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Abstract: Screen-printed ion-selective electrodes were designed and characterized for the assessment
of cyromazine (CYR) pesticide. A novel approach is to design tailor-made specific recognition
sites in polymeric membranes using molecularly imprinted polymers for cyromazine (CR)
determination (sensor I). Another sensor (sensor II) is the plasticized PVC membrane incorporating
cyromazine/tetraphenyl borate ion association complex. The charge-transfer resistance and water layer
reached its minimal by incorporating Polyaniline (PANI) solid-contact ISE. The designed electrodes
demonstrated Nernstain response over a linear range 1.0× 10−2–5.2× 10−6 and 1.0× 10−2–5.7× 10−5 M
with a detection limit 2.2 × 10−6 and 8.1 × 10−6 M for sensors I and II, respectively. The obtained
slopes were 28.1 ± 2.1 (r2 = 0.9999) and 36.4 ± 1.6 (r2 = 0.9991) mV/decade, respectively. The results
showed that the proposed electrodes have a fast and stable response, good reproducibility, and
applicability for direct measurement of CYR content in commercial pesticide preparations and soil
samples sprayed with CYR pesticide. The results obtained from the proposed method are fairly in
accordance with those using the standard official method.

Keywords: cyromazine (CR); solid-contact ISEs; screen-printed; molecularly imprinted polymers
(MIPs); polyaniline (PANI)

1. Introduction

Pesticides are agrochemicals used in pests controlling and to increase product quality and yield.
Excessive use of pesticides leads to threats to public health and food safety as well as insect resistance
to these pesticides and environmental pollution [1]. Cyromazine (CYR) is a triazine derivative and
is developed as an insecticide. It can be used for controlling the growth of insects and also as an
acaricide, with contact action that interferes with moulting and pupation [2]. When it is added to
animal food, it prevents hatching of fly larvae on sheep and lambs. So, it has an interesting application
in saving animal yield. It is also used against houseflies and mosquitoes [3,4]. Cyromazine (CYR) is
being also applied in massive amounts to save agricultural crop yields. Celery, spinach, and lettuce
are top considering the percentage of crop [5]. It is also applied for fly control in mushrooms and
vegetables [6]. Cyromazine is slightly toxic by ingestion, with reported oral LD50 values of 3387 mg−1

kg in rats [7]. It was noticed that CRY has non-noticeable toxicity in humans and animals. Despite
that, recent toxicological studies reported that cyromazine can produce mammary tumors in rats; as
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its mammary tumor-producing analogues [8,9]. Photocatalytic degradation of CYR under normal
environmental conditions produces the carcinogenic metabolite melamine [10,11]. In 2008, melamine
was used in adulteration of milk to increase its protein value because it is rich in nitrogen content.
Melamine causes renal failure and associated deaths in infants [12]. Because of that, CYR should be
forbidden to sheep producing milk because of these possible toxic effects. The US Environmental
Protection Agency (EPA) declared CYR as a potential carcinogenic chemical. The maximum residue
limits (MRLs) for CYR was in the range of 1–10 mg/kg [13–15]. From all of the above, the importance of
monitoring and detecting CYR in food and other environmental matrices become clear and necessary
for public health safety.

