1 nt91087616-nt94286916 gain 2.18 (0.90 – 5.45) 0.09

3q13.12-q13.13 nt108059123-nt112251638 gain 4.35 (2.42 – 7.82) ,0.001

8p22 nt17229368-nt17457649 loss 1.52 (1.09 – 2.08) 0.016

10p11.21 nt36379031-nt37813659 gain 0.24 (0.11 – 0.53) ,0.001

10p13 nt16084814-nt17528387 gain 2.03 (1.22 – 3.39) 0.007

10q23.1 nt82273705-nt82913296 gain 1.52 (0.87 – 2.66) 0.14

11p15.1-p15.2 nt14183576-nt19267810 loss 0.59 (0.31 – 1.12) 0.11

11q13.5 nt75779338-nt76296812 gain 1.44 (0.94 – 2.20) 0.09

12q13.13 nt50493755-nt51600159 loss 1.96 (0.98 – 3.85) 0.06

12p13.32 nt3394093-nt3630092 gain 1.75 (1.07 – 2.84) 0.03

13q12.3 nt28554115-nt29380652 loss 0.40 (0.24 – 0.68) ,0.001

14q13.2-q13.3 nt35380230-nt36252346 gain 1.82 (1.13 – 2.93) 0.02

16p11.2 nt31526202-nt35843070 loss 1.54 (0.98 – 2.38) 0.06

17q21.33 nt47411130-nt48137311 gain 0.31 (0.18 – 0.54) ,0.001

20q13.33 nt59456751-nt59788832 gain 1.27 (0.88 – 1.83) 0.21

22q11.1-q11.21 nt15236255-nt16625906 loss 1.82 (1.10 – 3.01) 0.02

Xp21.1-p21.2 nt30907133-nt32653344 loss 2.78 (1.72 – 4.55) ,0.001

Xq28 nt151081086-nt151871524 gain 1.87 (1.19 – 2.94) 0.007

1The clinical covariates shown were selected from a step-wise model selection procedure that minimizes the Akaike Information Criteria, except for age at diagnosis.
doi:10.1371/journal.pone.0023543.t002
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from the addition of chemotherapy. As for the effect of

chemotherapy for ER2 and ‘high-risk’ individuals, a comparison

of the Kaplan Meier curves by chemotherapy (Figure 6B and 6C)

showed no significant differences for the ER2, high-risk group

stratified by whether or not they received chemotherapy (log-rank

test, p = 0.248). Further efforts with larger sample sizes are needed

to determine whether or not the CNI-based classifier is

informative for predicting treatment outcomes within the ER2

subgroup.

Prognostic accuracy of the CNI-based models and
recurrence probability at 5 and 10 years of follow-up

Using data for all breast cancers, time-dependent receiver

operator characteristic (ROC) curves were derived along with the

area under the curve (AUC) for 5- and 10-year recurrence

probability (Figure S3A and S3B) for four models: clinical model

(clinical covariates only), clinical + subtype model (clinical

covariates + tumor subtypes), marker model (19-CNIs), and full

model (19 CNIs, clinical covariates, and tumor subtypes). The

average AUC for the final full model was 0.71 (0.68) at 5 (or 10)

years, compared with 0.65 (0.61) for the next-best clinical +
subtype model and 0.65 (0.64) for the marker model. For ER–

tumors (Figure S3C and S3D), the average AUC for the full model

was 0.74 (0.73) at 5 (or 10) years, compared with 0.63 (0.64) for the

clinical model and 0.72 (0.70) for the marker model. These results

illustrate the potential contribution of CNIs for improved

prognostic accuracy, particularly among ER– cases.

Seven CNIs show posterior probabilities consistent with a
strong positive effect on recurrence endpoints

Next, we used CoxBoost to construct multivariate Cox models

with 19 CNIs using 100 boosting steps. Because any model

selection algorithm and the final model for inference ignores the

uncertainty in model selection [25], we applied Bayesian Model

Averaging (BMA) as an approach to address the issue of model

selection uncertainty as described in Materials and Methods.

