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H2S AS A THERAPEUTIC ADJUVANT AGAINST COVID-19: WHY AND HOW?
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Recently, H2S has been proposed as a potential therapy for

patients with SARS-CoV-2 (COVID-19) pneumonia (1), and in

this context, its effects have been attributed to various mecha-

nisms:
1.
 It is well established that SARS-CoV-2 enters the cell via

docking to the membrane-bound angiotensin-converting

enzyme2 (ACE2) after cleavage of one of its surface

proteins by the host’s transmembrane protease serine 2

(TMPRSS2). In fact, both the severity (2) and extra-pulmo-

nary manifestations (3) of the SARS-CoV-2 disease have

been associated with variable ACE2 and/or TMPRSS2

activities. Consequently, H2S-related reduction of their

activity could be therapeutically relevant (4).
2.
 Besides the blockade of virus entry into the cell, H2S may

act via inhibition of virus replication as demonstrated in

other RNA viruses (5): the slow-releasing H2S donor

GYY4137 attenuated alveolar epithelial cell pro-inflamma-

tory cytokine release due to reduced virus replication, while

both genetic deletion (6) and pharmacological inhibition (7)

of cystathionine-g-lyase (CSE), one of the major H2S-

producing enzymes, exerted the opposite effect.
3.
 Oxidative stress (8, 9) resulting from glutathione (GSH)

deficiency (10) seems to be a key factor for the severity of

the SARS-CoV-2 disease. An antioxidant effect of H2S may

replenish GSH, thereby producing cytoprotective effects.
4.
 H2S could attenuate the SARS-CoV-2-related ‘‘cytokine

storm’’ due to the downregulation of the production of

various pro-inflammatory mediators (11) and/or via the

inhibition of leukocyte activation (12).
5.
 Endothelial dysfunction is a significant part of SARS-CoV-

2 disease (13), and H2S donors have been demonstrated to

exert significant endothelium-protective effects in various

experimental models (14). This point is especially pertinent,

because the epidemiology of the SARS-CoV-2 disease

clearly suggests a particular role of H2S: the majority of

patients needing mechanical ventilation and extra-
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pulmonary organ support are older and/or suffer from

underlying chronic cardiovascular, metabolic, and/or pul-

monary comorbidity. All these conditions are well known to

be associated with impaired endogenous H2S availability

and/or reduced CSE expression (12).
6.
 In addition, H2S was found to potentiate T-cell activation

and regulate Treg-cell-associated immune homeostasis, with

the net effect being a stimulation of the immune response

(15). Such effects may be beneficial in the context of

stimulation of anti-SARS-CoV-2 immune responses.
7.
 Finally, recently, Renieris et al. (16) demonstrated in this

journal that high baseline concentrations of reactive sulfur

species and/or their lacking decrease over time were asso-

ciated with worse outcome of SARS-CoV-2. While the

absolute concentrations reported clearly have to be ques-

tioned (17), this observation nevertheless suggests investi-

gating exogenous H2S as a therapeutic approach.
It is self-evident that any potential therapeutic approach

using H2S donation raises the question of the route of applica-

tion. Theoretically, two possible strategies could be considered:

boosting endogenous H2S formation, i.e., by supplementing

upstream substrates and/or cofactors of the H2S-producing

enzymes (e.g., taurine, vitamin B6, a-keto-glutarate), or exog-

enous H2S administration. The latter approach can either make

direct use of the H2S molecule itself, i.e., by inhaling gaseous

H2S, or use molecules that can ‘‘release’’ H2S (Fig. 1). In this

journal, Ali et al. (18) advocate a clinical trial to explore the use

of inhaled H2S for the management of SARS-CoV-2-related

ARDS. Albeit inhaling gaseous H2S has already been per-

formed in small studies in healthy human volunteers (19), for

several reasons, we strongly recommend NOT to use this

approach in SARS-CoV-2 patients (20): due to its potential

toxicity, its use requires special equipment and personnel for

storage and handling, as well as close monitoring of the

environmental and delivered concentrations to protect any

bystander; it is well established that gaseous H2S is an irritant

of the airway mucosa; a direct comparison of inhaled H2S and

infusion of the H2S-releasing salt Na2S in murine ventilator-

induced lung injury showed that in contrast to the protective

effect of infusing Na2S, inhaling H2S dose-dependently had

either no or even detrimental effects (21). Injection of the

rapidly H2S-‘‘releasing’’ salts (Na2S, NaHS) results in initially

high concentrations that subsequently rapidly disappear, and, in
d reproduction of this article is prohibited.
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FIG. 1. Pharmacological approaches to strengthen antiviral activity via increased H2S availability in patients suffering from SARS-CoV-2 disease.
3-MST indicates 3-mercaptopyruvate sulfurtransferase; ATTM, ammonium-tetrathiomolybdate; CBS, cystathionine-b-synthase; CSE, cystathionine-g-lyase;
Na2S, sodium sulfide; Na2S2O3, sodium thiosulfate; NaHS, sodium hydrogen sulfide. Adapted from (32).
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addition, may have adverse properties, e.g., induce pro- rather than

anti-inflammatory effects (20). While at least under intensive care

unit conditions, this inconvenient of bolus injection could theo-

retically be overcome by constant i.v., infusion, in clinically

relevant large animal models, this approach had beneficial effects

only within a narrow dose and time window (22). It is questionable

as well, whether the recently developed ‘‘slow-releasing’’ H2S

donors, e.g., GYY4137 or the mitochondria-targeted compound

AP39, will find their way into clinical practice: despite abundant

promising experimental studies both in vitro and in vivo, the

available data from fully resuscitated animal models showed

either hardly any protective properties or even detrimental side

effects (23, 24). Given the above-mentioned pitfalls of inhaling

gaseous H2S or infusing Na2S-based i.v. solutions and the uncer-

tainties of the newly developed compounds, interest has focused

on the potential use of molecules, which are known sources of H2S

and are already recognized drugs for other indications. GSH

replenishment can be achieved using its precursor N-acetyl-cys-

teine (NAC), which, moreover, would also potentially attenuate

SARS-CoV-2-related ‘‘cytokine storm’’ (25) as well as allow for

ACE2 inhibition (8). However, despite its promising pharmaco-

logical profile, in a single-center, double-blind, randomized,

placebo-controlled trial in 135 patients, high-dose NAC (�
300 mg/kg over 20 h) did not beneficially affect the evolution

of severe SARS-CoV-2 (26). Other potential candidates are

ammonium-tetrathiomolybdate, which is recognized for the treat-

ment of Wilson’s disease, and sodium thiosulfate (Na2S2O3),

which is well established for the treatment of cyanide intoxication,

cis-platinum overdose, and calciphyllaxis. Ammonium-tetrathio-

molybdate (ATTM) showed promising results in rat hemorrhage

and cerebral and myocardial ischemia/reperfusion (27). Na2S2O3

not only was organ-protective in both murine endotoxin- and

polymicrobial sepsis-induced acute lung injury (28), but, in

particular, also improved lung mechanics and gas exchange in

a clinically relevant, resuscitated long-term model of hemorrhage-
Copyright © 2021 by the Shock Society. Unautho
and resuscitation in chronically comorbid swine characterized by

coronary arterial CSE deficiency due to underlying ubiquitous

atherosclerosis (29). It should be noted, however, that so far neither

ATTM nor Na2S2O3 have been investigated in patients with

SARS-CoV-2.

In conclusion, there is sound evidence that H2S bears the

potential as a ‘‘defense against COVID-19’’ (4), in particular

since currently there is no effective drug for the treatment of the

disease. While inhalation of gaseous H2S cannot be recom-

mended so far, its administration (either via inhalation as

aerosols and/or i.v. infusion (30)) using already recognized

drugs that are well-established sources of H2S in biological

systems, warrants investigation in the clinical setting (31, 32).
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