Currently, there are several analytical techniques reported in literature for detecting CYR, such as
gas chromatography–mass spectrometry (GC–MS) [16–19], high performance chromatography (HPLC)
with ultraviolet detection [16,20–22], HPLC with mass detection [23–25], fluorimetry [26], and capillary
electrophoresis [27]. Other techniques are based on enzyme linked immune-sorbent assay [28,29] and
vibrational spectrometric procedures [30]. Almost of these reported methods revealed high accuracy
and sensitivity but they exhibited many drawbacks combined with their instrumentation and reagents
used cost. In addition, they suffer from prolonged sample pretreatment or extraction steps that
affect the easiness of their applicability for routine analysis. On the other hand, techniques based on
potentiometric transduction have recently attracted much attention because of their simplicity, high
reliability, sensitivity, and selectivity towards targeted species [31–34]. Lately, ion-selective-electrodes
(ISEs) incorporating molecularly imprinted polymers (MIP) was a step forward towards organic ions
detection [33–37]. Trace-level detection in potentiometric ion-sensors can be achieved at zero-current
trans-membrane ion fluxes [38]. This drawback is overcome by using solid-contact potentiometric ISEs
(SC/ISEs), in which the inner filling solution was completely removed and the ill-defined interface
between the ion-sensing membrane (ISM) and the conductive substrate was eliminated by inserting
an electron-to-ion transducing material [39–41]. Screen printed solid-contact platforms could be a
promising technique for organic ions determination. To the best of our findings, only two cited papers
for screen-printed potentiometric sensors based on MIPs was found [37,42].

In this work, we designed and fabricated a novel screen-printed platform integrated with
tailor-made MIPs for potentiometric detection of cyromazine pollutant. The solid-contact transducer
was polyaniline (PANI). The MIP nano-beads were dispersed in polymeric (PVC) membrane and
acted as sensory receptors for the selective recognition of cyromazine. The proposed sensors were
successfully applied for the detection of cyromazine in commercial preparations and soil samples.

2. Materials and Methods

2.1. Chemicals and Reagents

Cyromazine (98.5%), bispyribac sodium, diquate dibromide, melamine, acetamipride, dinotefuran,
imidachloprid, flucarbazone, and atrazine were purchased from Dr. Ehrenstorfer GmbH (Stuttgart,
Germany). Polyaniline (emeraldine salt) (Average Mw > 15,000, 3–100 µm particle size), methacrylic
acid (MAA), ethylene glycol dimethacrylate (EGDMA), benzoyl peroxide (BPO), potassium tetrakis
(3,5-bis (trifluoromethyl) phenyl) borate (KTFPB), and acetonitrile were purchased from Sigma-Aldrich
Inc. (St. Louis, MO, USA). High molecular weight poly(vinyl chloride) (PVC), sodium tetraphenyl
borate (NaTPB), dioctyl phthalate (DOP), and tetrahydrofuran (THF) were obtained from Fluka AG
(Buchs, Switzerland). Tetrahydrofuran (THF) was freshly distilled prior to use. For pesticide technical
formulation, a nominee-kz, 3% soluble liquid (SL) of cyromazine, was purchased from Kafr El-Zayat
Pesticides and Chemicals Company (Gharbia, Egypt). All other chemical reagents were of analytical
grade and used without any further purification. A stock cyromazine solution (10−2 M) was prepared
by dissolving 0.166 g pure cyromazine in 100 mL distilled water and the pH of the solution was
adjusted to pH 3.5 using 0.1 M acetic acid. Dilutions of CYR (10−3–10−7 M) were prepared in 50 mM
acetate solution, pH 3.5.
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2.2. MIPs Synthesis

Cyromazine MIP beads were tailored using the precipitation polymerization method. Template
CYR (1.0 mmol), MAA (3.0 mmol), EGDMA (3.0 mmol), acetonitrile (20 mL), and BPO (70.0 mg)
were added to a 25-mL glass-capped bottle successively. Solution homogenization was obtained after
sonication for 15 min. The solution is then degassed with N2 flow for 10 min to expel all dissolved
oxygen dissolved in the solution. For complete polymerization, the reaction bottle was sealed and
rotated slowly using a magnet rotor in oil bath for 18 h at 70 ◦C. The obtained MIP beads were washed
with acetic acid/methanol (2:8, v/v), methanol stepwise by Soxhlet extraction to remove the template.
The resulting polymer was left over night at room temperature for complete dryness. Under similar
conditions and in absence of cyromazine, the non-imprinted polymer (NIP) was also prepared.