Table S4 shows the posterior probabilities for the 19-CNI model.

Of the CNIs selected with 100 boosting steps, 7 of 19 (3q13.12,

10p13, 11q13.5, 14q13.2, 22q11.1, Xp21.1, and Xq28) met the

criteria for strong positive effect in the model for recurrence, with

5 of these 7 (10p13, 11q13.5, 22q11.1, Xp21.1, and

3q13.12,q13.13) exerting very strong positive effects in the models.

Batch effects and CNI prognostic model performance
Since measures of CN were obtained in 5 individual runs over the

course of the study and during the development of the novel MIP

measures of CN, we evaluated the effect of batch on the performance

of our models. Across batches model performance varied, with C-

Indices ranging from 0.72 to 0.93 (data not shown). Thus, a batch

effect likely influenced model performance, suggesting that additional

improvements in measurement precision may enhance predictability.

Discussion

Using data obtained from early-stage breast cancer patients

diagnosed from 1985-1999 with an average follow-up of 8.9 years,

Figure 3. Concordance indices of prognostic models for probability of recurrence in training and test Set: (A) ER+, (B) ER-, (C) LUM
A, (D) LUM B, (E) HER2+, and (F) TNBC. The closed square indicates the training set with the 95% confidence interval for the estimate, and the
open square represents performance in the test set.
doi:10.1371/journal.pone.0023543.g003
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we identified 19 CNIs as a signature that showed reproducible

improvements for prognostic accuracy of breast cancer recurrence

over known prognostic clinical variables, tumor marker-approx-

imated subtypes, or their combination. The 19-CNI model showed

the greatest gains in discriminating risk of recurrence among the

ER2 tumors and, separately, for the LUM B and HER2+
subgroups. The CNI model performed well both within and

among the tumor subtypes, supporting prior observations that a

sizable number of breast tumors share features of more than one of

the clinical- or expression-based subtypes [26].

Our findings extend prior evidence for losses at 8p22 and Xp21

and worse outcomes for early-stage disease, independent of tumor

subtype [27–31]. Among chromosomal gains associated with

recurrence in our cohort, several are in or near regions previously

implicated in poor outcome (e.g., 11q13.5 and 20q13) [13,32], or

more common among aggressive basal-like or medullary-type

cancers (e.g., 10p13, 12p13, and Xq28) [12,33–35]. In our cohort,

gains at 20q13 were present in all subtypes as a recurrent event but

more common in LUM B and HER+ tumors. Unlike previous

studies [13], we did not identify gains at 8q24 as an independent

prognostic factor for poor outcomes among breast cancer patients.

However, as reported previously by Chin et al., gains at 8q24 were

highly correlated with gains at 20q13 in our data even after

correcting for multiple comparisons (p,0.001; data not shown).

Since our procedure for marker selection elects one of any highly

correlated loci, it is possible that gains at 8q24 and 20q13 are

interchangeable. We did not explore the effects of interaction

among coamplified CNIs in this analysis.

To our knowledge, our study is the first to report CNIs at 1p12,

2p11.1, 3q13.12, 10p11.21, 10q23.1, 11p15, 12q13.13, 14q13.2-

13.3, 17q21.33, and 22q11as prognostic markers for breast cancer.

Of these, loss at 22q11.1 and gains at 3q13.12 and 14q13.2-13.3

are among the 7 CNIs identified in the BMA analysis ranked as

strongly positively associated with recurrence. No candidate

oncogenes have been reported previously for 3q13.12 nor has

this region been associated with patient outcomes. In our study,

the identified region in 3q13.12 contains the stem cell genes

DDPA2 and DDPA4 [36], which, we speculate, may contribute to

more-aggressive behavior if amplified. In our patient population,

the segment at 14q13 shows both a gain and loss (see Figure S2).