2.3. Planar Electrode Development

The design of the ceramic screen-printed electrode (SPE) is shown in Figure 1. It contains two
screens; one is made from carbon and the other from Ag/AgCl. The two screens were printed on
alumina substrate of 0.1 mm thickness and 35 mm length. The screen for either carbon or Ag/AgCl
ink printing was of 2 mm width. PANI was dissolved in THF (1 mg/mL), and 10 µL was deposited
by drop-casting onto the carbon sensing area. After drop-casting, the solution was left to dry for
3 min. The CYR-selective membrane contained 100 mg of the components in 1.5 mL THF as: MIP or
NIP beads (10 %), KTFPB (1.5%), PVC (30.5%), and DOP (58%). The reference membrane cocktail
was prepared by dissolving 78.1 mg polyvinyl butyral (PVB), 50 mg NaCl in 1 mL methanol. After
membrane preparation, a 15 µL of the two different membrane cocktails were drop-casting onto the
SPE and reference membrane, respectively and left to dry overnight.
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2.4. Potentiometric Measurements

The electromotive forces (emf ) were measured at 25 ± 1 ◦C with an Orion (720/SA pH/mV meter,
Cambridge, MA, USA). Potentiometric measurements were performed by immersing the designed
potentiometric cell in stirred solutions. A correction was made for the EMF values according to the
Henderson equation to eliminate the liquid-junction potential. Activity coefficients of the working standard
solutions of CYR were calculated by the Debye–Huckel approximation. The potentiometric performance
characteristics were calculated following the IUPAC recommendations [43,44]. All experiments were
performed with at least three electrodes.
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2.5. Constant-Current Chronopotentiometry

Chronopotentiometric measurements were carried out to test short-term potential stability. It was
performed using Metrohompotentiostat/galvanostat (Autolab, model 204) purchased from Metrohom
Instruments (Herisau, Switzerland). The electrodes under study had an area of 2.0 mm2 and were
connected as the working electrode in a one-compartment cell in 0.01 M CYR at room temperature.
The reference electrode was an Ag/AgCl/KCl (3 M) single junction (Model 6.0733.100, Metrohm, Zurich,
Swiss), and the auxiliary electrode was a Pt wire. A constant current of ±1 nA, applied to the working
electrode for 60 s followed by a reversed current for another 60 s.

2.6. Applications to Real Samples

The designed ISEs were introduced to test their applicability in detecting the concentration of CYR
inside real samples. The samples containing CYR were commercial soluble liquid (SL) formulation,
soil and agricultural waste water samples collected from different agricultural lands sprayed with
cyromazine pesticide. A locally present herbicide (Nominee-kz, 3% soluble liquid (SL) of cyromazine)
was purchased from Kafr El-Zayat Pesticides and Chemicals Company (Gharbia, Egypt). Accurately
0.5–1.0 mL of the formulation were transferred to 100-mL measuring flask and diluted to the mark
by 50 mM acetate solution at pH 3.5. The potential readings of the test solutions were recorded and
compared with a calibration plot prepared from (10−2 to 10−6 M) standard CYR solutions under the
same conditions of measurements.

A 250 g of different soil samples were collected from agricultural lands, soaked into 250 mL
water and sonicated for 2 h. After filtration, the obtained filtrate was then analyzed by the proposed
potentiometric cell and the results were compared to that obtained by the official HPLC standard
method [45].