Patients with tumors showing a gain in this locus have higher risk

of recurrence than patients with no CNI at this locus. In contrast,

loss of this locus is associated with improved prognosis. Gain at

14q13 has been studied in relation to lung cancer [37], and co-

amplification and overexpression of the transcription factors TTF-

1, NKX2-8, and PAX9 (all located at 14q13) have been associated

with cisplatin resistance in lung cancer cell lines [38]. In our

sample, ,5% of cases show amplification across an overlapping,

narrow 36.2-kb region of 14q13 associated with risk of recurrence.

This amplicon was present at similar frequency across the four

tumor subtypes (see Figure 1 and Table S3) and is of interest as a

potential modifier of treatment response.

We have less confidence in the prognostic relevance of the CNIs

at 1p12, 2p11.1, 10p11.21, 10q23.1, 11p15, 12q13.13, and

17q21.33 based on results of the BMA analysis and the lack of

strong prior evidence. Of these, the gain at 17q21.33 is of high

interest as it is significantly more common in HER2+ (24.1%) than

HER2– (6.8%) tumors (p,0.0001), consistent with published

studies [39]. Hu et al., [13] proposed MYST2, which codes for a

histone acetyltransferase (HBO1) with a putative role in proges-

terone receptor signaling [40], as a candidate oncogene for the

amplicon at 17q21 present in HER2+ tumors. To our knowledge,

this is the first report showing a reduced risk of recurrence for

breast tumors bearing this amplification. Additional confirmation

of this amplicon, as well as the other novel CNIs identified in our

selection process as prognostic markers, is warranted.

Figure 4. Time-to-recurrence for all breast cancers by 19 CNI-only risk groups. Risk groups are defined as low-risk CNIs, no CNIs at the 19
markers (no-CNIs), and high-risk CNIs: (A) training set and (B) test set.
doi:10.1371/journal.pone.0023543.g004
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Table 3. Association Between Clinicopathological Characteristics and Marker-based Risk Signatures.

Characteristic1 Low Risk (n = 153) No CNI (n = 449) High Risk (n = 369) P value

Age at diagnosis (years)

,40 14 (9.2) 50 (11.1) 50 (13.6)

40–50 42 (27.5) 131 (29.2) 115 (31.2)

50–60 41 (26.8) 110 (24.5) 111 (30.1)

.60 56 (36.6) 155 (34.5) 91 (24.7) 0.04

Race/Ethnicity

White 110 (71.9) 334 (74.4) 271 (73.4)

African American 21 (13.7) 51 (11.4) 53 (14.4)

Hispanic 21 (13.7) 59 (13.1) 43 (11.7) 0.70

Tumor Subtype1, no. (%)

LUM A 51 (33.3) 225 (50.1) 113 (30.6)

LUM B 32 (20.9) 53 (11.8) 71 (19.2)

HER2+ 32 (20.9) 53 (11.8) 73 (19.8)

TNBC 24 (15.7) 71 (15.8) 89 (24.1) ,0.001

Nuclear Grade3, no. (%)

I/II 81(53.0) 296 (65.9) 192 (52.0)

III 65 (42.5) 110 (24.5) 161 (43.6) ,0.001

Tumor size, no. (%)

,1 14 (9.2) 84 (18.7) 31 (8.4)

1–2 71 (46.4) 201 (44.8) 165 (44.7)

.2 63 (41.2) 141 (31.4) 165 (44.7) ,0.001

Lymph node, no (%)

0 87 (56.9) 268 (59.7) 210 (56.9)

$1 62 (40.5) 167 (37.2) 154 (41.7) 0.50

ER status

Negative 41 (26.8) 114 (25.4) 138 (37.4)

Positive 110 (71.9) 331 (73.7) 225 (61) ,0.001

Ki67 status (%)

,20 63 (41.2) 277 (61.7) 155 (42)

$20 69 (45.1) 106 (23.6) 176 (47.7) ,0.001

HER2 status

Negative 121 (79.1) 307 (88.7) 296 (80.2)

Positive 32 (20.9) 39 (11.3) 73 (19.8) 0.002

Endocrine Therapy

No 76 (49.7) 236 (52.6) 210 (56.9)