3. Results and Discussions

3.1. Characterization of MIP Particles

The imprinted polymer was prepared by the precipitation polymerization method. The yields
for MIPs and NIPs were 53.8%, and 56.4%, respectively. The scanning electron microscope (SEM)
was used for characterizing the morphology of the particles. As shown in Figure 2, the observed
discrete polymer microspheres were in the low micrometer size range with narrow particle size
distributions. The number-average diameter (Dn) of both NIPs and MIPs was 2.58 and 2.78 µm,
respectively. These uniform-sized beads give a good dispersion in the polymeric ISE membrane, reduce
the membrane resistance, and induce more binding sites available in the membrane.
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Characterization of the resulting polymer was carried out by FTIR spectral analysis. As shown
in Figure 3a, the spectrum of CYR showed stretching N–H peaks at 3496 and 3333 cm−1. The peaks
were strong and of medium intensity. In addition, broad and strong peaks around 1664 and 1355 cm−1
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assigned to stretching –C=N– and –C–N stretching vibrations. All these peaks were clearly present
in the spectrum of MIP/MAA before the removal of CYR (Figure 3b) and completely disappeared
in the FT-IR spectrum of the MIP particles after CYR removal (Figure 3c). As shown in Figure 3c,d,
they exhibited a strong broad band at 3518 and 3522 cm−1 for νOH stretching assigned to –OH group
present in the monomer used. This peak appeared in both NIP and washed MIP particles. It is
shifted to 3336 cm−1 in the spectrum of the un-washed MIP (Figure 3b). This can be attributed to the
contribution of –OH group in the monomer in the complexation with the template through hydrogen
bond formation. A sharp and strong peak appeared at 1729, 1731, and 1725 cm−1 assigned for –C=O
group in un-washed MIP washed MIP and NIP particles, respectively. This peak is commonly present
in all IR-spectra because of the use of EGDMA cross-linker. From all of the above, we can prove the
possibility of the interaction between the N–H group and the carboxylic group of MAA. This confirms
the imprinting process of CYR using MAA as a functional monomer.
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3.2. Characteristics of the Proposed Sensors

The presented new disposable potentiometric strip cell consists of either MIP/PANI or TPB/PANI
based CYR-SCISE. The strip cell has been batch produced in the laboratory at a low cost and can easily
be transferred to a high throughput, highly parallel, and mass manufacturing process. This would
reduce the cost of production and increase reproducibility of the device. In this Technical Note,
we report for the first time a new disposable potentiometric strip cell for cyromazine detection.
Cyromazine-selective membranes have two sensory materials. These include the synthetic receptor
(MIP beads) and TPB/CYR ion association complex. The potential response measured by these sensors
was presented in Figure 4. For MIP/PANI-SCISE, it revealed a Nernstian response towards CYR ions
with cationic slope of 28.1± 2.1 (r2 = 0.9999) mV/decade over a linear range 1.0× 10−2–5.2× 10−6 M with
a detection limit 2.2 × 10−6 M. Membrane sensors based on NIP particles were tested as a control. These
sensors showed a worse response performance towards CYR as compared with that contain the MIP
beads under the same conditions. This confirms the successful use of these tailored receptors as sensory
elements in potentiometric transduction. For TPB/CYR/PANI-SCISE, it exhibited a potentiometric
response towards CYR ions with Nernstian slopes of 36.4 ± 1.6 (r2 = 0.9991) mV/decade over the linear
concentration range 1.0 × 10−2–5.7 × 10−5 M with detection limit of 8.1 × 10−6 M. All potentiometric
characteristics of the presented sensors were presented in Table 1.
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50 mM acetate solution of pH 3.5.

Table 1. Potentiometric characteristics of CYR sensors in 50 mM acetate solution of pH 3.5.

Parameter MIP/PANI-ISE NIP/PANI-ISE TPB/PAN-ISE

Slope (mV/decade) 28.1 ± 2.1 12.7 ± 0.5 36.4 ± 1.6
Correlation coefficient (r2) 0.9999 0.9957 0.99916

Detection limit (M) 2.2 × 10−6 5.0 × 10−6 8.13 × 10−6

Linear range (M) 5.2 × 10−6 1.0 × 10−5 5.7 × 10−5

Working pH range (pH) 3–4.5 3–4.5 3.0–4.5
Response time (s) <10 <10 <10
Accuracy (mV%) 99.2 98.2 99.1
Precision (mV%) 1.1 0.9 1.3