Yes 72 (47.1) 198 (44.1) 152 (41.2) 0.34

Chemotherapy

No 84 (54.9) 234 (52.1) 162 (43.9)

Yes 62 (40.5) 184 (41) 191 (51.8) 0.008

Radiation therapy

No 87 (56.9) 226 (50.3) 222 (60.2)

Yes 62 (40.5) 206 (45.9) 142 (38.5) 0.24

1q

No Gain 86 (56.2) 340 (75.7) 202 (54.7)

Gain 67 (43.8) 109 (24.3) 167 (45.3) ,0.0001

16p

No Gain 116 (75.8) 409 (91.1) 274 (74.3)

Gain 37 (24.2) 40 (8.9) 95 (25.7) ,0.0001

16q

No Loss 117 (76.5) 406 (90.4) 290 (78.6)
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When classified based on a risk index comprised of the 19 CNIs,

patients in both the high- and low-risk groups show extensive

genome-level chromosomal alterations and a significantly higher

proportion of high-grade tumors and greater lymph node

involvement than the no-CNI group. Compared with the no-

CNI group, there were significantly higher frequencies of gains at

1q and 16p and loss at 16q in the low- and high-risk groups. This

is consistent with an underlying defect in maintenance of normal

CN in the two groups and argues against overrepresentation of the

previously described ‘simplex’ tumors [29] as an explanation for

the risk differences observed across the three groups.

The characteristic of the two CNI-defined groups (low- and

high-risk) contrasts with tumors lacking CNI at the 19 segments.

This group displays intermediate risk of recurrence in spite of

proportionally lower lymph node involvement and lower-grade

disease. These results suggest that information on specific CNIs

may improve prognostication over clinical covariates and tumor

marker-defined subtypes, particularly among tumors exhibiting

chromosomal instability that manifest as CNIs. Given the nature

of the intermediate, no-CNI risk group, these results further

suggest alternative alterations, not CNI and perhaps not genomic

instability, as determinants of disease progression in the no-CNI

group of tumors.

The selection of CNIs in our model arose from treating the

segments as a dose effect (21, 0, and +1) in the variable selection

strategy and reflects, in some instances, imbalances in the same

genomic loci, which appear to confer opposing effects on tumor

behavior. Though individual CNIs are limited to a few events, the

data shown in Figure S2 and Figure 5 suggest that some segments

(e.g., 2p11.1, 3q13.12, 10p13, 11q13.5, and 13q12.3) contain

critical progression genes that, when lost, limit tumor metastasis.

While this study is among the largest of early-stage breast

cancers, a limitation is the potential effect of misclassification using

older samples and use of tumor markers to approximate the

transcriptome-based tumor subtypes. It is notable that some, but

not all, of the 19 CNIs have been strongly associated previously

with the expression-based subtypes and are similarly associated

with our tumor marker-derived subgroups (Table S3). This

suggests that part of the improved prognostication in our study

may result from more-direct measures of the fixed events that

underlie the expression-based subtypes. Interestingly, the perfor-

mance of our IHC-approximated tumor-subtype prognostic model

was similar (C-Index = 0.62) to that for transcriptome-derived

intrinsic subtypes reported by Parker et al. [6]. Additional direct

comparison efforts are needed, however, to derive and refine the

best and most reproducible set of discriminatory molecular

markers for clinical use in the prognostication of recurrence. Such

combined approaches may be of particular importance for further

risk stratification of the no-CNI group, intermediate risk group.

In summary, we have identified a set of CNIs, using archival

FFPE samples and novel MIP array technology, that significantly

improves risk prediction for any and distant metastasis in early-

stage breast cancer, independent of IHC-defined tumor subtypes.

Further, our results support the presence of gain and loss

imbalances within the same genomic loci that confer opposing

effects on tumor behavior, findings that may indicate important

biological drivers of metastasis. The results from our model

building are highly promising and support CNI measures in

prognostication, particularly for refining risk classification among

clinical subsets (i.e., ER–, LUM B, HER2+, and TNBC) where

there remains a clinical need for within-group improvement in

prognostication. Further evaluation of these markers in indepen-

dent replication sets, considering gene expression-derived intrinsic

subtypes and treatment, is warranted.

Materials and Methods

Ethics Statement
This study included banked samples dating from 1985–1999

and was approved by the Institutional Review Board of the

University of Texas M.D. Anderson Cancer Center (MDACC)

with waiver of consent for passive follow-up of deceased patients.

For those who were alive during the study period, patients were

contacted and consented for study participation.

Patient population and breast tumor specimens
Breast tumors (n = 1,003) for which we had complete clinical

and follow-up data and adequate tumor DNA from FFPE tissue

blocks were identified from the Early Stage Breast Cancer

Repository (ESBCR) at MDACC. The cohort is a retrospective

study of 2,409 women diagnosed with pathologic stage I or II

breast cancer and surgically treated at MDACC between 1985

and 2000. Criteria for eligibility and cohort details have been

reported previously [41]. Clinical information, including patient’s

age, race/ethnicity, stage, tumor size, lymph node status, nuclear

grade, ER and PR status, and primary treatment, including

surgery, radiation therapy, chemotherapy, and endocrine therapy,

was abstracted from medical charts.

Definition of tumor subtypes
The four mutually exclusive tumor subtypes of LUM A, LUM B,

HER2, and TNBC were approximated from clinically validated IHC

analyses of ER, PR, HER2, and Ki67. ER and PR status were

obtained from medical records (96.6% and 95.8%, respectively) and

tissue microarray studies (2.2% and 3.2%, respectively). The

agreement in ER and PR status between the two sources was

84.8% and 76.4%, respectively. Data for ER and PR could not be

obtained for 12 and 10 subjects, respectively. ER and PR positivity

was defined as $1% staining. ER+/HER2– tumors were subclas-

sified using Ki67 and a clinical threshold of $20% positivity into

LUM A (ER+/Ki67 ,20%) and LUM B (ER+/Ki67 $20%) [42].

HER2+ status was defined for all tumors by MIP array-based ERBB2

Characteristic1 Low Risk (n = 153) No CNI (n = 449) High Risk (n = 369) P value

Loss 36 (23.5) 43 (9.6) 79 (21.4) ,0.0001

1Data for samples missing a specific characteristic are not shown, refer to Table 1.
2Tumor subtype defined by ER, PR, Ki67 and HER2 as described in Materials and Methods.
3Nuclear grade was determined by the Modified Black’s method.
doi:10.1371/journal.pone.0023543.t003

Table 3. Cont.
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CN using a threshold of 2.8 for gain. This threshold was chosen based

on best fit in an ROC curve yielding an AUC of 0.94 for IHC-based

HER2 measurement using clinical scoring (0 or 1, not amplified; 2+

and equivocal; 3+, amplified), see Figure S4. Sensitivity analyses using

thresholds of 2.3, 2.5, and 2.8 changed the frequency of HER2+
tumors in the sample as follows: 26.9%, 21.0%, and 16.3%.

Figure 5. Pattern of copy number imbalances and their frequency across risk subtypes. (A) Frequency and type of CNIs (red,gain;
loss,green) across the entire genome for the three marker-based risk groups (low-risk CNIs, no-CNIs, and high-risk CNIs). (B) CN gain/loss frequencies
for the 19 CNIs and for the low- and high-risk CNI defined groups.
doi:10.1371/journal.pone.0023543.g005
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DNA extraction
Tumor DNA was extracted from FFPE tissues and processed for

CN analyses as described previously [21]. Briefly, 5–10 (5- mm)

macrodissected tumor sections containing .80% tumor cells per

protocol were pooled and treated three times with proteinase K in

ATL Tissue Lysis BufferTM (Qiagen, Valencia, CA). Following

lysis, samples were applied to uncoated Argylla ParticlesTM

(Argylla Technologies, Tucson, AZ) and processed according to

manufacturer recommendations (http://www.argylla.com).