The ability of the screen-printed platforms to resist long-term storage was examined. The sensors
were pre-conditioned in 10−5 M CYR for 1 h followed by pre-conditioning in 10−2 M NaCl for another
2 h. In preliminary tests, the sensors were stored in a dry place and their performances were evaluated
after a given time. No significant changes in their performances were observed after re-calibrating
these sensors everyday over one month. This revealed that the sensors can be used dried and stored
for one month. Re-calibrating the sensors for longer periods of time (i.e., 8 weeks) and the analytical
features of these sensors were recorded. It has been noticed that after 8 weeks of daily use, the limit of
detection increased up to 3 × 10−5 M, and the potentiometric response declined and the sensitivity
decreased. From all of the above, the potentiometric strip cell can be stored in dry conditions for
prolonged periods with no significant loss of performance characteristics.

Effect of pH on the potential response of the proposed ISEs was tested. The potential-pH relations
revealed no potential variation by more than that ± 1 mV within the pH range of 3.0–4.5. At pH < 3,
the potential response begins to decline. This can be attributed to the formation of the trivalent ion of
CYR. At pH > 4.5, the potential begins to decline again due to the formation of neutral CYR species.
The pka of CYR was reported to be 5.52 [46]. From all of the above, 50 mM acetate buffer background
of pH 3.5 was chosen for all subsequent measurements.

The selectivity coefficient (KPot
i, j) determines the ability of an ISE to respond to an analyte I against

an interfering ion j. The selectivity coefficients of the CYR electrodes towards foreign compounds were
calculated using the modified separate solution method (MSSM) [47]. As these values are small they
are tabulated as the negative logarithm (Table 2). The small selectivity coefficient values reflect the
high selectivity of the proposed electrodes towards CYR against the studied interfering ions. Evidently,
MIP/PANI-SCISE exhibited excellent selectivity towards CYR over melamine, atrazine, Na+, K+, Cu2+,
and Fe3+ ions. On the other hand, TPB/CYR/PANI-SCISE revealed excellent selectivity towards CRY
over diaquat, acetamipride, dinotefuran, imidachloprid, bispyribac, and flucarbazone ions.
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Table 2. Potentiometric selectivity coefficients (logkpot
CYR,B) of CYR membrane sensors plasticized with

DOP in 50 mM acetate solution of pH 3.5.

Interfering Ion, X
log Kpot

M,X

MIP/PANI-ISE TPB/PAN-ISE

Diaquat −2.03 −3.74
Acetamipride −2.80 −4.63
Dinotefuran −4.02 −6.07

Imidachloprid −4.35 −6.44
Bispyribac −4.26 −6.53

Flucarbazone −6.01 −7.27
Melamine −5.32 −4.12
Atrazine −4.11 −3.91

Na+
−7.51 −2.43

K+
−6.62 −2.34

Cu2+ −8.1 −4.13
Fe3+ −9.31 −5.34

From all of the above, the results obtained reflect excellent selectivity for the proposed sensors
and offer a great potential for trace-level monitoring of CYR in environmental samples as a low cost,
disposable alternative for those applications where conventional sensors are not affordable.

3.3. Potential Stability and Conditioning Time

Conditioning time effect on the long-term potential stability and potential response of the proposed
electrodes is shown in Figure 5. The effect of conditioning time was tested by inserting freshly prepared
ISEs in 10−3 M CYR in acetate solution pH 3.5, and then the potential was monitored for 60.0 min.
A potential drift of 115.2 and 190µV/s was observed for MIP/ISE and TPB/ISE, respectively. The potential
stability was enhanced and the drift was lowered to 23.2 and 28.3 µV/s for MIP/ISE and TPB/ISE,
respectively. From the results obtained, we can conclude that a water layer was formed between the
sensing membrane and conductive substrate in the absence of PANI layer. This is responsible for the
observed long-term potential drift. In contrast, the modified ISEs with PANI layer revealed a stable
behavior and the equilibrium were reached rapidly after the alteration. This presents evidence for the
hydrophobicity of PANI layer through no water layer formation.