Molecular inversion probe-based arrays for copy number
measurement

Tumor DNA was isolated from patient tissue blocks stored as

FFPE. For 129 cases, DNA from non-tumor-bearing lymph nodes,

stored as FFPE, was isolated as an internal germline reference for

the population. Tumor and normal DNA at 10 ng/mL was

shipped to the AffymetrixTM MIP laboratory for CN measure-

ment. The laboratory was blinded to all sample and subject

information including identity of duplicates. The MIP assay has

been described in detail [24], [43–44] including platform

validation using representative, but independent, samples from

the ESBCR [21]. Data from the MIP high-density arrays are

deposited at the National Center for Biotechnology Information

(NCBIs).

Data quality was assessed using the sample two-point relative

standard error (2p-RSE), as previously described [44]. The

majority (96.8%) of FFPE tumor samples applied to the MIP

arrays passed the 2p-RSE threshold. To assess platform

performance, we routinely conducted an assay quality panel

check. The panel consists of 12 samples: 9 HapMap samples

(including two trios), chr3X, 4X, and the UCAA812 cell line.

HapMap samples were used to calculate trio concordance and

genotype accuracy; male chrX defined CN = 1, 3X and 4X were

used for low-CN confirmation, and UACC812 was used for high

amplifications (e.g., ERBB2 has CN = 15).

Determination of copy number change
Data collected from 129 matched normal lymph node samples

were used for normalizing the CN data; therefore, common

germline CNIs have been normalized by comparing the tumors to

this normal set. For each sample, we generated full-genome MIP

quantifications (330K MIPs). In order to reduce the data

dimension, we computed the running median within groups of

25 consecutive MIPs, yielding 13,175 data points per sample. The

Circular Binary Segmentation algorithm [45–46] was used to

convert the data to a list of segments for each sample. CN

differences were analyzed with the R package DNAcopy [47],

using thresholds of 2.5 for one copy gained and 1.5 for one copy

lost. The parameter alpha (significance level for acceptance of

change-points) used in the segmentation algorithm was set to 0.01.

We recombined consecutive segments if their gain/loss calls

agreed for at least 99.5% of the samples. This procedure yielded

1,593 segments, representing the entire genome. Comparisons of

CN patterns across different demographic, clinical, and tumor

subtype groups were performed by Fisher’s exact test, chi-square

test, or Wilcoxon rank-sum test, as appropriate, with random

permutations of the samples to incorporate an FDR adjustment for

multiple comparisons.

Development of prediction models with copy number
data

We randomly split the entire sample into two groups: 75%

(n = 728) for training and 25% (n = 243) for testing. The primary

endpoint of the study was time-to-any breast cancer recurrence,

defined as the occurrence of local lymph node or breast

recurrence; metastasis to contralateral breast, chest wall or other

sites; or self-report of new breast cancer that could not be verified

as a recurrence versus a second primary (n = 42). Patients not

known to have a recurrence at the date of last contact were

censored. Univariate Cox proportional hazards regression models

were used to evaluate the associations between tumor character-

istics (grade, lymph node involvement, size, and stage) and

treatment (endocrine therapy, chemotherapy, radiation, and

surgery) variables and time-to-recurrence.

To integrate information on CN, we applied the CoxBoost

algorithm for fitting a Cox proportional hazards model with high-

dimensional covariates to select CNIs relevant to recurrence [24].

It is important to note that we arbitrarily chose 100 iterations,

Figure 6. Kaplan-Meier analysis of the recurrence probability by CNI-only risk categories for ER2 cases by treatment. (A) all; (B)
received chemotherapy; and (C) no chemotherapy.
doi:10.1371/journal.pone.0023543.g006

Copy Number Based Prognostic Model for Breast Cancer

PLoS ONE | www.plosone.org 12 August 2011 | Volume 6 | Issue 8 | e23543



which yielded 19 CNI markers that were used throughout model

building.

Next, we used a backwards elimination procedure to fit a

multivariate Cox proportional hazards model with clinical

covariates, considering those that were associated with time-to-

recurrence in univariate analysis (lymph node status, tumor size,

and patient age). Finally, we combined the selected CNIs and

clinical covariates from the above two steps with tumor subtype

(LUM A, LUM B, HER2+, and TNBC) and applied backwards

elimination with Cox proportional hazards modeling to derive the

final multivariate model. Internal validation of this final model was

performed to confirm that results were not spurious and to assess

the performance of the resulting models with respect to potential

overfitting. Specifically, for the training data set, we evaluated

prediction performance using bootstrap .632+ estimates of

prediction error curves. To assess model performance, the C-

Index [48] was used to compare the strengths of the various

models by fitting the same multivariate models to the test set. The

C-Index is a measure of the probability of agreement between

what the model predicts and the actual observed risk of breast

cancer recurrence. We also used the C-Index estimates to compare

differences between the individual models using a two-sample t-

test.

Creation of risk group classifiers
We used the coefficients of the Cox model based on the training

data (n = 723) including the 19 markers as -1, 0, and +1 to define

three groups: intermediate risk (tumors that show no event for the

19 markers, risk index = 0), high risk (tumors with risk index .0),

and low risk (tumors with risk index , 0).

Time-dependent ROC curves for recurrence
We summarized the discrimination potential of our models

(clinical-only, markers-only, and clinical + markers models) by

calculating ROC curves for cumulative recurrence incidence at 5

and 10 years (see [49]). An ROC curve is the plot of the sensitivity

versus 1-specificity of the dichotomized test X.c for all possible

values of c, where X is a risk indicator. A time-dependent ROC

curve can be produced by estimating time-dependent sensitivity

and specificity:

Sensitivity(c,t)~PfXwcjD(t)~1

Specificity(c,t)~PfXwcjD(t)~1,

Where D(t) is 1 if an event (recurrence) happened up to time t, and

0 otherwise. For our three models, we used the log-hazard values

estimated by each Cox model as a risk indicator for the ROC

curve computation. We used the R package survivalROC [50].

Bayesian Model Averaging (BMA) to address model
selection uncertainty

BMA was used to examine a subset of the 2n possible models

(when n, the number of covariates, is large) to determine posterior

probabilities of each model (see equations [25,51]). This

summation over models allows the computation of the posterior

probability that the regression coefficient for a covariate is non-

zero (‘posterior effect probability’), the sum of posterior probabil-

ities of the models which contain this variable. BMA was

implemented in the R package bma [52] and allows BMA for

Cox models of survival [51]. Rules of thumb for the interpretation

of the posterior effect probabilities are as follows: ,50%, evidence

against the effect; 59–75%, weak evidence for the effect; 75–95%,

positive evidence for the effect; 95–99%, strong evidence for the

effect, and .99%, very strong evidence for the effect.

Supporting Information

Figure S1 Copy number gains and losses in HER2+
tumors by ER status. (A) ER-/HER2+ and (B) ER+/
HER2+. The horizontal black lines at the top (and bottom) of a

panel indicate regions showing statistically significant increase in

gain (and loss) frequencies (FDR,0.01) for this subtype compared

with the other subtype.

(TIFF)

Figure S2 Time-to-recurrence using data for all breast
cancers by the 19 individual copy number imbalances
identified in the variable selection process. The black line

indicates no change in copy number, while green is loss and red is

gain.

(TIFF)

Figure S3 Time-dependent receiver operator character-
istic (ROC) curves with the area under the curve (AUC)
for the full models (19 CNIs, clinical, and tumor
subtypes) compared to the clinical-only, clinical + tumor
subtype, and 19-CNI (’marker only’) models for 5-year
(Panels A & C) and 10-year (Panels B & D) recurrence
probability for all breast cancers (Panels A & B) and
ER2 cases only (Panels C & D).
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