Polymers 2019, 11, x FOR PEER REVIEW 7 of 11 

 

of detection increased up to 3 × 10−5 M, and the potentiometric response declined and the sensitivity 
decreased. From all of the above, the potentiometric strip cell can be stored in dry conditions for 
prolonged periods with no significant loss of performance characteristics. 

Effect of pH on the potential response of the proposed ISEs was tested. The potential-pH 
relations revealed no potential variation by more than that ± 1 mV within the pH range of 3.0–4.5. At 
pH < 3, the potential response begins to decline. This can be attributed to the formation of the trivalent 
ion of CYR. At pH > 4.5, the potential begins to decline again due to the formation of neutral CYR 
species. The pka of CYR was reported to be 5.52 [46]. From all of the above, 50 mM acetate buffer 
background of pH 3.5 was chosen for all subsequent measurements. 

The selectivity coefficient (KPoti, j) determines the ability of an ISE to respond to an analyte I 
against an interfering ion j. The selectivity coefficients of the CYR electrodes towards foreign 
compounds were calculated using the modified separate solution method (MSSM) [47]. As these 
values are small they are tabulated as the negative logarithm (Table 2). The small selectivity 
coefficient values reflect the high selectivity of the proposed electrodes towards CYR against the 
studied interfering ions. Evidently, MIP/PANI-SCISE exhibited excellent selectivity towards CYR 
over melamine, atrazine, Na+, K+, Cu2+, and Fe3+ ions. On the other hand, TPB/CYR/PANI-SCISE 
revealed excellent selectivity towards CRY over diaquat, acetamipride, dinotefuran, imidachloprid, 
bispyribac, and flucarbazone ions. 

From all of the above, the results obtained reflect excellent selectivity for the proposed sensors 
and offer a great potential for trace-level monitoring of CYR in environmental samples as a low cost, 
disposable alternative for those applications where conventional sensors are not affordable. 

3.3. Potential Stability and Conditioning Time 

Conditioning time effect on the long-term potential stability and potential response of the 
proposed electrodes is shown in Figure 5. The effect of conditioning time was tested by inserting 
freshly prepared ISEs in 10−3 M CYR in acetate solution pH 3.5, and then the potential was monitored 
for 60.0 min. A potential drift of 115.2 and 190 μV/s was observed for MIP/ISE and TPB/ISE, 
respectively. The potential stability was enhanced and the drift was lowered to 23.2 and 28.3 μV/s for 
MIP/ISE and TPB/ISE, respectively. From the results obtained, we can conclude that a water layer 
was formed between the sensing membrane and conductive substrate in the absence of PANI layer. 
This is responsible for the observed long-term potential drift. In contrast, the modified ISEs with 
PANI layer revealed a stable behavior and the equilibrium were reached rapidly after the alteration. 
This presents evidence for the hydrophobicity of PANI layer through no water layer formation. 

0 20 40 60 80 100

100

120

140

160

180

200

220

50 mM Tris buffer 50 mM Tris buffer

50 mM Tris buffer10-3M CYR

10-3M CYR

E/
m

V

Time/min

 MIP-ISE
 MIP/PANI-ISE

50 mM Tris buffer

(A)

0 20 40 60 80 100

-120

-100

-80

-60

-40

-20

50 mM Tris buffer 50 mM Tris buffer

10-4M CYR

10-4M CYR

E/
m

V

Time/min

 TPB-ISE
 TPB/PANI-ISE

(B)

 

Figure 5. Water-layer tests for the CYR-ISE (A) MIP and (B) TPB, with/without PANI solid contact. 

Chronopotentiometric technique was used to evaluate the short-term potential stability of the 
developed PANI nanocomposite [48]. Constant current (±1 nA for 60 s.) was applied on the studied 
electrodes and the potential response was recorded in 1 × 10−3 M CYR in acetate solution pH 3.5. 
Typical chronopotentiograms of PANI nanocomposite and screen-printed platforms without PANI 

Figure 5. Water-layer tests for the CYR-ISE (A) MIP and (B) TPB, with/without PANI solid contact.

Chronopotentiometric technique was used to evaluate the short-term potential stability of the
developed PANI nanocomposite [48]. Constant current (±1 nA for 60 s.) was applied on the studied
electrodes and the potential response was recorded in 1 × 10−3 M CYR in acetate solution pH 3.5.
Typical chronopotentiograms of PANI nanocomposite and screen-printed platforms without PANI
layer are shown in Figure 6. The total resistance for MIP/PANI-SCISE and TPB/CYR/PANI-SCISE
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was found to be 0.15 and 0.47 ΩM, respectively. On the other hand, the total resistance for MIP/ISE
and TPB/ISE was found to be 0.2 and 1.13 ΩM, respectively. The potential drift for MIP/PANI-SCISE
and MIP/ISE was found to be 30.1 and 76.3 µV/s, respectively. The low frequency capacitances for
sensors based on MIP beads were 33.2 ± 1.1 and 13.1 ± 0.7 µF, respectively. The potential drift for
TPB/PANI-SCISE and TPB/ISE was found to be 35.2 and 175.1 µV/s, respectively. The low frequency
capacitance for TPB/PANI-SCISE and TPB/ISE was found to be 28.4 ± 1.2 and 5.7 ± 0.8 µF, respectively.
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3.4. Analytical Applications

The proposed ISEs were applied successfully for the assessment of CYR in Nominee-kz, 3% soluble
liquid (SL) formulation, and soil samples in triplicate measurements for each sample. The results
of pesticide formulation are shown in Table 3. These data were compared with results obtained by
measuring cyromazine using the standard method [45].

Table 3. Determination of CYR in commercial pesticide formulation using MIP/PANI-SCISE.

Commercial Product Label (w%/v%)

a Found

Potentiometry RSD, % Official Standard
Method [45] RSD, %

Nomenee-kz, Kafr
El-Zayat Pesticides and

Chemicals Company
(Gharbia, Egypt)

3 2.78 ± 0.2 92.6 2.83 ± 0.05 94.3

a Average of five measurements ± standard deviation.

Different soil samples were collected from different agricultural lands sprayed with cyromazine
pesticide. At first, the sensors were calibrated by using the linear equation for cyromazine, and then
under the same batch the sensors were used in the sample analysis directly. Similar results are obtained
using the official standard method (Table 4). It can be seen the proposed sensors have promising
feasibility for determination of cyromazine pesticide in different complex samples.

Table 4. Determination of cyromazine in some soil samples using MIP/PANI-SCISE.

Sample Amount of Cyromazine (µg/g)

Potentiometry Official Standard Method [45] a

Sample 1 5.6 ± 0.7 4.7 ± 0.6
Sample 2 8.3 ± 0.3 8.7 ± 0.2
Sample 3 10.2 ± 0.5 9.3 ± 0.4

a Average of five measurements ± standard deviation.
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4. Conclusions

In this work, we describe the fabrication and characterization of two different solid contact
screen printed electrodes for rapid assay of cyromazine in pesticide formulation and soil samples.
Polyaniline (PANI) was used as an ion-to-electron transducing material. This study reinforced
the excellent characteristic of PANI as a good solid contact for ISEs to eliminate the water layer
formation between the solid contact layer and the membrane sensor. The sensors MIP/PANI-SCISE
and TPB/CYR/PANI-SCISE showed Nernstian responses towards CYR ions with slopes of 28.1 ± 2.1
(r2 = 0.9999) and 36.4 ± 1.6 (r2 = 0.9991) mV/decade over a linear range 1.0 × 10−2–5.2 × 10−6 and
1.0 × 10−2–5.7 × 10−5 M with a detection limit 2.2 × 10−6 and 8.13 × 10−6 M, respectively. The proposed
electrodes showed a high selectivity for CYR over common interfering pesticides. The electrodes were
used successfully for determination of CYR in soluble liquid (SL) formulation and soil samples with
high accuracy and precision.
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